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Preface

It is with great pleasure that we welcome you all to the proceedings of the 2nd
International Symposium on Visual Computing (ISVC 2006) held in Lake Tahoe.
Following a successful meeting last year, we witnessed a much stronger and more
productive event this year. ISVC offers a common umbrella for the four main
areas of visual computing including vision, graphics, visualization, and virtual
reality. Its goal is to provide a forum for researchers, scientists, engineers and
practitioners throughout the world to present their latest research findings, ideas,
developments and applications in the broader area of visual computing.

This year, the program consisted of 13 oral sessions, one poster session, ten
special tracks, and six keynote presentations. The response to the call for pa-
pers was very strong. We received more than twice the papers received last
year. Specifically, we received over 280 submissions for the main symposium
from which we accepted 65 papers for oral presentation (23% acceptance) and
56 papers for poster presentation (20% acceptance). Special track papers were
solicited separately through the Organizing and Program Committees of each
track. A total of 57 papers were accepted for presentation in the special tracks.

All papers were reviewed with an emphasis on potential to contribute to the
state of the art in the field. Selection criteria included accuracy and originality
of ideas, clarity and significance of results, and presentation quality. The review
process was quite rigorous, involving two to three independent blind reviews
followed by several days of discussion. During the discussion period we tried
to correct anomalies and errors that might have existed in the initial reviews.
Despite our efforts, we recognize that some papers worthy of inclusion may have
not been included in the program. We offer our sincere apologies to authors
whose contributions might have been overlooked.

We wish to thank everybody who submitted their work to ISVC 2006 for
review. It was because of their contributions that we succeeded in having a tech-
nical program of high scientific quality. In particular, we would like to thank
the ISVC 2006 area Chairs, the organizing institutions (UNR, DRI, LBNL, and
NASA Ames), our industrial sponsors (Intel, DigitalPersona, Equinox, Ford,
Siemens, Hewlett Packard, NVIDIA, MERL, UtopiaCompression), the inter-
national Program Committee, the special track organizers and their Program
Committees, the keynote speakers, the reviewers, and especially the authors
that contributed their work to the symposium. In particular, we would like to
thank Siemens who kindly offered the best paper award this year.

We sincerely hope that the proceedings of ISVC 2006 will offer opportunities
for professional growth.

August 2006 ISVC 2006 Steering Committee and Area Chairs
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Anders Heyden, Malmö University, Sweden
Kenneth Wong, University of Hong Kong, Hong Kong
Kenneth Tobin, Oak Ridge National Laboratory, USA
George Anagnostopoulos, Florida Institute of Technology, USA
Tanveer Syeda-Mahmood, IBM Almaden, USA
David Thirde, Reading University, UK



X Organization

George Papadourakis, Technological Education Institute, Greece
Sylvain Peyronnet, LRDE/EPITA, France
Alice O’Toole, University of Texas-Dallas, USA
Chandrika Kamath, Lawrence Livermore National Lab, USA
Gabriel Tsechpenakis, Rutgers University, USA
Tony Xiang, Queen Mary, University of London, UK
Stan Birchfield, Clemson University, USA
Ron Miller, Ford Motor Company, USA
Anthony Maeder, CSIRO ICT Centre, Australia
George Kartsounis, Agricultural University of Athens, Greece
Xiangjian He, University of Technology, Australia
Klimis Ntalianis, National Technical University of Athens, Greece
Chunrong Yuan, Fraunhofer Inst. for Applied Info Tech., Germany
Wenjing Li, STI Medical Systems, USA

(Area 2) Computer Graphics

John Dingliana, Trinity College, Ireland
Hanspeter Bieri, University of Bern, Switzerland
Anders Kugler, NVIDIA, USA
Cesar Mendoza, Universidad Rey Juan Carlos, Spain
Li-Yi Wei, Stanford University, USA
Chung-Yen Su, National Taiwan Normal University, Taiwan
Georg Umlauf, University of Kaiserslautern, Germany
Paolo Cignoni, ISTI - CNR, Italy
Gladimir Baranoski, University of Waterloo, Canada
Hammadi Nait-Charif, University of Dundee, Scotland
Tao Ju, Washington University in St. Louis, USA
Lijun Yin, Binghamton University, USA
Valentin Brimkov, State University of New York, USA
Tom Malzbender, Hewlett Packard Labs, USA
Dimitris Samaras, Stony Brook University, USA
Ioannis Kakadiaris, University of Houston, USA
Ralph Martin, Cardiff University, UK
Shimin Hu, Tsinghua University, China
Alvar Vinacua, Universitat Politècnica de Catalunya, Spain
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Bryce Hyland

A Novel Gait Recognition Method Via Fusing Shape and Kinematics
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

Yanmei Chai, Qing Wang, Jingping Jia, Rongchun Zhao

Illumination Normalization for Color Face Images . . . . . . . . . . . . . . . . . . . . . 90
Faisal R. Al-Osaimi, Mohammed Bennamoun, Ajmal Mian

Real-Time Detection of Out-of-Plane Objects in Stereo Vision . . . . . . . . . . 102
Weiguang Guan, Patricia Monger

Stereo Imaging with Uncalibrated Camera . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Xiaokun Li, Chiman Kwan, Baoxin Li



XVIII Table of Contents – Part I

Global Hand Pose Estimation by Multiple Camera Ellipse Tracking . . . . . 122
Jorge Usabiaga, Ali Erol, George Bebis, Richard Boyle,
Xander Twombly

Vision-Based Self-localization of Autonomous Guided Vehicle Using
Landmarks of Colored Pentagons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

Y.S. Kim, J.C. Kim, E.J. Park, Joonwhoan Lee

An Automated System for Contact Lens Inspection . . . . . . . . . . . . . . . . . . . 141
A.I. Bazin, T. Cole, B. Kett, M.S. Nixon

Efficient Motion Search in Large Motion Capture Databases . . . . . . . . . . . . 151
Yi Lin

Real-Time Rendering of Light Shafts on GPU . . . . . . . . . . . . . . . . . . . . . . . . 161
Shuyi Chen, Sheng Li, Guoping Wang

Learning the Stylistic Similarity Between Human Motions . . . . . . . . . . . . . . 170
Yu-Ren Chien, Jing-Sin Liu

Effects of Layer Partitioning in Collaborative 3D Visualizations . . . . . . . . . 180
Lars Winkler Pettersson, Andreas Kjellin, Mats Lind,
Stefan Seipel

GPU-Based Active Contour Segmentation Using Gradient
Vector Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191

Zhiyu He, Falko Kuester

Active Single Landmark Based Global Localization of Autonomous
Mobile Robots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

Abdul Bais, Robert Sablatnig, Jason Gu, Stefan Mahlknecht

Iterative Estimation of 3D Transformations for Object Alignment . . . . . . . 212
Tao Wang, Anup Basu

Temporal Alignment of Time Varying MRI Datasets for High
Resolution Medical Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 222

Meghna Singh, Anup Basu, Mrinal Mandal

Physically Interacting with Four Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . 232
Hui Zhang, Andrew J. Hanson

Low Level Moving-Feature Extraction Via Heat Flow Analogy . . . . . . . . . . 243
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Abstract. Applying advanced video technology to understand human
activity and intent is becoming increasingly important for video surveil-
lance. In this paper, we perform automatic activity recognition by clas-
sification of spatial temporal features from video sequence. We propose
to incorporate class labels information to find optimal heating time for
dimensionality reduction using diffusion via random walks. We perform
experiments on real data, and compare the proposed method with ex-
isting random walk diffusion map method and dual root minimal span-
ning tree diffusion method. Experimental results show that our proposed
method is better.

1 Introduction and Background

Recognition of human actions from video streams has recently become an ac-
tive area of research with numerous applications in video surveillance, which is
mostly motivated by the increasing number of video cameras deployed for video
surveillance and the current inability of video operators to monitor and analyze
large volumes of data. For predefined activities, many rule-based or logic based
methods have been proposed. For example, in [1], the authors define a series of
rules, e.g. entry violation, escort, theft whereas the results of [2] use a declarative
model and a logic based approach to recognize predefined activities. Unfortu-
nately a major drawback of pre-defined activity recognition approaches is that
the rules developed for one activity typically may not be applicable for other
activities. Indeed, different application domains may be interested in different
activities. One of the key challenges in these later systems is the ability to model
the activities of interest, as well as develop a methodology that allows auto-
matic recognition of activities. In [3,4,5], the authors show that same or similar
activity video sequences are clustered close to each other and far from different
activity video sequences. This paper targets an automatic activity recognition
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system which initially has an activity gallery that may be empty or may contain
a number of initial simple activities. The system is trained by example, where
input video sequences are manually labeled and the system extracts features and
automatically learns the new activity.

We suppose that we are given a set of labeled video sequences as training
data. The class label denotes a number of activities. Each video sequence is
represented by a high dimensional feature considered isometric to a point in a
high dimensional vector space. One may think that high dimension here should
be an obstacle for any efficient processing of our data. Indeed, many machine
learning algorithms have a computational complexity that grows exponentially
with dimension. Dimensionality reduction is a way to find an isometric mapping
of each video sequence into a corresponding point in Euclidean space of lower
dimension where its description is considered simpler.

High dimensional spatial temporal features are associated with the nodes
of a graph with a natural metric. After dimensionality reduction, a classifier
(e.g. k nearest neighbor classifier) is performed on the reduced features. Using
dimensionality reduction in the application of activity recognition can be found
in Zhong et al. and Porikli et al. [6,7]. For example, in [6] the authors calculate the
co-occurrence matrix between features, and solve for the smallest eigenvectors
to find an embedding space.

In this paper, we propose a new dimensionality reduction method. The idea
is to incorporate class labels information in the training data to find the optimal
heating time t for dimensionality reduction using diffusion via random walks. For
each heating time t, it associates a map which takes high dimensional feature to a
reduced feature points. With the class labels, we perform cross validation method
on the training data and then select the optimal t value which yields the smallest
cross validation value. For this optimal t, we perform diffusion dimensionality
reduction on the high dimensional spatial temporal feature and then use a k
nearest neighbor classifier on the reduced space. We use our methods on real
data, and compare the proposed method with existing random walk diffusion
and dual root minimal spanning tree diffusion.

The remainder of this paper is organized as follows. In Section 2, we first de-
scribe spatial temporal features and then describe existing diffusion map meth-
ods. Section 3 describes our proposed classification constrained diffusion map
method. In Section 4, we present experimental results and finally in Section 5,
we present a summary.

2 Existing Diffusion Map Methods

Before we describe the existing diffusion map methods, let’s briefly talk about
the high dimensional Spatial temporal features used in this paper.

Davis and Bobick [10]used recursive filtering to construct feature images that
represent motion: recent motion is represented as brighter than older motion. We
use a similar approach described in [12]. Actions can be complex and repetitive
making it difficult to capture motion details in one feature image. In this method,
a weighted average at time i ≥ 1, Mi is computed as Mi = αIi−1 +(1−α)Mi−1,
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where Ii is the image at time i and 0 ≤ α ≤ 1 is a fixed scalar. The feature
image at time i, which we denote by Fi is computed as Fi = |Ii −Mi|. Note that
it is the contrast of the gray level of the moving object which determines the
magnitude of the feature image not the actual gray level value. To form a spatial

Fig. 1. An original size and a reduced size feature image from a an action of marching
soldiers

temporal features, we can combine L frames together, e.g. L = 12 in this paper.
So each spatial temporal feature is isometric to a point in R25×31×12, where
spatial resolution can be reduced to 25x31 pixels [12], as shown in Figure 1.

Next, we describe Diffusion via Random Walks [9]. We denote X is the space
of spatial temporal features in Rd. First introduced in the context of mani-
fold learning, eigenmap techniques [8,9,11] are methods to isometrically embedd
points of X into a lower dimensional Euclidean space. Spectral methods take
into account local distortion of data points in X . The diffusion map methods
belong to the spectral methods.

The existing diffusion map methods of Diffusion via random walk [9] is that
it constructs a graph on X where each point is considered a node and every two
nodes are connected by an edge via a non negative, symmetric, positive definite
kernel w : X ×X → R. For example, the heat kernel can be

wσ(xi,xj) := exp
(
−||xi − xj ||2

2σ2

)
, xi,xj ∈ X, i, j = 1, .., n (1)

where σ is a kernel width parameter. The parameter σ gives the rate at which
the similarity between two points decays. The weight w reflects the degree of
similarity or interaction between the points xi,xj ∈ X and depends only on the
distance between xi and xj in X . Here, ||.|| is the Euclidean norm in Rd.

A Markov chain is defined onX as follows. Given a node xi ∈ X , we define the
degree of xi by d(xi) =

∑
xj∈X wσ(xi,xj). We then form a n×n affinity matrix

P with entries p(xi,xj) = wσ(xi,xj)
d(xi)

, i, j = 1, ..., n. Because
∑

xj∈X p(xi,xj) = 1,
P is a transition matrix of a Markov chain on the graph of the members of X .
Taking powers of P in steps t ≥ 1, produces probabilty functions pt(xi,xj)
which measure the probability of transition from xi to xj in t steps. Since wσ is
symmetric, P has a sequence of n eigenvalues

1 ≥ λ1 ≥ λ2 ≥ ... ≥ λn
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and a collection of 1 ≤ dr ≤ n right eigenvectors {φdr} so that for each fixed
t ≥ 1,

P tφdr = λt
dr
φdr .

Each eigenvector is a signal over the data points and the eigenvectors form a
new set of coordinates on X . For any choice of t, the mapping

Ψt : xi →
(
λt

1φ1(xi), ..., λt
dr
φdr (xi)

)T (2)

is an isometric embedding of X into Rdr and the function

α(xi,xj) := ||Ψ(xi) − Ψ(xj)||, i, j = 1, ..., n

defines a metric on the graph given by the nodes of X . Here ||.|| denotes the
Euclidean norm in Rdr .

The reason that spectral clustering methods work [13] is that with sparse
kernel matrices, long range affinities are accommodated through the chaining of
many local interactions as opposed to standard Euclidean distance methods -
e.g. correlation - that impute global influence into each pair wise affinity metric,
making long range interactions wash out local interactions.

Another diffusion methods, proposed by Grikschat et al. [11], is a dual root
minimal spanning tree diffusion method, we put the description in Appendix,
since we also compared our proposed method with those method.

3 Proposed Method

We are given a set of labeled video sequences (xi, yi), i = 1, . . . , n as training
data and an unlabeled set of testing data xi, i = 1, . . . ,m where each xi ∈ Rd

represents a d dimensional spatial temporal feature, and yi ∈ {1, ..., p} is a class
label in p activities.

Spatial temporal features xi, i = 1, .., n+m are associated with the nodes of
a graph with a natural metric given in section 2 for dimension reduction using
diffusion via random walks. As described in section 2, for each fixed positive
integer t, we have a map

t : z(t)
i = xi →

(
λt

1φ1(xi), ..., λt
dr
φdr(xi)

)T
, i = 1, ..., n+m (3)

Here, for any t, we produce from n+m points xi a new set of n+m reduced
points z(t)

i ∈ Rdr in an Euclidean space of reduced dimension dr. The parameters
t introduce weights as multiplication of eigenvalues by eienvectors.

From another point of view, we consider the matrix P t where P is the affinity
matrix defined in Section 2, which can be viewed as a transition matrix of a
Markov chain on the nodes. Taking powers of P in steps t, produces probabilty
functions which measure the probability of transition from xi to xj in t steps.
(For this reason, the maps are diffusion related). In this paper, we propose to
use class label information in the training data to choose an optimal t value for
dimensionality reduction. The detail is as follows:
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For each t ≥ 1, we use cross validation on the training points (z(t)
i , yi), i =

1, ..., n. Specifically, we use leave-one-out cross validation defined by

CV (t) :=
1
n

n∑
i=1

L( ˆf−i(z(t)
i ), yi) (4)

where ˆf−i is the fitting function computed with the ith part of the data removed
and L is 1 if ˆf−i(z(t)

i ) = yi and 0 otherwise.
We then select the optimal t value topt defined as

topt = argmin(CV (t)) (5)

which yields the smallest cross validation value.
We perform topt-step random walk diffusion and arrive the resulting low di-

mensional feature ztopt

i . After that, we use k nearest neighbor classifier for the
multi-class classification on the reduce space’s of the test data ztopt

i , i = 1, ...,m.

4 Experimental Results

In this experiment, the video sequences were recorded using a single stationary
monochrome CCD camera mounted in such a way that the actions are performed
parallel to the image plane. The data set consists of actions performed by s = 29
different people. Each person performed p = 8 activities, as shown in Figure
2: walk, run, skip, line-walk, hop, march, side-walk, side-skip. The location and
size of the person in the image plane is assumed to be available (e.g., through
tracking). Each activity sequence by each person includes a full cycle of the
activity. The number of frames per sequence therefore depends on the speed of
each action.

In our experiments, we used the data for eight of the 29 subjects for training
(64 video sequences). This leaves a test data set of 168 video sequences performed
by the remaining 21 subjects. The training instances have label. The number of
selected frames was arbitrarily set to 12. So, the full dimension d of the space is
775*12 dimensions (as shown in Section 2).

For performance evaluation, we calculated prediction risk on the test data by
the formula (6):

Rpred :=
1
m

m∑
i=1

L(ŷi, yi). (6)

Finally we compare our new method with the existing random walk diffusion
and dual root minimal spanning tree diffusion.

Table 1 shows the results of prediction risk (error) using our proposed method.
Table 2 and Table 3 are the results using existing Random walk diffusion+KNN
and Dual rooted diffusion+KNN;

The best result of the classification error in Table 1 is 36.31%, which is better
than the corresponding best result from Table 2 and Table 3 (42.86%, 57.14%
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Fig. 2. Frames from walk, run, skip, march, line-walk, hop,side-walk,side-skip actions
respectively

Table 1. Classification error using proposed method of cross validation to select best
heating time

d=3 d=5 d=20 d=50 d=100 d=150 d=200

σ = 6 53.57% 53.57% 51.79% 53.57% 57.74% 70.24 % 73.21%
σ = 8 57.14% 45.24% 44.05% 44.05% 46.43% 44.05% 50%
σ = 10 54.67% 56.55% 43.45% 41.07% 44.64% 47.02% 44.05%
σ = 12 50.6% 53.57% 38.69% 36.31% 39.88% 40.48% 41.67%
σ = 14 57.74% 50.6% 44.64% 47.02% 42.26% 42.26% 41.67%

Table 2. Classification error using using existing Random walk diffusion

d=3 d=5 d=20 d=50 d=100 d=150 d=200

σ = 6 53.57% 53.57% 51.79% 56.55% 59.52% 73.21% 84.52%
σ = 8 58.93% 45.24% 50.6% 48.81% 59.52% 69.64% 87.5%
σ = 10 57.14% 56.55% 44.64% 44.64% 58.33% 69.05% 86.9%
σ = 12 62.5% 55.95% 42.86% 44.64% 60.12% 70.83% 87.5%
σ = 14 57.74% 50.6% 44.64% 47.02% 60.12% 72.62% 87.5%

Table 3. Classification error using Dual rooted diffusion, where v = max(max(Ahop))

d=3 d=5 d=20 d=50 d=100 d=150 d=200

σ = 1/6 ∗ v 64.29% 64.88% 63.69% 66.07% 65.48% 74.4% 83.33%
σ = 1/8 ∗ v 61.9% 61.31% 63.69% 61.31% 64.88% 73.81% 88.1%
σ = 1/10 ∗ v 61.31% 63.69% 57.14% 62.5% 66.67% 70.83% 83.93%
σ = 1/12 ∗ v 60.71% 60.12% 60.12% 61.31% 66.07% 74.4% 82.74%
σ = 1/14 ∗ v 59.52% 60.12% 63.1% 59.52% 64.29% 75% 82.74%
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respectively). Also the results in Table 1 is stable and are considerably lower and
less sensitive to the choice of σ than those of Table 2 and Table 3. The reason is
that using proposed method the choice of optimal heating time t compensates
for the sensitivity of σ.

We also use different k-value in the k-nearest neighbor classifier, and have the
similar experimental results to the case k=3.

5 Summary

In this paper, we studied the problem of activity recognition via classification of
spatial temporal feature actions in the video surveillance application. In practical
application, these high level sematic learning performance also depends on the
quality of low level processing, such as motion detection and motion tracking.
Sometimes, there is bad quality of low level processing. For example, under very
noisy video environment, shadows, occlusion, the current low level processing
can not reach 100% satisfaction of the needs of activity recognition. We discuss
the robust tracking algorithm in [14], so in this paper we assume the low level
processing motion detection and motion tracking is well done.

In this paper, our new idea is to use class labels to find optimal heating times
for dimension reduction using diffusion via random walks. We used our methods
on real data, and compared our new method with the existing diffusion maps
method for random walk diffusion and dual root minimal spanning tree diffusion.
The results by our proposed method are shown to be considerably better as the
choice of optimal heating time.

The activity we discuss in this paper is simple activity, in the future work
we will perform research on complex activity, which is a combination of a series
simple activities.

Acknowledgement. The authors want to thank Professor A. Hero from Uni-
versity of Michigan and Dr. T. Wittman from University of Minnesota for useful
discussions.
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Appendix: Diffusion Via Dual Root Minimal Spanning
Trees

Starting with two random walks on different points xi and xj in X , when will
two paths generated hit each other. More precisely, given xi ∈ X , we compute a
greedy minimal spanning tree and define the distance d between two points xi

and xj as the number of greedy iterations required so that two greedy minimal
spanning trees rooted on each point xi and xj in X will intersect. We set σ to
be 1/C · max(max(Ahop)) where C > 1 and Ahop is the matrix of all pairwise
distances - the hitting times between diffusions from different pairs of points.
(In [11] C is taken as 10). This is an adaptive normalization in the sense that
it makes the kernel decay on the order of 1/C of the maximum of the hitting
times. An affinity matrix P is calculated with the weight wσ with distance given
by the hitting time between points x and y and the eigenvectors of P are used
for a dimension reduction map.



G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 9 – 18, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Generating and Updating Textures for a Large-Scale 
Environment 

Jinhui Hu, Suya You, and Ulrich Neumann 

University of Southern California 

Abstract. With the rapid development of sensor and modeling technologies, it 
becomes increasingly feasible to model a large-scale environment.  However, 
the acquisition and updating of textures for such a large-scale environment is 
still a challenging task, often demanding tedious and time-consuming manual 
interactions. This paper presents new techniques to generate high quality tex-
tures for given rough urban building models by automatic camera calibration 
and pose recovery, and to continuously update these textures in real time using 
videos as a texture resource.  A number of static textures are generated for a 
university campus size model, and these textures are dynamically updated using 
videos in real time, which demonstrate the effectiveness of our algorithms. 

1   Introduction 

Creating a large-scale virtual environment is important for many computer graphics 
and user interaction applications. With the rapid development of sensor and modeling 
technologies, it becomes increasingly feasible to model a large-scale environment [1]. 
In rendering a virtual environment, texture mapping is often employed to produce a 
realistic image without the tedium of modeling small-scale 3D structures and surface 
reflectance parameters. However, the acquisition and updating of textures for a large-
scale environment is a challenging task that often demands tedious and time-
consuming manual interactions.  

The goal of this paper is to generate high quality textures for given urban building 
models, and to update these textures in real time using videos as a texture resource. 
The textures generated from videos enable the visualization to reflect smoothly vary-
ing of textures when the viewpoint changes and the most recent changes in the envi-
ronments. The textures from both static images and videos can be mapped to urban 
models generated using LIDAR data [1] or aerial images [2].  

1.1   Related Work  

A wealth of research has been conducted on texture generation. A popular method is 
texture synthesis, which can be further divided into three classes.  The first one is a 
parametric model-based technique, which uses a number of parameters to describe a 
variety of textures [3]. The second class is non-parametric textures, or example-based 
methods. These methods generate textures by directly copying pixels from input tex-
tures [4]. The third class synthesizes textures by copying whole patches from input 
images [5]. Texture synthesis has been shown to be a powerful tool that is widely 
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used in many fields. However, the resulting textures are not representative of an ac-
tual scene, which limits their application for reconstructing realistic images of real 
scenes. 

A straightforward way to generate realistic textures is to use images as the texture 
source [15]. Fruh and Zakhor [6] fix the image sensor with the range sensor to capture 
both the texture and geometry data, which has the advantage of simple calibration, but 
lack flexibility. Stamos and Allen [7] use a freely moving camera to capture the image 
data. The camera pose is computed by fitting rectangular features from dense 3D 
range data, which is not applicable for rough urban models.  Lee et al. [2] propose a 
system to register ground images to urban models using vanishing points to estimate 
the orientation and 2D to 3D feature correspondences to estimate the translation. The 
under-constrained pose problem is solved by manually inferring more 3D points from 
registered images, which is not applicable when all images are under-constrained. 
Recent work [8] treats the repeated patterns in video clips as a video texture, while we 
are focusing on the traditional textures, i.e., pixels in images.  

2   Texture Storage  

Our goal is to generate a photorealistic virtual environment with textures from real 
images rather than generating texture patterns or synthesizing textures on-the-fly 
while rendering. So an efficient way to store textures for a large-scale environment 
is important, especially when videos are used as a texture resource. With the fact 
that only limited scene geometry can be visible from a viewpoint, we propose the 
idea of base texture buffer, which is a texture buffer associated with a model patch 
or a group of neighboring patches. The base texture buffer is first initialized as 
white texture, and then updated with static images (Section 3) or continuous videos 
(Section 4). 

2.1   Base-Buffer Allocation 

Given the 3D models of a large-scale environment, we need to allocate base buffers 
for texture storage. The goal of base-buffer allocation is to find an optimal allocation 
that covers all the geometry and satisfies three criteria: minimum number of base 
buffers, minimum number of clipped polygons, and optimal texture quality.  

The number of base buffers corresponds to the number of texture units in scene 
rendering using graphics hardware, and is also proportional to the size of texture 
memory. Current graphics cards have a limited number of texture units and memory, 
so limiting the number of base buffers is necessary. The number of clipped polygons 
will increase the total number of polygons and affect the rendering speed, we also 
want to minimize this number. The last issue with base-buffer allocation is the texture 
quality problem. Texture quality depends on the video resolution, the angle of the 
polygon relative to the camera view direction, and the angle of the polygon relative to 
the base buffer. A good allocation for a base buffer is one where textures will not be 
compressed or stretched during the texture mapping process. This means the base 
buffer should be oriented parallel to most of its associated polygons.  
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2.2   Solution  

We summarize the three criteria of base-buffer allocation using a cost function shown 
in Equation 1, where )(bnf is a function of the number of buffers (bn), )( png is a func-
tion of the number of clipped polygons (pn), and h  is a function of the texture qual-
ity.  The design of the functions )(bnf  and )( png  is straightforward; however, the 
measurement of texture quality is more complex.  Our measure is the ratio of the 
model surface area to the texture image area, as given in Equation 2.  We aim to find 
a buffer allocation method that minimizes the cost of Equation 1.   
 

.)_()()()( qualitytexurehpngbnfbufferF ++=  
 

.)(/)()_( textureSpolygonSqualitytextureh =  
 

The problem of selecting optimal base buffers is analogous to the problem of se-
lecting a minimal number of camera positions that cover a given 3D model. The latter 
problem has been shown to be NP-complete [9]. Since the exact allocation solution is 
prohibitive, we attack this problem by leveraging the characteristics of the building 
models. Noting that buildings usually have four major planar sides, we opt for using a 
box with four rectangular texture-maps for each building. To allocate the four rectan-
gular buffers, we first automatically divide the scene model into separate buildings 
using connectivity.  Then we find the four major directions based on building surface 
normals and allocate a base buffer for each direction (Figure 1).  We project the verti-
ces onto the base buffer with an orthogonal projection to compute the UV coordinate 
for each model vertex. 

Four rectangular buffers work well 
for our campus model. The base buff-
ers are automatically allocated, yield-
ing a near-optimal solution according 
to the energy function in Equation 1.  
The campus model has 100 buildings 
and 40,000 polygons, covered by 400 
base buffers. The texture quality is 
maximized for most polygons because 
the buffers are parallel to most of the 
polygon planes. Since each base buffer 
covers one whole side of a building, 
polygon clipping is avoided.   

3   Generating Static Textures 

After allocating base buffers for all the models, we first update the buffers with static 
textures generated from real images. The key problem in generating static textures is 
to automatically recover the camera poses. We decompose a camera’s pose into an 
orientation and a translation, and estimate the orientation of the camera using vanish-
ing points extracted by automatic line clustering, and the translation using 3D to 2D 
corner correspondences. The camera projection matrix is modeled using Equation 3, 

(1) 

(2) 

Fig. 1. Base-buffer allocation 
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where K is the internal parameter matrix, and RT is the camera’s external parameter 
matrix. The focal length and principle point can be estimated given three orthogonal 
vanishing points [10].  
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3.1   Rotation Estimation 

The rotation matrix can be estimated given three orthogonal vanishing points as 
shown in the following equation [10]. 
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Where 1λ , 2λ and 3λ are the scale factors, ),( 00 vu  is the principle point, 

3,2,1),( =ivu ii are the three orthogonal vanishing points, and α is the focal length. 

When only two vanishing points are available, the third vanishing point can be in-
ferred by assuming that the principle point is at the camera center [2]. 

Equation 4 gives the solution of the rotation matrix for finite vanishing points. 
However, when the vanishing points are at infinity (lines are parallel in the image 
space), the solution becomes singular, which cannot be directly given by Equation 4. 
We derive the equations to compute the rotation matrix for infinite vanishing points 
using Euler angles.  Details please refer to the technique report [11]. 

The accuracy of the rotation angle depends on the accuracy of the vanishing points. 
However, for images taken at a skewed angle, only lines close to the camera center 
will be detected while far lines cannot be detected due to foreshorten effects (Figure 2 
left). This cause the vanishing points to be biased, hence the rectified texture of far 
building surfaces is skewed (Figure 2 right top).  

We use a hard constraint technique to 
solve the bias problem. As shown in Fig-
ure 2, we first compute the vanishing 
point using the detected lines (yellow 
lines). Then the user interactively indi-
cates a far line (the blue line) as a hard 
constraint. We define an error function as 
in Equation 5, where id is the distance of 

the vanishing point to each line, hd is the 

distance to the hard constraint line, and w 
is its weight. We set w to a high value to 
penalize vanishing points far from the 
hard constraint line. The LM algorithm is used to find the optimal solution. Figure 2 
right bottom shows the texture generated after the hard constraint optimization. 

 

+= hi wdderror  

(3) 

(4) 

(5) 

Fig. 2. Hard constraints optimization 
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3.2   Translation Estimation 

Given the orientation of the camera, the translation relative to the 3D models can be 
computed using two 2D to 3D point correspondences [2]. However, due to the physi-
cal limitations (such as a camera’s small field of view and narrow streets), sometimes 
only one 3D corner or no corners are visible for a single image, which makes the 
translation estimation problem an under-constrained problem.  

The technical report [11] presents a technique using multiple images at different 
viewpoints to solve the problem. However, images taken at far-apart viewpoints have 
color difference and parallax problems, which cause the generated textures to be 
blurred. This paper presents a new technique using mosaic images taken at almost the 
same viewpoint to solve the under-constrained pose problem. 

There exists a homography between images taken at the same viewpoint or images 
of planar structures. Four 2D correspondences are enough to compute the homogra-
phy. Corners can be used to find the initial homography, and more correspondences 
can be found to refine the results. Figure 4 (a) shows a generated mosaic image [16]. 
Our pose recovery algorithm does not require the mosaic image to be a full panorama.  
As long as the mosaic image covers at least two 3D model points, we can recover the 
pose and generate the rectified textures. Figure 4 (b) shows the automatically rectified 
texture from the mosaic image using our technique. 

A mosaic image has more image lines than a single image, which makes the van-
ishing point extraction more reliable. It also covers more building corners, which 
makes the translation estimation for a single mosaic image possible. Furthermore, 
images takes at the same viewpoint have no parallax, which makes the texture quality 
better. 

4   Update Textures with Videos 

Static textures are useful in creating a realistic image without modeling the details, 
however, they lack the capability to provide the most recent information of the envi-
ronment. We use videos as a texture resource to continuously update textures to re-
flect the most up-to-date changes of environment imagery. Given the pose of the 
video [13], the key issue in updating textures is to dynamically update the base buffer 
in real time. Updating the textures for all base buffers at the same time is infeasible 
for a real-time system, so we dynamically detect a visible base buffer (active base 
buffer), and first update the buffer using a software technique, then accelerate the 
process with the features of graphics hardware. 

4.1   Active Buffer Selection 

A two-step strategy is employed to find the current active base buffer.  First, we find 
all the buildings visible from the current camera viewpoint. To speed up this process, 
bounding boxes are computed for each building. Then the bounding boxes are inter-
sected with the camera frustum to determine their visibility. Among all the visible 
buildings, we find the closest one to the current viewpoint. In a second step, we  
compute the angle between the buffer normal and camera optical axis for all four  
base buffers of the closest building, and set the buffer with the minimum angle as the 
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current active buffer. If all the visible buffers in the closest building exceed an angle 
threshold, the next closest building is considered. A weighted average of the normal-
ized building distance and buffer view angle is used to select the active buffer in order 
to ensure the texture quality (Equation 6). 
 

AngleDistw ** βα +=  
 

Where Dist is the minimum distance from the polygons of a building to the current 
viewpoint, Angle is the minimum angle between the buffers’ normal and the view 
direction, and α  and β  are the weights. Dist and Angle are normalized respectively 
using the minimum distance and angle among all the visible buildings. 

4.2   Update Base Buffer 

We update the base buffers pixel by pixel with a technique called texture painting 
from video [14].  The key process in painting textures is a 3D model-based image 
warping process (Figure 3), therefore we need to know the corresponding 3D model 
point for every pixel in each base buffer to do the image warping.  In order to con-
tinuously update textures in real time, we pre-compute the depth map for each base 
buffer, and use it as a lookup table to find the 3D point for every pixel in the buffer.   

As a video frame is proc-
essed (Figure 3), we first find 
the active base buffer accord-
ing to the aforementioned algo-
rithm.  For each pixel bI in the 

active buffer, we find the cor-
responding 3D point M based 
on the depth map.  If the point 
M passed the occlusion test, we 
project it into the current cam-
era image plane to find the 
corresponding pixel vI .  We 

then update the base buffer 
pixel with the pixel vI  from the 

video frame. Textures are segmented if moving objects present, and the warped image 
is registered with the base buffer if the 3D pose is inaccurate. The system can reach 
up to 12 fps for video size of 256 x 256 (Table 1), given accurate pose.  

4.3   Acceleration with Graphics Hardware 

The software implementation achieves real time performance for a small-sized texture 
image, such as 256 x 256.  However, we need to pre-compute and store a depth map 
for each base buffer, which costs additional memory.  For our university campus with 
100 buildings, each building has four buffers with a depth map of 512 x 512, more 
than 400 MB are required to store the depth maps. 

Updating high quality textures continuously is hard to achieve real time perf-
ormance using software implementation, and the storage of depth maps in software 

(6) 

Base  Buffer

Video Frame 

Ib

Iv

M

 
 

Fig. 3. Update base buffer 
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implementation is a heavy burden on the system for a large-scale environment. We 
need a more efficient implementation that uses graphics hardware features to improve 
the performance and reduce the memory requirement. 

Compared to 2D image warping, which can be easily implemented using GPU pro-
gramming, image warping based on a 3D model is more complex to implement using 
graphics hardware. If the 3D model is just a plane, the relationship between the base 
buffer and camera image plane can be described using a homography.  However, 
image warping based on homography is impractical for our purpose because most 
building geometry is much more complex than a few planes.  We cannot afford to 
segment the video frames and warp them according to different homographies in a 
time- critical system. 

To fully benefit from graphics hardware, we use the technique of projective texture 
mapping [12].  We first set the current active buffer as the rendering buffer, then ren-
der the current scene using projective texture mapping; we solve the visibility prob-
lem using a hardware register combination based on a depth map.  In order to update 
the buffer with new textures and keep the old textures, we use an alpha channel to 
mask out all the pixels outside the camera frustum and those pixels without textures.  
The process is summarized as the following pseudo code: 

1. Dynamically detect the active base buffer. 
2. Render a depth map from the camera viewpoint. (The depth map here is used to 

solve the visibility problem, not for model and base buffer correspondence.) 
3. Load the image of the current base buffer (with textures already painted) into the 

rendering buffer. 
4. Render the scene using projective texture mapping with the current video frame as 

the textures, and solve the visibility problem based on the depth map.  Set the al-
pha value of the pixels without textures or invisible to zero. 

5. Enable alpha test; only render pixels with alpha value greater than zero into the 
base buffer. 

6. Read the rendering buffer, and set it as the textures for the models corresponding 
to the active base buffer. 

We can gain many bene-
fits from the use of graphics 
hardware.  The frame rate 
increases dramatically, and 
we can achieve real time for 
high-resolution textures of 
1024 x 1024.  Using graph-
ics hardware features, depth 
map storage for base buff-
ers is not necessary, which saves a great deal of memories. Table 1 compares the 
frame rate at different sensor resolutions and memory requirements (for a fixed buffer 
resolution of 512 x 512 and 100 buildings with 40,000 polygons) for software imple-
mentation and graphics hardware acceleration on a Dell machine with 3.4 G CPU and 
NVIDIA quadro 980 graphics card. 

Table 1. Frame rate and memory requirements of software 
implementation and graphics hardware acceleration 

Frame rate at different 
sensor resolution  

 

Method 
256 512 1024 

 

Memory 

Software 12 fps 4 fps 1 fps 700 M 
Hardware 30 fps 20 fps 10 fps 300 M 
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5   Results 

5.1   Static Textures 

A number of static textures are generated using the described method. The 3D models 
are generated using LiDAR data with a semi-automatic modeling system [1]. Pictures 
are taken with an un-calibrated camera at different time. The images are stitched as a 
mosaic Figure 4(a). The pose is automatically estimated, and the mosaic is rectified to 
generate a high quality texture with resolution 4000 by 3000 pixels (b). Textures 
generated from mosaic images are often of high quality due to free from color and 
parallax problems.  

We have generated textures for a university campus center area (Figure 5 (a)).  
More than 100 ground view images were taken to generate 30 façade textures with 
automatically recovered camera poses. These textures are mapped to the buildings 
using the base buffers for visualization. Figure 5 (a) shows an overview of the campus 
environment, and a close up view is shown in (b). Although the 3D models do not 
have enough details, the rendering results are very realistic thanks to the high quality 
textures. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

5.2   Update Textures with Videos 

We used three real video streams captured from hand-held cameras to paint textures 
in real time. The motion of the first video stream is mainly rotation, the second trans-
lation, and the third both translation and rotation. A portable tracking system using 
GPS and GYRO (inertial sensor) with a hand held camera [13] was used to collect 
camera tracking data and video streams.  The video streams were projected onto the  

Fig. 4. Generate static textures. (a) A mosaic image; (b) the rectified texture. 

Fig. 5. Rendering results with static textures. (a) An overview; (b) a close up view. 
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3D models to paint textures using the proposed technique.  We only show the results 
of two video streams due to lack of space (Figure 6). The top row shows two selected 
frames form the two video sequences, and the bottom row shows the real-time painted 
dynamic textures. The whole system is fully automatic and real-time (29 fps).  Com-
pared with static textures, the textures painted from videos have the advantage of 
reflecting smoothly varying of images when the viewpoint changes, hence they can 
visualize the most recent imagery of the environment. An application of painting 
textures from videos is to visualize multiple videos by projecting them onto 3D mod-
els for information visualization and decision-making [13].  

6   Conclusion 

This paper presents new techniques to generate high quality static and update textures 
for given urban building models. An efficient way for textures storage of a large-scale 
environment is presented. Static textures are generated by automatically recover the 
camera’s pose. Furthermore, textures are painted in real time by employing videos as 
texture resources. Future work will be using the registered images to correct the mod-
els and generate more model details. 
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Abstract. Planar surfaces are important characteristics in man-made
environments and have been successfully applied to camera calibration
and interactive modeling. We develop a method for detecting planes in
image pairs under epipolar constraints using planar homographies. In or-
der to extract the whole planes, the normalized cut method is used to seg-
ment the original images. We pick those segmented regions that best fit a
triangulation of the homography inliers as the detected planes. We illus-
trate the algorithm’s performance using gray-level and color image pairs.

1 Introduction

Planar surfaces encapsulate two-dimensional information of objects, especially
in man-made environments. They abound in buildings and architectural struc-
tures, in indoor environments, and are found on most manufactured objects.
These properties enable the use of planes in many visual computing fields. In
the computer vision field, planes have been successfully used for camera cali-
bration [2]. Planar surfaces are also widely applied in augmented reality and
interactive modeling [6,7,8]. There are two major problems for planar surface
detection from digital images that must be overcome so that they can be used in
these applications. One is to compute the planar homography between different
images based on entity correspondences. The other is to extract the whole plane
from the image background through the planar homography.

In [1], planes are detected based on point and line matchings without camera
calibration and 3D scene reconstruction. The searches for planar homographies
are implemented through an iterative voting scheme based on the Least-Median-
of-Squares principle and the Levenberg-Marquardt algorithm. The possibly mis-
matched features are handled in a robust manner during the estimation process.
The method was tested using on pictures taken of scenes in indoor environments.

Another approach [3] to recovering planar regions of arbitrary position and ori-
entation from plane-induced homographies is to compute dense point matching
between two images. These correspondences are subsequently used to estimate
the planar homographies, followed by verifying or discarding potential planes.
Finally, a region growing process is applied to detect the whole planar region.

In [4], a plane sweep strategy was introduced. In a 3D-space, a 3D-line defines
a one-parameter family of planes. Each side of the line is a half plane, which
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is defined by the 3D line and similarity scores computed over all the views.
The inter-image homographies are used to validate and estimate the best-fitting
planar surfaces. Line grouping and completion are based on the computed half
planes for the final step of plane delineation.

In this paper, we present a method that uses dense matching points with
epipolar constraints to detect all potential planes in an image pair. The planar
inliers for each fitted plane are joined by a Delaunay triangulation. Because the
reliable inliers of each plane tend to be in the plane’s interior, they are more useful
for labeling than for defining the boundaries of the plane. In order to extract an
entire plane, the normalized cut image segmentation method is used to partition
the original image. We label those segmented regions with maximum fit to the
Delaunay triangulation areas as whole planes. In the following, we describe the
method in Section 2, followed by our experimental results in Section 3. We discuss
some practical considerations of the implementation in Section 4 and present our
concluding remarks in Section 5.

2 Method Description

There is a planar homography among the projections of planar surfaces taken
from different viewpoints [5]:

x′ = Hx (1)

where x′ and x are the homogeneous coordinates of the projections of the three-
dimensional point X on a world plane in the first and second images, respectively.
In general, the homographyH is a 3×3 nonsingular matrix and hence its rank is
3. We have a one-to-one point correspondence between the left and right images.
If the rank of H is 2, then all the points of the plane in the first image are
projected onto a line in the second image. If the rank of H is 1, then all the
points of the plane in the first image are projected onto a point in the second
image. These degenerate cases of H are not of present interest and are ignored
in this paper.

In additional to the homography in Equation (1), the corresponding points
from planar homographies also need to satisfy epipolar constraints, viz. x′TFx =
0, where F is the fundamental matrix between the image pair. Incorporating
planar homography information, we have

x′TFx = (Hx)TFx = xTHTFx = 0. (2)

Similarly, we have
xTFTHx = 0, (3)

so that under the epipolar constraint,

HTF + FTH = 0. (4)

Given the fundamental matrix F and three matching points (xi,x′
i), for i =

1, 2, 3, we can compute the plane homography induced by the plane defined by
three corresponding 3D points as
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H = e′ × F − e′vT (5)

where × is the cross product operator, e′ is the right epipole, v = M−1b, and
M = [x1 x2 x3]T . The ith element of the 3-vector b is defined as

bi = (x′
i × (Axi))T (x′

i × e′)/‖x′
i × e′‖2. (6)

In order to compute the homography, we need to estimate the fundamental
matrix and the epipoles. The fundamental matrix is estimated using the normal-
ized 8-point algorithm as described in [5] based on a set of putatively matched
2D points. In our work, Harris corners [12] are extracted as interesting points.
The RANSAC strategy [13] is used to fit the fundamental matrix in a robust
manner. The epipoles are the right and left null vectors of the fundamental ma-
trix, and can be computed using a singular value decomposition (SVD) of the
estimated fundamental matrix.

Next, the homographies can be computed using those matching points that
satisfy the epipolar constraints. Each homography can be estimated from Equa-
tion (5) robustly using RANSAC. An image may contain more than one plane;
we find each of the planes sequentially. After a plane or, equivalently, one homog-
raphy is verified, we remove all those inliers that correspond to this plane. Then
we start to estimate another homography using the rest of the matching points.
The process stops when the assumed maximum number of planes is reached or
very few inliers are left that satisfy a single homography.

In order to encapsulate the plane surfaces, we compute the Delaunay tri-
angulation [10,11] of the inliers for each detected homography. The Delaunay
triangulation of a point set is a collection of edges, each of which has a circle
containing the edge’s endpoints but not containing any other points. In general,
the inliers-based triangulation does not enclose the whole planar surfaces. Con-
sequently, we use some segmentation methods to extract the whole planes. The
graph-theoretic normalized cut algorithm [9] captures global information and
does not generally result in small partitions. In addition, the normalized cuts
are also good at reducing the influence from illusory contour and texture, which
is a problem for segmenting architectural buildings. These observations therefore
suggest that the normalized cut is a feasible candidate for our requirements. We
used normalized cut to segment the planar surfaces; the segments are then label
using the Delaunay triangulation meshes.

In summary, the major steps of the algorithm to extract planes are as follows:

1. Robustly estimate the fundamental matrix from matched points based on
point normalization and RANSAC.

2. Using RANSAC, estimate the plane homography that fits the most number
of matched points that satisfy the epipolar constraint from Step 1.

3. Save the homography and form a Delaunay triangulation of the the inliers
of the plane homography.

4. If the maximum number of homography is reached or if the ratio between
inliers and total points is less than a threshold, then terminate the search
for homographies and go to Step 6.
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5. Otherwise, remove inliers of the last homography and consider remaining
matched points, ie the outliers of the last homography. Go to Step 2.

6. Partition the original image using the normalized cut image segmentation
algorithm. A segmented component that fits the majority of the Delaunay
triangulation areas is regarded as a final plane.

The fitting error of homography is defined as the sum of forward-projection as
well as backward-projection fitting errors. If the tolerance for the fitting error of
homography is too small, a single plane may be fitted by several homographies.
On the other hand, if the tolerance is too large, two or more planes may be
fitted by one homography. In order to detect all planes, we set the fitting error
tolerances to small values. In the final step, we extract and merge the planar
surfaces using the normalized cut segmentation.

3 Experiments

The algorithm is implemented and tested on two pairs of real-world images.
The first pair is the Minorite Monastery data set, a pair of gray level pictures

Fig. 1. The original Minorite Monastery image pair

Fig. 2. The first detected homography (left) and the second detected homography
(right)) from the Minorite Monastery data are shown as the Delaunay triangulation of
the inliers of each detected planar homography
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Fig. 3. The final segmented components of the left image using the normalized cut
algorithm (left) and the detected planes from the Minorite Monastery data (right)

Fig. 4. The original downtown Lafayette (La.) color image pair

Fig. 5. The first detected homography (left) and the second detected homography
(right)) from the downtown Lafayette data are shown as the Delaunay triangulation of
the inliers of each detected planar homography

(Figure 1). Figures 2 and 3 show the results of the Minorite Monastery data
set. The inliers and the the Delaunay triangles of two detected homographies
are shown in Figure 2. The normalized cut segmentation output and the labeled
segments are shown in Figure 3.
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Fig. 6. The final segmented components of the left image using the normalized cut
algorithm (left) and the detected planes from the downtown Lafayette data (right)

The second pair are color images of a building in downtown Lafayette, La.
(Figure 4). The Harris corners are detected from the intensities of the images and
the plane homographies are estimated from matched pairs of the Harris corners.
The inliers and the the Delaunay triangles of two detected homographies are
shown in Figure 5. The normalized cut segmentation output and the labeled
segments are shown in Figure 6.

4 Discussions

We note that the major planes have been successfully extracted from the images
in the experiments described in Section 3. The performance of plane detection
depends directly on the accuracy of the homography computation, as shown by
comparing the better result in Figure 3 to the result in Figure 6. Furthermore, our
experiments show that the normalized cut algorithm can produce small blocks
in complicated pictures, as shown in Figure 6.

In practice, we find that the following three problems have to be addressed
in plane detection. Under a pure rotation of the camera, there is a homography
from the first image to the second one. This homography is stronger than any
inter-image planar homography since all image points satisfy this homography.
We should discard it in order to detect those inter-image planar homographies.
Additionally, if the rank of a homography is less than 3, it is degenerate. We
should check this kind of homographies. Finally, the performance of normalized
cut image segmentation needs to be improved in future work.

4.1 Homography from Pure Rotation

If the only motion of camera is a pure rotation about its center, then there is a
plane homography between the left and the right images. Define the projection
matrices of the left image and the right image as, respectively,

P1 = K[ I | − C̃]
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and
P2 = KR[ I | − C̃],

where the nonsingular matrix K is the camera calibration matrix associated
with its internal parameters, R describes the rotation of the camera relative to
the world coordinate system, and C̃ is the coordinates of the camera center in
the world coordinate system. Then given a world point X and its projections x
and x′ on the left and right images, we have x = P1X = K[ I | − C̃]X and
x′ = P2X = KR[ I | − C̃]X, so that

x′ = KR[ I | − C̃]X = KRK−1K[ I | − C̃]X = KRK−1x = Hx,

where H = KRK−1 defines a plane homography between the entire left image
and the entire right image.

Under this scenario, we should discard this major homography in order to de-
tect inter-image homographies of the planar surfaces. In our implementation, we
segment the original images first and only consider the potential homographies
within different segmented components. If a homography is verified to exist in
some component, then this component is regarded as a planar surface.

4.2 Homography Degeneracy

As observed in Section 2, the homographyH is in general nonsingular and hence
its rank is 3. We consider the cases when the rank of H is less than 3 in the
following. We can describe H using its row vectors:

H =

⎡⎣hT
1

hT
2

hT
3

⎤⎦
where hT

1 , hT
2 , and hT

3 , are the three row vectors of H .

Case 1. Rank of H is 2.
In this case, h3 is a linear combination of h1 and h2, so that we have h3 =

c1h1 + c2h2 for some constants c1 and c2. Then we have

x′ = Hx =

⎡⎣hT
1

hT
2

hT
3

⎤⎦x =

⎡⎣hT
1 x

hT
2 x

hT
3 x

⎤⎦ =

⎡⎣ hT
1 x

hT
2 x

(c1h1 + c2h2)T x

⎤⎦ .
Define a line l′ = [c1 c2 − 1]T in the right image. Then,

x′T l′ =
[
hT

1 x hT
2 x (c1h1 + c2h2)T x

]⎡⎣ c1c2
−1

⎤⎦ = 0.

Therefore, all the points of the plane in the first image are projected onto a line
in the second image.
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Case 2. Rank of H is 1.
In this case, both h1 and h2 are multiples of h3. That is, h1 = c1h3 and

h2 = c2h3 for some constants c1 and c2. We then have

x′ = Hx =

⎡⎣hT
1

hT
2

hT
3

⎤⎦x =

⎡⎣hT
1 x

hT
2 x

hT
3 x

⎤⎦ =

⎡⎣ c1hT
3 x

c2hT
3 x

hT
3 x

⎤⎦ = (hT
3 x)

⎡⎣ c1c2
1

⎤⎦ .
Noting that hT

3 x is a scalar, we get x′ = [c1 c2 1]T . Therefore, all the points of
the plane in the first image are projected onto a point in the second image.

The above two degenerate cases of H are not of interest to our present discus-
sion. Hence, we can check and then ignore these cases. Note that when the rank
of H is 1 or 2, the vectors h1, h2, and h3 are collinear. To detect the degeneracy
of H , it suffices to check whether hT

1 (h2 × h3) = 0, where × is the vector cross
product.

4.3 Segmentation Improvement

We used the normalized cut algorithm to segment the image. Some of the seg-
ments are then declared planar surfaces if they contain feature points that are
inliers of detected homographies. During the segmentation process, the num-
ber of detected homographies can be used as the number of potential clus-
ters in the normalized cut algorithm. In practice, we use a number that is
slightly larger than the number of homographies to accommodate other
nonplanar surfaces.

Although in theory the normalized cut algorithm does not result in small
segments, in practice this is not always the case. Improvements of the image
segmentation step remain a direction for our future work.

5 Concluding Remarks

We provide a plane detection method that incorporates epipolar information
between a pair of images. All potential planes that satisfy plane homographies
are first detected. A Delaunay triangulation process is used to link the planar
inliers for each detected plane. Finally, we applied the normalized cut algorithm
to segment the original images and obtain the plane regions that contain the
inliers of plane homographies.

Acknowledgments

We sincerely thank Dr. Konrad Schindler for courtesy permission to use the
Minorite Monastery pictures. This work was supported in part by the Louisiana
Governor’s Information Technology Initiative.



Planar Surface Detection in Image Pairs Using Homographic Constraints 27

References

1. M. Lourakis, A. Argyros, and S. Orphanoudakis, “Detecting planes in an uncali-
brated image pair,” in Proc. BMVC’02, volume 2, 2002, pp. 587–596.

2. P. Sturm and S. Maybank, “On plane-based camera calibration: A general algo-
rithm, singularities, applications,” in IEEE Conf. Computer Vision and Pattern
Recognition, 1999, pp 432–437.

3. K. Schindler, “Generalized use of homographies for piecewise planar reconstruc-
tion,” in Proc. 13th Scandinavian Conference on Image Analysis (SCIA’03), Goten-
borg, Sweden, 2003.

4. C. Baillard and A. Zisserman, “A plane-sweep strategy for the 3d reconstruction
of buildings from multiple images,” in Proc. 19th ISPRS Congress and Exhibition,
2000, pp. 56–62.

5. R. Hartley and A. Zisserman, Multiple View Geometry in Computer Vision, second
edition, Cambridge University Press, 2003.

6. A. Criminisi, I. Reid, and A. Zisserman, “A plane measuring device,” Image and
Vision Computing, vol. 17, pp. 625–634, 1999.

7. G. Simon, A. Fitzgibbon, and A. Zisserman, “Markerless tracking using planar
structures in the scene,” in Proc. Int. Symp. Augmented Reality, 2000.

8. I. Zoghlami, O. Faugeras, and R. Deriche, “Using geometric corners to build a 2D
mosaic from a set of images,” in Proc. IEEE Conf. Computer Vision and Pattern
Recognition, 1997, pp. 420–425.

9. J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 22, pp. 888–905.

10. S. W. Sloan and G. T. Houlsby, “An implementation of Watson’s algorithm for
computing 2-D Delauney triangulations,” Advanced Engineering Software, vol. 6,
1984.

11. J. O’Rourke, Computational Geometry in C, 1st edition, Cambridge University
Press, 1994.

12. C. Harris and M. Stephens, “A combined corner and edge detector,” in Proc. 4th
Alvey Vision Conference, 1988, pp. 147–151.

13. M.A. Fischler and R.C. Bolles, “Random sample consensus: A paradigm for model
fitting with applications to image analysis and automated cartography,” Commu-
nications of the ACM, vol. 24, pp. 381–395, 1981.



G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 28 – 39, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Robust Quality-Scalable Transmission of JPEG2000 
Images over Wireless Channels Using LDPC Codes 

Abdullah Al Muhit and Teong Chee Chuah 

Faculty of Engineering, Multimedia University 
 Jalan Multimedia, Cyberjaya, Selangor 63100, Malaysia 

{muhit, tcchuah}@mmu.edu.my 

Abstract. A new error-resilient JPEG2000 wireless transmission scheme is 
proposed. The proposed scheme exploits the ‘progressive by quality’ structure 
of the JPEG2000 code-stream and takes into account the effect of channel 
errors at different quality layers in order to protect the coded bit-stream 
according to channel conditions using multi-rate low-density parity-check 
(LDPC) codes, leading to a flexible joint source-channel coding design. The 
novelty of this adaptive technique lies in its ability to truncate the less important 
source layers to accommodate optimal channel protection to more important 
ones to maximize received image quality. Results show that the proposed 
scheme facilitates considerable gains in terms of subjective and objective 
quality as well as decoding probability of the retrieved images. 

Keywords: JPEG2000, semi-random LDPC codes, unequal error protection. 

1   Introduction 

The JPEG2000 image coding standard was introduced recently to overcome the 
limitations of the existing JPEG standard [1]. JPEG2000 provides a wide range of 
remarkable features, including improved coding efficiency, scalability by quality or 
resolution, and error resilience features. With the proliferation of broadband 
communication systems and the growing popularity of handheld devices, the 
JPEG2000 standard is promising for deployment in wireless imaging applications.  

1.1   Wireless Image Transmission Problem 

The wireless links are subject to random bit errors caused by channel impairments. 
Thus, in order for power-constrained devices to achieve high performance over noisy 
wireless channels, the JPEG2000 code-stream needs to be protected against channel 
impairments.  

In Part 1 of the standard, error resilience is partially achieved by the inclusion of 
resynchronisation markers, the coding of data in relatively small independent blocks, 
and the provision of error detection and concealment mechanism within each block.  
Apparently, an error correction capability is non-existent in the error resilience mode 
of the standard. Furthermore, these tools do not apply to the image headers (Main 
header, Tile-part(s) header(s) and packet(s) header(s)) that are the most crucial parts 
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of the code-stream. In noisy channels, errors within packets1 degrade image quality, 
whereas errors in the headers can incur severe degradation in image quality as well as 
decoding failures even in the presence of error resilience tools [2]. Hence, the 
transmission of pictorial information over unreliable heterogeneous networks has 
necessitated the need for an additional error protection mechanism to effectively 
reduce the decoding failure of JPEG2000 imagery and enhance the image quality. 

The automatic repeat request (ARQ) is one such way of providing error-free 
transmission where the packets affected by bit-errors are retransmitted. However, the 
additional delay introduced by ARQ is unacceptable for real-time applications. The 
additional bandwidth requirement for ARQ is not viable as well. On the contrary, 
forward error correction (FEC) based systems do not require retransmission and are 
thus more preferable over ARQ. 

1.2   Related Work 

Many FEC based joint source-channel coding (JSCC) schemes have been proposed in 
order to overcome the decoding failure problem and improve the quality of JPEG2000 
images over Binary Symmetric Channels (BSC) [3] as well as Rayleigh fading 
channels [2]. Banister et al. [3] protect different packets of the JPEG2000 bit-stream 
with a 16-bit Cyclic Redundancy Check (CRC) outer code and an inner turbo code. 
The optimization problem, in this case, was solved using a high complexity brute-
force search algorithm. In a related work [6], Boulgouris et al. proposed a robust 
embedded wavelet based coding scheme in conjunction with FEC based on CRC and 
rate-compatible punctured-convolutional (RCPC) codes. In [2], Sanchez et al. provide 
different levels of protection to different packets of JPEG2000 images based on their 
inclusion of bits from the most significant bit planes. Channel protection is achieved 
here by concatenating a CRC outer coder and an inner RCPC coder. This technique, 
however, does not assure high decoding probability of images at lower transmission 
power.  

1.3   Our Contributions 

In this paper, we outline a robust and flexible JPEG2000 wireless channel protection 
scheme using LDPC codes. The adaptive rate allocation scheme obtains all necessary 
information about the source from the JPEG2000 compliant encoder. Semi-random 
LDPC codes [9] of multiple rates are used for channel coding. The source and channel 
code rates are optimized in an iterative fashion. Two popular models are used to 
evaluate the performance of our robust image transmission schemes: 1) BSC and 2) 
Rayleigh fading channel. Unlike many conventional rate allocation schemes, our 
proposed method does not impose any restrictions on the source-coding rate. This 
scheme is able to optimize channel protection for scalable image sources when the 
source is compressed at a rate less than, equal to or greater than the total available 
transmission rate. This is due to its unique ability to truncate less important layers 
when necessary. The proposed scheme can be readily incorporated with any block or 
convolutional channel coding scheme for any channel model. 
                                                           
1  A collection of data from the compressed image. Packets, in the context of JPEG2000 are 

different from network packets. 



30 A. Al Muhit and T.C. Chuah 

The rest of the paper is organized as follows. Section 2 describes the preliminaries 
of JPEG2000 and semi-random LDPC codes. Section 3 presents the proposed method. 
The performance of the proposed scheme is evaluated in section 4. Finally, we 
conclude the paper in section 5. 

2   Preliminaries 

2.1   Quality-Progressive Structure of JPEG2000 

JPEG2000 images are very good example of highly scalable data sources. In a quality 
progressive bit-stream, dependencies exist between successive quality layers. During 
the coding process, as shown in Fig. 1, the image is (optionally) partitioned into a 
number of rectangular non-overlapping blocks called tiles. Then the discrete wavelet 
transform (DWT) is applied on each tile to analyze it into a number of subbands at 
different resolution levels. Following that, the subbands in each resolution level are 
further partitioned into code-blocks. Each code-block’s embedded bit-stream is 
distributed across a number of quality layers, Li for 1 ≤ i ≤ Λ. Here, Λ is the number 
of maximum quality layers. The Embedded Block Coding with Optimized Truncation 
of the embedded bit-streams (EBCOT) algorithm [8] is used to determine the 
contributions from each code-block to different layers.  

Tiling

DWT Transform

Code-block Formation

 

Fig. 1. Data flow in JPEG2000 encoding process 

The first quality layer L1 contains significant code-block contributions. Sub-
sequent layers Li contain additional contributions from each code-block. However,  
in some of the subsequent layers the contribution from some code-blocks may  
be empty. We can express this dependency through a simple linear chain 
relationship: LLLLL 1321 − ; it means that layer L1 must be decoded 

before layer L2 can be used and so on. If one intermediate layer is discarded, the 
subsequent layers have to be discarded as well. Contribution to each layer from code-
blocks belonging to a specific resolution level is grouped together in packets for 
inclusion in the final bit-stream. A quality progressive code-stream is constructed by 
sequencing all packets corresponding to quality layer L1 followed by all packets 
corresponding to L2 and so forth. The packets belonging to a quality layer Li are 
formed in an order that follows the resolution levels [4]. Since the initial layers 
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contain initial coding passes from all the code-blocks, they form the basis of an image 
whereas subsequent quality layers impart enhancement on the image. Hence, any 
error in the initial layers can degrade the quality of the reconstructed image severely. 
Thus, they require more protection during transmission. 

2.2   Semi-random LDPC Codes 

Low-density parity-check (LDPC) codes, invented by Gallager [5] are a class of linear 
block codes that provide near-capacity performance while admitting low-complexity 
iterative probabilistic decoding [5]. Its (n-k)×n parity check matrix, H, has a low 
density of 1’s. Here n is the block length and k is the message length. Thus the code 
rate can be calculated as k/n. The parity check matrix in a semi-random LDPC code 
[9] can be given as [Hp, Hd]. Here Hp is a (n-k)×(n-k) square matrix and Hd is a semi-
randomly generated (n-k)×k matrix with a column weight of t and row weight of kt/(n-
k). Hd is used to encode the message. The parity check matrix H is used for iterative 
decoding of the received codeword with prior information. The prior information is 
derived from the received codeword based on the channel model. Due to its capacity 
approaching performance [5], LDPC-based coding systems are promising for 
deployment in future communication standards. 

3   Methodology 

Consider an image source to be transmitted with a total transmission rate of RT. In our 
JSCC approach, we have to choose the set of source coding rates, { }S,S,S,S RRRR ,,, 21=  

and the set of channel coding rates, { }C,C,C,C RRRR ,,, 21=  in order to maximize the 

overall PSNR (peak signal to noise ratio) of the source, subject to the total rate 
constraint. Here, RS,i and RC,i are the source and channel coding rate associated with 
layer Li. Let Qi denote the increase in total PSNR of the image due to the inclusion of 
layer Li. So the objective is to maximize the following: 

( )iC
i

iiT RPQQ ,
1

Λ

=

=  (1) 

Here, Pi (RC,i) is the probability of recovering layer Li with code rate RC,i assigned 
to it under a specific channel model. RC,i can be chosen from a set of available code 
rates {Rj}1≤j≤N , where N is the total number of code rates. Our optimization problem is 
to maximize the total PSNR given in (1), subject to the following transmission rate 
constraint: 

T
i iC

iS
eff R

R

R
R ≤=

Λ

=1 ,

,  (2) 

The quality progressive source produced by JPEG2000 is generally convex, i.e. the 
PSNR-rate characteristic curve is convex as shown in Fig. 2. That is, 
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Here 
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Q
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,

)( =  is defined as the slope of Li. Due to this convex characteristic 

and linear dependency of quality layers, the optimal solution should ensure that 
recovery of layer Li will guarantee the recovery of layers L1 till Li-1. Thus, we can 
impose another constraint: 

CCC RRR ,2,1, ≤≤≤  (4) 

It can be noted here that smaller values of code rate mean stronger channel 
protection and vice versa. 

RS,1 RS,2 RS,3 RS,4

Q1

Q2

Q3

Q4

 

Fig. 2. Rate-PSNR characteristic for a convex source 

The PSNR contribution Qi can be calculated from the JPEG2000 encoder as part of 
the optimum rate allocation used in the bit plane coding and bit-stream organization 
[8]. The probability of receiving layer Li assuming RC,i = Rj with no error can be 
expressed as: 

( ) ( ) il
jji e  RP −= 1  (5) 

Here li is the length of layer Li and ej is the residual bit error rate of Rj. For a BSC, 
ej can be found as a function of BER, Rj and n; i.e. ej = f(BER, Rj ,n)  where BER is the 

cross-over probability or bit error rate and n is the block length of the code. For a 
BSC, BER reflects the channel condition. And similarly for Rayleigh fading channels, 
ej can be calculated as ej = f(Eb/N0 , fD , Rj ,n) where Eb/N0  is the ratio of energy per 
information bit and noise power density and fD is the doppler frequency. In the case of 
a Rayleigh fading channel, Eb/N0 corresponds to the channel condition. We can 
tabulate ej from extensive Monte Carlo simulations, for each permissible code rate, 
and for different BER’s and also for various Eb/N0 and fD values. 
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The aim of this novel rate allocation scheme is to enable truncation of less 
important source layers in order to provide more protection to more important ones 
when necessary. It is also desirable that our scheme is capable of optimizing channel 
protection to a scalable source compressed at any rate. Thus, we introduce a special 
channel code rate Rj = ∞; it implies that the corresponding layer is discarded for 
transmission. We also include another special code rate Rj = 1, which means that the 
relevant layer is transmitted without any channel protection. The first case comes into 
usage when the channel condition deteriorates drastically whereas the second one is 
useful if the channel quality improves significantly. 

Having dealt with all the decision variables, let us restate the optimization 
problem: our task is to maximize the objective function in (1) subject to the 
constraints given by (2) and (4). Alternatively, if we can find a solution using (1) and 
(2), and later show that the derived solution satisfies the constraint in (4), this would 
be a feasible solution to our problem. Therefore, we ignore constraint in (4).   

We convert this constrained nonlinear optimization problem to an unconstrained 
optimization problem using Lagrange multiplier [7]. Let λ > 0 be the Lagrange 
multiplier; specifically, let QT (λ) and Reff (λ) denote the expected total PSNR and 
effective transmission rate associated with the set {RC,i (λ)}1≤i≤Λ which maximizes the 
functional: 

( ) ( ) ( )R QJ effT λ−=  
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Thus if we can find λ such that Reff (λ) = RT, the set {RC,i (λ)}1≤i≤Λ will form an 
optimal solution to our constrained problem. In practice, the discrete nature of the 
problem prevents us from finding λ such that Reff (λ) is exactly equal to RT. However, 
if many source layers are used with small spacing between them, the rate allocation is 
close to optimal. So if we can find the smallest value of λ so that Reff (λ) ≤ RT, that 
would be the optimal solution to this problem.  

The unconstrained maximization problem can be decomposed into a collection of 
Λ separate maximization problems (since it is a separable function). Thus, we need to 
find the set {RC,i (λ)}1≤i≤Λ  which maximizes: 

)(
))(()(

,

,
, λ

λλλ
iC

iS
iCii R

R
RPQJ −=  (7) 

In a similar optimization problem in EBCOT [4, pp. 339-348], it is shown that 
feasible solutions lie on the convex hull. Hence, our feasible solution {RC,i (λ)}1≤i≤Λ  
can be found from the vertices of convex hull of the P(Rj) vs. 1/Rj characteristic as 
shown in Fig. 3. Let 0, 1,…, m be the vertices of the convex hull of the above 
characteristic. Hence, the slopes of the vertices can be found as 
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We also denote ∞=)0(CS . Hence, )()1()0( mSSS CCC ≥≥≥ . Consequently, a 

feasible solution to our problem can be found from 
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Fig. 3. Vertices of the convex hull of P(Rj) vs. 1/Rj characteristic. Vertices connected using 
dash line are not elements of the convex hull set. 

Now, let us show that this solution fulfills the constraint in (4). Due to source 

convexity, 
)1(
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; thus we have [10]: 
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Hence, it can be shown that 
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To summarize, the following iterative algorithm is proposed: 

1) Initialize RS   RT  and {RC,i }1≤i≤Λ = ∞. 
2) Compress the image with rate = RS with Λ layers. An internal heuristic 

determines the lower bound and logarithmically/monotonically spaces the 
layer rates {RS,i}1≤i≤Λ over the range [8]. The logarithmic/monotonic spacing 
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is always convex. The spacing can also be done with an arbitrary or fixed 
increment. However, the prerequisite for this algorithm is that the source 
must have a convex rate vs. PSNR (or distortion) characteristic. 

   3) Choose the parameter, λ > 0, which controls the trade-off between the 
expected PSNR, QT, and effective transmission rate, Reff. The selection of 
initial λ plays an important role on the total number of iterations needed to 
find the optimal λ. We empirically choose λ = max (SS). Experiments show 
that this selection reduces the iteration number. 

4) For layer i, choose RC,i (λ) using equation (9). 
5) Calculate Reff (λ). If Reff (λ) > RT, go to step 7. Otherwise, {RC,i (λ)}1≤i≤Λ is a 

feasible solution . Go to step 6. 
6) Repeat step 4 and 5 for the next layer. 
7) Change λ to obtain Reff (λ) ≅ RT. An efficient bisection algorithm [7] can be 

used to find the optimal λ. Once the optimal value has been reached, further 
alteration of λ will not yield a better solution. Thus, the set of channel code 
rates associated with optimal λ will be the optimal solution.  

In this proposed scheme, channel protection is assigned on a layer-by-layer basis. 
Following that, the rate constraint is checked. If the assignment exceeds the 
constraint, we truncate some of the final layers to match the available transmission 
rate. λ is altered in order to match the rate constraint as close as possible. This 
iterative process continues until further change in λ does not have any effect. Apart 
from the layers, the main header of the image is protected with the highest protection 
available at any channel condition. This is due to the fact that any error in the main 
header will cause severe degradation of image quality and even decoding failures. 
However, allocating the highest level of protection to the main header will cause very 
negligible effect on the rate constraint due to its very short length. Nevertheless, this 
issue can be addressed to further optimize the transmission scheme. 

4   Performance Evaluation 

A 512×512 gray-level (8-bit monochrome) ‘Lena’ image has been used as the test 
image. 20 quality-layers were generated using lossless compression. A set of semi-
random LDPC codes with rates {0.25, 0.33, 0.4, 0.5, 0.66, 0.8, 0.86, 0.89, 0.92, 0.95} 
and n = 4000 was constructed using the method described in [9]. The rate allocation 
algorithm is then applied to attain different transmission rates over various channel 
conditions. After rate allocation is performed, each channel condition has been tested 
with 100 independent trials. The LDPC decoder exits the iterative decoding process 
once all parity-check equations are satisfied; otherwise the iteration continues until a 
maximum of 100 iterations. 

4.1   Results in BSCs 

Error rate in the region of 0.001 and 0.0001 are commonly observed in wireless 
channels. In worst-case scenarios, it can be as high as 0.01 [6]. Thus, the robustness 
of the proposed scheme is evaluated at BER = 0.01 and 0.001 for RT = 0.25, 0.5 and 1 
bit per pixel (bpp). The results are compared with those of Boulgouris et al. [6] and 
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Banister et al. [3] in Fig. 4 (in terms of average PSNR). Comparisons are strictly 
made on the basis of equal bandwidth.  
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Fig. 4. Comparison of ‘Lena’ image transmission over BSC 

At high BERs (≈ 0.01), our proposed scheme outperforms the above schemes by 
about 0.4~0.7 dB in PSNR. At lower BERs (≈ 0.001), the gap increases to 0.75 dB in 
our favour. It is clear that our scheme is superior in worse channel conditions. We can 
also note that the gap between this scheme and others’ widens as the channel 
condition improves. Progressive nature of the proposed scheme is also demonstrated 
in Fig. 4. It can be inferred that at any given channel BER the quality of the 
reconstructed image increases almost linearly with the total transmission rate. It is 
worth mentioning that due to maximum protection for the headers, very high 
successful decoding probabilities in the region of 0.99~1.00 were achieved in both 
BER cases. In subjective comparison over BSCs, the proposed scheme produces 
images with similar or slightly better quality (as suggested by the objective results 
mentioned earlier) than those in [3] and [6].  

4.2   Results in Rayleigh Fading Channels 

We also simulate our transmission scheme over a multi-path Rayleigh fading channel 
using BPSK modulation with a carrier frequency of 900 MHz, a data rate of 15 kbps, 
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and a maximum Doppler shift of 3 Hz. The performance has been evaluated for RT = 
0.25, 0.5 and 4.41 bpp, by varying the average Eb/N0 from 10 dB to 15 dB. Fig. 5 
presents the average PSNR results in comparison with those of Sanchez et al. [2].  
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Transmission Rate = 0.5 bpp
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Fig. 5. Comparative performance over Rayleigh fading channel using ‘Lena’ image 

It can be seen that the quality of the received image improves almost 
logarithmically with the channel Eb/N0. At low transmission rates (≈ 0.25 bpp), our 
scheme achieves gain of about 1.35 dB. The gain increases to 2.5 dB at moderate 
transmission rates (≈ 0.5 bpp). It can be said that the gain in PSNR achieved by the 
proposed scheme increases with the transmission rate while maintaining superiority at 
lower ones. We also observe that, within this range of Eb/N0, the new scheme provides 
decoding probability of 0.99~1.00 whereas Sanchez et al. [2] achieve about 
0.80~0.98. This large variation in probability will be unpleasant for the viewers.  

Comparative visual results for RT = 4.41 bpp are presented in Fig. 6. It can be seen 
that the reconstructed image quality in the proposed scheme is very good or visually 
lossless even at low transmission power. For the same Eb/N0, the scheme proposed by 
Sanchez et al. [2] performs poorly. At moderate Eb/N0 (≈ 15 dB), this scheme [2] 
improves to good quality but some artifacts are still noticeable. At higher Eb/N0 (≈ 20 
dB), the subjective quality of both scheme are identical. Thus, the performance gap  
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between our scheme and that of Sanchez et al. is quite significant at high transmission 
rate. However, as the transmission rate reduces, the gap reduces to certain extent. But, 
the new method still maintains superiority. 

 

(b) Sanchez at 10 dB(a) Proposed at 10 dB

(d) Sanchez at 20 dB(c) Sanchez at 15 dB       

Fig. 6. Visual results for ‘Lena’ image at RT = 4.41 bpp. (a) Reconstructed after transmission 
via proposed scheme at Eb/N0 = 10 dB (PSNR = 42.59 dB), (b) Sanchez et al. at 10 dB (PSNR 
= 26.88 dB), (c) Sanchez et al. at 15 dB (PSNR = 31.59 dB), and (d) Sanchez et al. at 20 dB 
(PSNR = 36.27 dB). 

5   Conclusion 

With all the performance evaluations, it can be concluded that proposed novel scheme 
is suitable for high-quality image transmission applications over error-prone wireless 
channels requiring low transmission power. The computational complexity is O(mΛ) 
for each λ. In our experiments, it takes only 5 or 6 iteration to find the optimal λ.  The 
number of iterations to find optimal solution is independent of the number of layers or 
channel code-rates available. The proposed algorithm has an attractive feature that 
enables it to optimize channel protection for a source compressed at less than, equal to 
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or greater than available transmission rate. The novelty lies in its ability to discard the 
less important source layers to accommodate optimal channel protection to more 
important ones. However, the requirement for this scheme is that the source must 
have a convex rate-distortion characteristic with many layers. 
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Abstract. Detecting regions of interest in video sequences is one of
the most important tasks in many high level video processing appli-
cations. In this paper a novel approach based on support vector data
description is presented, which detects foreground regions in videos with
quasi-stationary backgrounds. The main contribution of this paper is the
novelty detection approach which automatically segments video frames
into background/foreground regions. By using support vector data de-
scription for each pixel, the decision boundary for the background class is
modeled without the need to statistically model its probability density
function. The proposed method is able to achieve very accurate fore-
ground region detection rates even in very low contrast video sequences,
and in the presence of quasi-stationary backgrounds. As opposed to many
statistical background modeling approaches, the only critical parameter
that needs to be adjusted in our method is the number of background
training frames.

1 Introduction

In most visual surveillance systems, stationary cameras are typically used. How-
ever, because of inherent changes in the background itself, such as fluctuations
in monitors and fluorescent lights, waving flags and trees, water surfaces, etc.
the background of the video may not be completely stationary. In these types
of backgrounds, referred to as quasi-stationary, a single background frame is
not useful to detect moving regions. Pless et al. [1] evaluated different models
for dynamic backgrounds. Typically, background models are defined indepen-
dently on each pixel and depending on the complexity of the problem, use the
expected pixel features (i.e. colors) [2] or consistent motion [3]. Also they may
use pixel-wise information [4] or regional models of the features [5].

In [4] a single 3-D Gaussian model for each pixel in the scene is built, where
the mean and covariance of the model were learned in each frame. Kalman Filter-
ing [6] is also used to update the model. These background models were unable
to represent multi-modal situations. A mixture of Gaussians modeling technique
was proposed in [7] and [8] to address the multi-modality of the underlying back-
ground. There are several shortcomings for the mixture learning methods. First,
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the number of Gaussians needs to be specified. Second, this method does not
explicitly handle spatial dependencies. Also, even with the use of incremental-
EM, the parameter estimation and its convergence is noticeably slow where the
Gaussians adapt to a new cluster. The convergence speed can be improved by
sacrificing memory as proposed in [9], limiting its applications where mixture
modeling is pixel-based and over long temporal windows. A recursive filter for-
mulation is proposed by Lee in [10]. However, the problem of specifying the
number of Gaussians as well as the adaptation in later stages still exists. Also
this model does not account for the situations where the number of Gaussians
changes due to occlusion or uncovered parts of the background.

In [2], El Gammal et al. proposed a non-parametric kernel density estima-
tion method (KDE) for pixel-wise background modeling without making any
assumption on its probability distribution. Therefore, this method can easily
deal with multi-modality in background pixel distributions without determining
the number of modes in the background. However, there are several issues to be
addressed using non-parametric kernel density estimation. First, these methods
are memory and time consuming. For each pixel in each frame the system has to
compute the average of all the kernels centered at each training feature vector.
Second, the size of the temporal window used as the background buffer needs to
be specified. Too small a window increases the estimation speed, while it does
not incorporate enough history for the pixel, resulting in a less accurate model.
Also the adaptation will be problematic by using small window sizes. Increasing
the window size improves the accuracy of the model but with the cost of more
memory requirements and slower convergence. Finally, the non-parametric KDE
methods are pixel-wise techniques and do not use the spatial correlation of the
pixel features. In order to adapt the model a sliding window is used in [11]. How-
ever the model convergence is problematic in situations where the illumination
suddenly changes.

In order to update the background for scene changes such as moved objects,
parked vehicles or opened/closed doors, Kim et al. in [12] proposed a layered
modeling technique. This technique needs an additional model called cache and
assumes that the background modeling is performed over a long period. It should
be used as a post-processing stage after the background is modeled.

In methods that explicitly model the background density estimation, fore-
ground detection is performed by comparing the estimated probabilities of each
pixel with a global threshold [2], or local thresholds [13]. Also there are several
parameters that need to be estimated from the data to achieve an accurate den-
sity estimation for background. In [11] a binary classification technique is used
to detect foreground regions by a maximum likelihood method. Since in these
techniques the probability density function of the background is estimated, the
model accuracy is bounded to the accuracy of the estimated probability.

In this paper a novel approach is proposed to label pixels in video sequences into
foreground and background classes using support vector data description [14]. As
opposed to parametric and non-parametric density estimation techniques, in this
method the model is not the probability function of the background or foreground.
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It can be considered as analytical description of the decision boundary between
background and foreground classes. This modeling technique addresses several is-
sues in the traditional density estimation approaches.

First, the model accuracy is not bounded to the accuracy of the estimated
probability density functions. Second, the memory requirements of the proposed
technique are less than those of non-parametric techniques. In non-parametric
density estimation methods, pixel feature vectors for all background training
frames need to be stored to regenerate the probability of pixels in new frames.
It can be problematic for large frames sizes and temporal windows. In our tech-
nique, in order to classify new pixels, they are compared only with the support
vectors, which in practice are much fewer than the actual number of frames in
the temporal window. Third, because support vector data description explicitly
models the decision boundary of the known class, it can be used for novelty
detection and single class-classification without a need to threshold any values.
This results in less parameter tuning and automatic classification. Finally, the
performance of the classifier in terms of false positive and false negatives can be
controlled from within the framework. The proposed method is a novel approach
that explicitly addresses the one-class classification problem, since in foreground
region detection we do not have samples of foreground regions in the training
steps of the system. This issue, has not been addressed in any of the traditional
techniques.

The rest of this paper is organized as follows. In Section 2 a brief review of the
support vector data description is presented. In Section 3, the proposed method
for foreground region detection is discussed. Section 4 shows experimental results
of our method on synthetic and real-world data, and the performance of classifier
is compared with the existing techniques. Finally, conclusions of the proposed
method are drawn in Section 5 and future extensions to this work are discussed.

2 Support Vector Data Description

Data domain description concerns the characteristics of a data set [14]. The
boundary of the dataset can be used to detect novel data or outliers. A normal
data description gives a closed boundary around the data. The simplest boundary
can be represented by a hyper-sphere. The volume of this hyper-sphere with
center a and radius R should be minimized while containing all the training
samples xi. To allow the possibility of outliers in the training set, slack variables
εi ≥ 0 are introduced. The error function to be minimized is defined as:

F (R, a) = R2 + C
∑

i

εi (1)

subject to the constraints:

‖xi − a‖2 ≤ R2 + εi ∀i (2)
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In equation (1), C is a trade-off between simplicity of the system and its error.
We call this parameter confidence parameter. After incorporating the constraints
(2) into the error function (1) by Lagrange multipliers we have:

L (R, a, αi, γi, εi) = R2 +C
∑

i

εi −
∑

i

αi

[
R2 + εi −

(
‖xi − a‖2

)]
−
∑

i

γiεi (3)

L should be maximized with respect to Lagrange multipliers αi ≥ 0 and γi ≥ 0
and minimized with respect to R, a and εi. Lagrange multipliers γi can be
removed if the constraint 0 ≤ αi ≤ C is imposed. After solving the optimization
problem we have:

L =
∑

i

αi(xi · xi) −
∑
i,j

αiαj(xi · xj) ∀αi : 0 ≤ αi ≤ C (4)

When a new sample satisfies the inequality in (2), then its corresponding La-
grange multipliers are αi ≥ 0, otherwise they are zero. Therefore we have:

‖xi − a‖2 < R2 → αi = 0, γi = 0
‖xi − a‖2 = R2 → 0 < αi < C, γi = 0
‖xi − a‖2 > R2 → αi = C, γi > 0 (5)

From the above, we can see that only samples with non-zero αi are needed in
the description of the data set, therefore they are called support vectors of the
description. To test a new sample y, its distance to the center of the hyper-sphere
is calculated and tested against R.

In order to have a flexible data description as opposed to the simple hyper-
sphere discussed above a kernel function K(xi, xj) = Φ(xi) ·Φ(xj) is introduced.
This maps the data into a higher dimensional space, where it is described by the
simple hyper-sphere boundary.

3 The Proposed Method

The methodology described in section 2 is used in our technique to build a de-
scriptive boundary for each pixel in the background training frames to generate
its model for the background. Then these boundaries are used to classify their
corresponding pixels in new frames as background and novel (foreground) pix-
els. There are several advantages in using the Support Vector Data Description
(SVDD) method in detecting foreground regions:

– The proposed method, as opposed to existing statistical modeling methods,
explicitly addresses the single-class classification problem. Existing statistical
approaches try to estimate the probability of a pixel being background, and
then use a threshold for the probability to classify it into background or
foreground regions. The disadvantage of these approaches is in the fact that
it is impossible to have an estimate of the foreground probabilities, since
there are no foreground samples in the training frames.
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1. Initialization

1.1. Confidence parameter: C
1.2. Number of training samples: Trn_No

1.3. Kernel bandwidth σ
2. For each training frame

2.1. For each pixel xij

2.1.1. OC(i,j)← Train(xij[1 :Trn_No])
3. For new frames

3.1. For each pixel xij

3.1.1. Desc(i,j)← Test(xij[Current Frame],OC(i,j))
3.1.2. Label pixel as foreground or background

based on Desc(i,j).

Fig. 1. The proposed algorithm

– The proposed method has less memory requirements compared to non-
parametric density estimation techniques, where all the training samples
for the background need to be stored in order to estimate the probability of
each pixel in new frames. The proposed technique only requires a very small
portion of the training samples, support vectors, to classify new pixels.

– The accuracy of our method is not limited to the accuracy of the estimated
probability density functions for each pixel. Also the fact that there is no
need to assume any parametric form for the underlying probability density
of pixels gives the proposed method superiority over the parametric density
estimation techniques, i.e. mixture of Gaussians.

– The efficiency of our method can be explicitly measured in terms of false
reject rates. The proposed method considers a goal for false positive rates,
and generates the description of data by fixing the false positive tolerance of
the system. This helps in building a robust and accurate background model.

Figure 1 shows the proposed algorithm in pseudo-code format1. The only
critical parameter is the number of training frames (Trn_No) that needs to be
initialized. The support vector data description confidence parameter C is the
target false reject rate of the system. This is not a critical parameter and accounts
for the system tolerance. Finally the Gaussian kernel bandwidth, σ does not have
a particular effect on the detection rate as long as it is not set to be less than
one, since features used in our method are normalized pixel chrominance values.
For all of our experiments we set C = 0.1 and σ = 5.

In the first step of the algorithm, for each pixel in the scene a single class
classifier is trained by using its values in the background training frames. This
classifier consists of the description boundary and support vectors, as well as a
threshold used to describe the data. In the next step, each pixel in the new frames
is classified as background or foreground using its value and its corresponding

1 The proposed method is implemented in MATLAB 6.5, using Data Description
toolbox [15].
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classifier from the training stage. Details of training of each classifier and testing
for new data samples are provided in section 2.

Feature vectors xij used in the current implementation are xij = [cr, cg],
where cr and cg are the red and green chrominance values for pixel (i, j). Since
there is no assumption on the dependency between features, any feature value
such as vertical and horizontal motion vectors, pixel intensity, etc. can be used.

4 Experimental Results

In this section, the experimental results of the proposed method are presented
on both synthetic and real data. The experiments are conducted to compare the
results of support vector data description in classification problems with those
of traditional methods, such as mixture of Gaussians (MoG), Kernel Density
Estimation (KDE) and k-nearest neighbors (KNN).

4.1 Synthetic Data Sets

In this section we use a synthetic data set, which represents randomly distributed
training samples with an unknown distribution function (banana data set). Fig-
ure 2 shows a comparison between different classifiers. This experiment is per-
formed on 150 training samples using support vector data description (SVDD),
mixture of Gaussians (MoG), kernel density estimation (KDE) and k-nearest
neighbors (KNN).

Parameters of these classifiers are manually determined to give a good perfor-
mance. For all classifiers the confidence parameter is set to be 0.1. In MoG, we
used 3 Gaussians. Gaussian kernel bandwidth in the KDE classifier is considered
σ = 1, for the KNN we used 5 nearest neighbors, and for the SVDD classifier
the Gaussian kernel bandwidth is chosen to be 5.

Figure 2(a) shows the decision boundaries of different classifiers on 150 train-
ing samples from banana dataset. As it can be seen from Figure 2(b), SVDD

(a) (b)

Fig. 2. Comparison between different classifiers on a synthetic data set: (a)- Decision
boundaries of different classifiers after training. (b)- Data points (blue dots) outside
decision boundaries are false rejects.
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generalizes better than the other three classifiers and classifies the test data more
accurately. In this Figure the test data is composed of 150 samples drawn from
the same probability distribution function as the training data, thus should be
classified as the known class.

Table 1. Comparison of False Reject Rate and Recall Rate for different classifiers

Method SVDD MoG KDE KNN

FRR 0.1067 0.1400 0.1667 0.1333

RR 0.8933 0.8600 0.8333 0.8667

Here we need to define the False Reject Rate (FRR) and Recall Rate (RR)
for a quantitative evaluation. By definition, FRR is the percentage of missed
targets, and RR is the percentage of correct prediction (True Positive rate).
These quantities are given by:

FRR =
#Missed targets

#Samples
RR = #Correct predictions

#Samples (6)

Table 1 shows a quantitative comparison between different classifiers. In this
table, FRR and RR of classifiers are compared after training them on 150 data
points drawn from an arbitrary probability function and tested on the same
number of samples drawn from the same distribution. As it can be seen from
the above example, the FRR for SVDD classifier is less than that of the other
three, while its RR is higher. This proves the superiority of this classifier in case
of single class classification over the other three techniques.

Table 2. Need for manual optimization and number of parameters

Method SVDD MoG KDE KNN

No. of parameters 1 4 2 2

Need manual selection No Yes Yes Yes

Table 2 compares the number of parameters that each classifier has and the
need for manually selecting these parameters for a single class classification prob-
lem. As it can be seen, the only method that automatically determines data
description is the SVDD technique. In all of the other classification techniques
there is at least one parameter that needs to be manually chosen to give a good
performance.

Table 3 shows memory requirements for each classifier. As it can be seen from
the table, SVDD requires much less memory than the KNN and KDE methods,
since in SVDD we do not need to store all the training data. Only the MoG
method needs less memory than the SVDD technique, but in MoG methods we
need to manually determine the number of Gaussians to be used which is not
practical when we are training one classifier per pixel in real video sequences.
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Table 3. Comparison of memory requirements for different classifiers

Method SVDD MoG KDE KNN

Memory needs (bytes) 1064 384 4824 4840

(a) Water surface (b) MoG (c) KDE (d) SVDD

Fig. 3. Water surface video: comparison of methods in presence of irregular motion

4.2 Real Videos

In this section, foreground detection results of our method on real video sequences
are shown and compared with the traditional statistical modeling techniques.

Comparison in the Presence of Irregular Motion. By using the water sur-
face video sequence, we compare the results of foreground region detection using
our proposed method with a typical KDE [13] and MoG [7]. For this comparison
the sliding window of size L=150 is used in the KDE method. The results of
MoG are shown in Figure 3(b), the KDE method results are shown in Figure
3(c) and the foreground masks detected by the proposed technique are shown
in Figure 3(d). As it can be seen, the proposed method gives better detection
since it generates a more accurate descriptive boundary on the training data,
and does not need a threshold to classify pixels as background or foreground.

Comparison in Case of Low Contrast Videos. Figure 4 shows the result
of foreground detection using the proposed method in the hand shake video se-
quence and compares this result with that of the KDE method. As it can be seen
from Figure 4(b) and 4(c), the proposed method achieves better detection rates
compared to the KDE technique. Notice that in the KDE technique presented
in the figure, the system tries to find the best parameters for the classifier in
order to achieve its best performance.

Detection Results in Difficult Scenarios. Figure 5 shows results of the
proposed foreground detection algorithm in very difficult situations. In Figure
5(a) and 5(b) the irregular motion of water in the background make it difficult
to detect true foreground regions. In Figure 5(c) there are flickers in the lighting.
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(a) Hand shake sequence (b) KDE (c) SVDD

Fig. 4. Hand shake video: comparison of methods in case of low contrast videos

(a) Water (b) Fountain (c) Lobby (d) Water surface

Fig. 5. Foreground detection results

Our system accurately detects the foreground regions in all of these situations.
Also the car in Figure 5(d) is detected accurately by our method despite the
presence of waving tree branches and the rain in the background.

5 Conclusions and Future Work

In this paper a novel approach is proposed to label pixels in video sequences into
foreground and background classes using support vector data description. The
contributions of our method can be described along the following directions:

– The model accuracy is not bounded to the accuracy of the estimated prob-
ability density functions.

– The memory requirement of the proposed technique is less than that of non-
parametric techniques.

– Because support vector data description explicitly models the decision
boundary of the known class, it is suitable for novelty detection without
the need to use thresholds. This results in less parameter tuning.

– The classifier performance in terms of false positive is controlled explicitly.

One direction of future investigation is to use this work in non-parametric
tracking approaches. Also we are investigating the effect of adaptive kernel band-
width parameters on the performance of the system.
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Abstract. We present a novel Procedural Image Processing (PIP) method and
demonstrate its applications in visualization. PIP modulates the sampling po-
sitions of a conventional image processing kernel (e.g. edge detection filter)
through a procedural perturbation function. When properly designed, PIP can
produce a variety of styles for edge depiction, varying on width, solidity, and pat-
tern, etc. In addition to producing artistic stylization, in this paper we demonstrate
that PIP can be employed to achieve various visualization tasks, such as contour
enhancement, focus+context visualization, importance driven visualization and
uncertainty visualization.

PIP produces unique effects that often either cannot be easily achieved through
conventional filters or would require multiple pass filtering. PIP perturbation
functions are either defined by analytical expressions or encoded in pre-generated
images. We leverage the programmable fragment shader of the current graphics
hardware for achieving the operations in real-time.

1 Introduction

A key objective of visualization is to effectively deliver information by emphasizing im-
portant features while hiding unimportant ones. Image processing methods have been
employed as a viable tool for illustration[1] where geometric features such as silhou-
ettes, ridges, and valleys are extracted through image processing (e.g. edge detection)
on intermediately generated geometric images. However, while existing image pro-
cessing algorithms are effective in detecting features, they fall short in stylizing their
appearance.

In this paper, we propose a new image filtering operation termed procedural image
processing (PIP) that can stylize features during the process of detecting them. While
a conventional image filter is defined by a kernel matrix with a fixed sampling and
weighting pattern, a PIP filter has its sampling positions modulated by a perturbation
function. When the perturbation function is designed properly, the detected features can
be either enhanced or deprecated to display certain stylization. PIP produces unique ef-
fects that often either cannot be easily achieved through conventional filters or would
require multiple pass filtering. The PIP filter has been applied to visualize isosurface
in volume [2], in this paper, we extend its application in 2D image, 3D geometry vi-
sualization and 3D volume visualization. We discuss several perturbation functions or
patterns and demonstrate their effectiveness on various visualization tasks, such as con-
tour enhancement, focus+context visualization, and uncertainty or importance driven
visualization.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 50–59, 2006.
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The most recent advances in graphics hardware provide the ability to interactively
perform image processing on GPU [3]. PIP operation adds little overhead to a conven-
tional image filtering operation. When perturbation patterns encoded in a texture are
passed to GPU with a few additional parameters, the added computation for PIP imple-
mentation is a few texture lookup operations and texture coordinates calculation. All
PIP-based renderings are performed wholly on hardware through fragment program-
ming and real-time performance is achieved.

2 Related Work

Many visualization systems have been striving to achieve improved effectiveness by
selectively depicting important data features. For example, to visualize highly complex
volume data, gradient operations have been employed to enhance boundaries via opacity
modulation [4]. The more recent volume illustration systems have integrated gradient
modulation into volume stylization [5]. Gradient information has also been used in
high-dimensional transfer function design [6,7].

Image processing operators, including extracting edges, have been employed to
achieve non-photorealistic rendering (NPR) of 3D objects. Image processing is per-
formed on intermediately generated geometric images (G-buffer) to depict geometric
features such as silhouettes, ridges, and valleys [8,1]. As only 2D processing in im-
age space is required, image-based NPR methods can be more efficient than traditional
object-based NPR methods which perform geometric feature extraction operations on
3D geometry.

Generally, an image processing filter defines a weighting function that is usually
discretized and stored in a matrix, often called filter kernel. To process a pixel, the
filter kernel is centered at the pixel, neighboring pixels are sampled based on the matrix
grids and multiplied with matrix values (weights) and are finally summed together.
Traditionally a linear edge filter is fixed in terms of both its weights and sampling
pattern (matrix grid). Recently, a new filter called bilateral filter [9] has been proposed
in which the weight of each filter sample is changed based on the difference between its
value and the averaged value of all samples within the filter’s footprint. Nevertheless,
the output of a conventional filter is in the form of pixelized lines that lack solidity and
styles. Since images are processed pixel by pixel and edge information is available only
after the entire image processing is done, stylizing pixelized features such as halftoning
[10], or overdrawing parameterized strokes on them usually needs additional pass(es)
of processing.

In the remainder of the paper, we first introduce the basic elements of Procedural
Image Processing (PIP) (Section 3), then describe its various applications(Section 4).

3 Procedural Image Processing (PIP)

An image filter kernel can be represented by a matrix mask W . Let the input image F
be a pixel array f (v), where v is the vector representing pixel position (x,y); W denotes
a m×n filter kernel applied to the input image and the output image G has a pixel array
g(v). The output image can be computed by the expression:
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g(v) = F
⊗

W =
s=a

∑
s=−a

t=b

∑
t=−b

w(r) f (v + r), (1)

where a = (m − 1)/2, b = (n − 1)/2 and r denotes a filter element position (s, t). In
cases presented in this paper, m = n = 3 (i.e., 9 samples for each filter). The filtering
convolution of F

⊗
M at pixel f (v) is obtained as usual by centering the filter matrix

at the pixel, multiplying the matrix elements with their corresponding pixels and sum-
ming the results. Figure 2(a) illustrates an isosurface rendering image after conventional
Sobel edge filtering. Silhouette lines have a one-pixel width.

For PIP filtering, a filter’s sampling positions are perturbed by a procedural function
P(v,r), which is defined in the entire image domain:

gpip(v) =
s=a

∑
s=−a

t=b

∑
t=−b

w(r) f (v + P(v,r)). (2)

Let us draw upon some intuitions here. If P(v,r) = r, the equation 2 is equivalent to
the equation 1 and the filter becomes a regular filter. When the amplitudes of perturba-
tion function P(v,r) increases, sampling positions are moved away from the center pixel
v, and pixels further away from the filtering center will be sampled. This can be con-
sidered as enlarging the filter kernel size (but the number of samples is kept the same).
Therefore, slow pixel-value variations may be amplified, resulting in thicker edges. To
gain more flexible control over the perturbation functions, we decompose a perturba-
tion function into two components: scaling and translation. The resulting perturbation
function is then expressed as:

P(v,r) = Pscale(v)r + Ptrans(v). (3)

The scaling factor is uniform for every direction. Ptrans represents the translation
vector. The perturbation functions can be encoded in textures for GPU implementation.

The effects of applying PIP with scaling and translation perturbations are demon-
strated in Figure 1 for edge detection on 1D signals. Figure 1(a) is the original 1D
signal with an edge. Figure 1(b) is the output of Figure 1(a) applied with a regular edge
detection filter. The edge filter is a 1D matrix |−1,0,1|, each sampling position is ex-
actly on the pixel grid. In Figure 1(c), a PIP with Pscale = 1.5 is introduced. The result
edge is wider. We will demonstrated and discuss such edge widening effect in the next
section. In Figure 1(d), a translation with offset of 0.5pixel in negative axial direction
is applied. The resulting edge is shifting to positive axial direction correspondingly. In
above cases, the same PIP perturbation function is applied throughout whole input sig-
nal. When applying different PIP perturbation functions in different regions, stylization
variation can be introduced to the final rendering. By providing careful user control on
such perturbation functions, various visualization effects can be generated.

Figures 2(b) and (c) demonstrate the results after applying only scaling perturbation.
Larg constant scaling values are used throughout the entire respective image. Thicker
edges than those from regular Soble filter (Figure 2(a)) are obtained. Such edge thick-
ening cannot be achieved by simply decreasing the threshold, as that will introduce
unwanted noises (Figure 2(d)).
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Fig. 1. 1D Procedural Image Processing (Edge Detection). (a) input signal, (b) signal output of
a normal edge detection filter, (c) PIP filter (Pscale = 1.5), (d) PIP filter, shift a normal edge
detection filter 0.5 pixel leftwards, (Ptrans = −0.5).

(a) (b) (c) (d)

Fig. 2. 2D edge detection of isosurface (the isosurface is extracted from isosurface is extracted
from Bucky ball data): (a) regular filter (Pscale = 1.0), threshold= 0.65; (b) PIP filter (Pscale =
2.0), threshold= 0.65; (c) PIP filter (Pscale = 8.0), threshold= 0.65; (d) PIP filter (Pscale = 1.0),
threshold= 0.05

We must point out that the net behavior of the PIP filter also depends on the underly-
ing image contents. The goal of the perturbation function design is to make the resulting
feature illustration appearing random at small scales while conforming with large-scale
stylizations driven by large-scale perturbation patterns.

The perturbation function can be normalized to the range of [0,1]. Then at the pro-
cessing time, the looked-up perturbation value needs to be multiplied with a constant
scaling factor. Since the perturbation functions are usually periodic, we simply need to
store one cycle of the function, which can be encoded in a much smaller texture im-
age. During the processing, the texture image is tiled together to cover the entire image
domain. Translation perturbation can be encoded in similar forms.

4 Applications

We demonstrate the capability of PIP in both image processing and visualization.

4.1 2D Image Processing

Various filtering results can be obtained by applying PIP to 2D images. Figure 3 shows
several different PIP operations on the Lena image using different perturbation functions.
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(a) (b) (c)

Fig. 3. PIP processed results of the Lena image. For each image, the smaller image in the white
frame encodes scaling perturbation function.

Only the scaling perturbation is applied in all the examples here. For each image, the
smaller image in the top right encodes the scaling perturbation function. In Figure 3(a),
a constant scaling factor of 4 is used. Thickened edge lines are obtained. In Figure 3(b),
a regular dot pattern is used as the scaling perturbation. The processed edges demon-
strate a dot pattern, resembling a halftoning effect. In Figure 3(c), a swirl-like pertur-
bation texture is used; the swirling perturbation patterns are carried over to edge depic-
tion, resembling pen-and-ink drawing. In Figure 3(d), a water caustics texture is used as
perturbation function. The resulting image displays beehive patterns resembling cracked
painting.

4.2 Geometric Data Visualization

We demonstrate here different visualization effects that PIP can generate for 3D ge-
ometric models. The 3D rendered geometric buffers, like those used in image-based
NPR [1], can encode additional information such as depth and normal. We utilize this
additional information to modulate PIP operation to obtain additional control over data
visualization.

In the first example we use depth values to control the PIP operation for modulating
edge appearance based on depth, demonstrating a different kind of ‘depth cueing’. Fig-
ure 4(a) shows such a result. The scaling perturbation function is defined as a constant
(encoded in the left grey image in the bottom row). The depth image is on the right in
the bottom row, while the regular color image is in the middle and is the one on which
the PIP processing operates. Even though the scaling perturbation function is specified
as a constant, it is inversely scaled by the corresponding depth value at each pixel. Thus
more distant objects get a smaller scaling perturbation, resulting in a thinner detected
edge.

In the next example we demonstrate that a different image portion or different part
of a 3D object can use a different perturbation function to demonstrate different styles
across the image. This style difference can be used to emphasize different aspects or
convey certainty/uncertainty in data visualization. In our experiment, we define an im-
portance map with values between [0,1] (1: most important; 0: least important). We
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(a) (b)

Fig. 4. Various effects generated by PIP: (a) depth cueing and (b) attention depiction. The bottom
row of (a) shows (from left to right) the scaling perturbation pattern, the regular color image,
the depth image. The bottom tow of (b) shows (from left to right) the two scaling perturbation
functions for the most and least importance values and the importance map (bright pixel indicates
higher importance).

then define two separate scaling perturbation functions associated with 0 and 1 im-
portance value. For an importance value between 0 and 1, the perturbation function
is interpolated between the two pre-defined ones. In Figure 4(b), the first two images
in the bottom row illustrate the two pre-defined perturbation patterns; the uniform grey
pattern is used for the most important value as it tends to strengthen edges, while the dot
pattern will do the opposite. The rightmost image in the bottom row is the importance
map. The top left corner of this image (corresponding to the horse head) is specified
as the attention region (with high importance values). The resulting image shown on
the top conforms with the design – the head is illustrated using thick dark lines and the
rest of the body is depicted using small dots. Although in this example the importance
map is specified in the image domain, it can be generated dynamically in 3D rendering.
For example, when an attention point is specified on a 3D object, its projection on the
screen can be the attention center. The attention center can also be obtained through eye
or gaze tracking.

4.3 Volume Visualization

We also apply PIP to volume visualization. PIP operations on both isosurface rendering
and direct volume rendering are demonstrated in the following examples.
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Fig. 5. PIP enhanced silhouettes of two isosurfaces

Isosurface Rendering: The isosurface method renders the surface that is defined by an
isovalue in the volume. Same as for 3D polygon models, PIP generates silhouette and
contour edges from the intermediate geometric buffers of the isosurface(s). Figure 5
shows two layers of outlines generated by PIP. Silhouettes of the inner isosurface are
depicted by dashed lines The rendered silhouettes represent important geometry fea-
tures of the isosurface; the variation of stylization can be used to depict other associated
data information, such as uncertainty.

Direct Volume Rendering: Throughout the examples that we discuss here, we perform
gradient modulated volume rendering. The gradient is computed using 3D central dif-
ference. The computed gradient magnitudes further modulate the opacity of the sample.
Figure 6(a) and (b) show a conventional volume rendering of the Neghip data, without
and with gradient modulation, respectively.

Next we illustrate a variety of interesting visualizing effects that can be generated
by applying PIP at different stages of different purposed volume rendering. The first
example illustrates how PIP can be used for importance driven or focus emphasis visu-
alization. Research has been done to utilize different rendering methods such as direct
volume rendering, maximum intensity rendering and NPR rendering to differentiate fo-
cus and context regions [11,12]. Here we seek to design perturbation functions in PIP
to achieve the same goal. We define a scalar value d to represent the degree of interest.
In the region of interest (ROI), d = 1.0, otherwise d < 1.0. We then use this d value
as the scaling factor in PIP kernel. Features (surface boundaries) are indeed much en-
hanced in the ROI when this PIP is applied to gradient modulated volume rendering
(like in Figure 6(b)), while becoming less visible in regions outside the focus center.
Figure 6(c) illustrates the result.

The fourth example shows application of PIP to uncertainty visualization [13,14]. To
simulate an uncertainty distribution, we assume the data at the ROI is the most accurate,
but uncertainty increases when moving away from the ROI. There are several possible
ways of achieving this. One intuitive way is to generate a noise function (ranging from
0 to 1) and then directly modulate opacity with this noise value.

We now describe our approaches of using PIP for achieving uncertainty visualiza-
tion. First, we define a noise function, which is multiplied by 1− d and added with d
and is then used as the the scaling function of PIP. Hence, the ROI receives no noise
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(a) (b) (c)

(c) (d) (e)

Fig. 6. Various effects of volume rendering: (a) regular volume rendering; (b) gradient enhanced
volume rendering (regular filter); (c) importance driven visualization; (d-f) uncertainty visual-
ization ((d) opacity directly modulated by noise, (e) noise as the translation function in PIP, (f)
similar to (e), but with lower noise frequency)

while the noise values increase as one moves away from the focus center. The conse-
quence is that the thickness of the boundary is randomly varied (hence appearing rough)
in the uncertainty region. Figure 6(d) illustrates this effect. Our method to depict un-
certainty is to define a translation function of PIP. The translation direction is constant,
but the amount of translation is determined by (1 − d) ∗ noise. Figure 6(e) shows the
resulting effect in which the surface boundaries become cloudy at the uncertain region.
In Figure 6(f), we apply a lower frequency noise than that is used in Figure 6(e). In this
image, surface boundaries can be seen as being randomly deformed. Through the above
examples, PIP provides another set of opportunities for visualizing data uncertainty,
especially when surfaces boundaries are to be depicted.

5 Implementation Notes, Discussions and Conclusion

All our experiments have been performed on a Dell Precision 530 workstation with a
256MB GeForce FX5900 Ultra graphics card. We use the newly introduced Cg lan-
guage [15] for hardware fragment programming. Specifically, NV fragment program
(fp30 profile in Cg program) OpenGL extension [3] is used in our implementation. All
the operations involved in PIP are implemented in hardware. Perturbation functions are
encoded in texture images. Texture lookup, sample transformation and interpolation, and
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filter convolution are some typical sub-operations in the implementation of the PIP op-
eration. The PIP implementation can be fully integrated with hardware assisted volume
rendering, which leverages 3D texture mapping hardware [16]. The PIP filter operation
is directly performed in the fragment program where 3D texture lookups are performed.
The overhead of PIP operation is almost negligible. Because of the hardware implemen-
tation, all rendering demonstrated in the paper is real time. The rendering times for the
stylized Lena images in Figures 3 are around 0.15 ms. The 2D image rendering time is
close to the PIP processing time which is much smaller comparing with model render-
ing time of mesh or volume. The rendering time of the horse model (97K triangles) in
Figure 4 is 11.2 ms and the hand model (655K triangles) is 68 ms. We didn’t observe
obvious performance difference when the PIP operation is turned on.

Although PIP represents a simple extension of conventional image processing, a va-
riety of effects can be achieved during image filtering without resorting to any pre- or
post-processing. The stylization is achieved by perturbation patterns which modulate
filters’ sampling positions. The effects are unique that often either cannot be achieved
through conventional filters or would require multiple pass filtering. Our method works
on both 2D images and 3D data and can achieve a wide range of visualization tasks,
such as depth cueing, focus+context visualization, importance driven visualization, and
uncertainty visualization.

We have identified two immediate avenues for future work. First, we plan to inves-
tigate more perturbation functions in hope of achieving additional effects. Along this
line, we seek to understand the relationship between perturbation functions and their
resulting effects in greater depth. Second, although we have concentrated on edge de-
tection filter so far, we aim to extend the PIP concept to other filters as well, such as
unsharp masking filter [17].
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Abstract. In this paper we present an approach for automatically detecting and
tracking humans in very long video sequences. The detection is based on back-
ground subtraction using a multi-mode Codeword method. We enhance this
method both in terms of representation and in terms of automatically updating
the background allowing for handling gradual and rapid changes. Tracking is
conducted by building appearance-based models and matching these over time.
Tests show promising detection and tracking results in a ten hour video sequence.

1 Introduction

Visual analysis of humans has a number of applications ranging from automatic surveil-
lance systems to extracting pose parameters for realistically character animation in
movies. Automatic surveillance systems observe humans at a distance and in various
environments. Furthermore, these systems should, as opposed to e.g., motion capture
systems, work completely autonomous and for long periods of time.

The foundation of many surveillance systems is a good detection and tracking of
humans in a video sequence. These issues have received much attention in the last
decade or so [1,2,3,4]. The detection problem (aka the figure-ground segmentation
problem) is typically done using shape, motion, depth, background detection, or ap-
pearance [5,6,7,8,9,10]. When the scene of interest contains individuals that are al-
lowed to occlude each other, the tracking of individuals is inherently difficult and using
an appearance-based model for each individual is often the preferred approach.

In this work we consider situations where occlusion can occur and we therefore fol-
low the appearance-based approach. Our aim is continuous detection and tracking over
very long periods of time as opposed to other approaches mostly evaluated on short
video sequences. Concretely, we first develop and use an advanced background subtrac-
tion algorithm in order to handle the figure-ground segmentation problem. The result
is a silhouette of each individual in the scene - section 2. Next we use an appearance-
based model to represent each individual. A good model is obtained by using some of
the results from research on modeling interacting people. We then present a scheme
for matching appearance-based models over time - section 3. In section 4 we present
tracking results of several hours of continuous video and in section 5 a conclusion is
given.

G. Bebis et al. (Eds.): 2006, LNCS 4291, pp. 60–69, 2006.
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2 Figure-Ground Segmentation

The first step in our tracking algorithm is to separate the foreground (humans) from
the background, i.e., the figure-ground segmentation problem. We do this using a back-
ground subtracting approach inspired by [11].

2.1 Background Representation

We apply the Codeword approach of [11], which has shown to perform better than
Gaussian mixture models [9] and other well-known methods [12,1] in terms of both
speed and sensitivity [13].

The representation of a background pixel in the codeword approach [11] is based
on the representation from [14]. Here color and intensity are represented independently
and a background pixel is represented as a vector in the RGB-cube, μ. The distance,
in terms of color, ρ, from a new pixel, x, to the background model is measured as
the perpendicular distance to the vector. The difference in intensity is measured along
the vector and denoted, h, see figure 1. In the work by [11] a cylinder centered around
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Fig. 1. Illustration of the representations used in the background subtraction

the vector represents a codeword for this particle pixel and all pixel values inside the
cylinder are classified as background. During a training phase a number of codewords
are learned for each pixel and together these are denoted the codebook for this par-
ticular pixel. This is a fast and robust approach due to the multi-mode nature of the
representation. However, since all color vectors go through the origin of the color-cube
a more correct representation is to form a truncated cone around each learned back-
ground vector. In this way the different colors inside the codeword actually corresponds
to the same colors with different intensity. In figure 1 our representation of a codeword
is shown, where Ǐ and Î are the minimum and maximum values found during training,
and Ilow and Ihigh are where the cone is truncated in order to allow additional values,
e.g., due to shadows [15].
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2.2 Background Initialization

A key issue in successful background subtraction is to learn a good model of the back-
ground during an initialization phase. If no moving objects are present in the scene this
is obviously easier. But a more general approach is to allow for moving objects. If a
pixel is covered by moving objects in less than 50% of the learning period then a me-
dian filter can be applied [1]. A different method is first to divide the training sequence
into temporal subintervals with similar values - assumed to belong to the background
and then find the subinterval with the minimum average motion and only use these pix-
els for model initialization [16,17]. In this work we follow the approach by [11], which
also works along these lines of reasoning.

During the initialization phase each new pixel is either assigned to an already exist-
ing codeword (which is updated accordingly) or a new codeword is created. This will
produce codewords for non-background pixels, but these are handled by temporal fil-
tering using the so-called maximum negative run-length (MNRL). This measures the
longest time interval where no pixel values have been assigned to the codeword. After
the training period all codewords with a too large maximum negative run-length will
be removed from the background model, i.e., this process allows for moving objects
during the training period, see [11] for details.

2.3 Background Updating

Using multiple codewords for each pixel allows modeling of very dynamic scenes, but
only the variation that is present in the training period will be modeled by the codebook
background method as described in [11]1. For the background subtraction to work for
several hours it is necessary also to handle the changes in the background that occurs
after the initialization phase. Two different types of changes need to be handled.

– Gradual changes do not change the appearance of the background much from one
frame to the next. The accumulated change over time can however be large, e.g.,
the effect of the changing position of the sun during a day.

– Rapid changes cause significant changes in the background from one frame to the
next. Background objects that are moved or significant changes in the motion pat-
terns of vegetation caused by gusting winds will for example cause rapid changes.

To handle the gradual changes we apply a simple continuous model:

μt+1 = (1 − α) · μt + α · xt , 0 ≤ α ≤ 1 (1)

where μt is the codeword, μt+1 is the updated codeword, and xt is the current pixel
value. Based on experiences in dynamic outdoor environmentsα is typical 0.05 to 0.15.

Only the activated codeword in each codebook is updated with this process. Con-
sider the situation where a pixel is sometimes occupied by a green tree branch and
sometimes occupied by a red wall, e.g., due to wind. Only the codeword modeling the

1 It should be noted that at the time when this work was finished [15] the authors of [11] pub-
lished a more advanced version of their codebook algorithm [18], which is somewhat similar
to our background subtracting approach.



Tracking of Individuals in Very Long Video Sequences 63

branch should be updated when the branch occupies the pixel, since the color of surfaces
with different orientation, texture, and color change in different ways with changing il-
lumination. The change of the codeword that models the wall cannot be found from the
color change of the branch.

Pixels falsely classified as background will lead to codewords that are updated to
model foreground instead of background. Therefore only pixels describing stable back-
ground will be updated. Stable background is defined as a pixel that has been clas-
sified as background for the last j frames, where j typically is 10-15. As for α this
interval is based on experiences in dynamic outdoor environments. The performance
of the background updating is not very sensitive to neither j nor α within these
intervals.

Equation 1 cannot handle rapid changes and therefore new codewords are learned
during run-time. For example, in a situation when a car is parked in the scene it is
treated (correctly) as a foreground object. However, while the car is parked we want it
to become part of the background so we can detect new foreground objects that move
in front of the car. We do this in the following way. Each time a pixel is classified
as foreground we create a new codeword, denoted a training codeword. If this code-
word has a small MNRL within the next n frames we conclude that this codeword
does indeed represent a new background and we make it a temporary codeword2. If
the MNRL is big we delete this training codeword. Temporary codewords that become
inactive (measured by their MNRL) are deleted, e.g., if the parked car starts to move
again. So in each frame a pixel value is matched against the codewords from the ”real”
background (learned during initialization), the temporary codewords and the training
codewords, in that order. If a match is found, the respective codeword is updated using
equation 1.

2.4 Bounding Box Representation

After an image is processed by the background subtraction process we remove noise
(false positives) using a median filter. Sometimes false negatives result in the silhouette
being split into smaller blobs. We therefore investigate the size and proximity of the
bounding boxes of each blob and try to merge them into bounding boxes each repre-
senting one human [15]. The silhouettes in the merged bounding boxes are compared to
a simple body model to distinguish humans from small blobs of noise. The silhouette of
a person can roughly be described by an ellipse, and our body model defines limits for
the ratio between the major and minor axes of the ellipse, the slope of the major axis, the
fidelity between the ellipse and silhouette, and the area of the silhouette. A silhouette
complying with all limits of the body model will be accepted as a person otherwise it is
considered as noise. To avoid the problem with a person producing multiple enter/exit
results when the area of the silhouette is close to the limit of the body model we utilize
a hysteresis threshold [15]. To get a correct initialization of our appearance model we
need to ensure that a person is completely inside the field-of-view before we accept the
new person and we therefore introduce an entry zone around the image border [15]. To

2 Pixels that belong to a training codeword are classified as foreground whereas pixels belonging
to a temporary codeword are classified as background.
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summaries, after the above processes we are left with a number of bounding boxes each
containing the silhouette of one person.

3 Tracking

3.1 Representation

We model the appearance of a person by dividing it into two regions which are modeled
separately: the upper body (not including the head) and the lower body [4]. Due to the
nature of the method the regions are not simply found as a ratio of the bounding box as
seen in, e.g., [10,19,20] but are found by dividing the body into a set of blobs that are
similar in color and spatially connected, and then grouping these blobs into an upper
body and a lower body using a ratio of the bounding box as a guideline.

The blobs are initialized by labeling pixels with similar color in the foreground to
the same class. To do this the Expectation Maximization (EM) algorithm is used to
first learn the gaussian distributions of color classes in the foreground followed by a
classification of the pixels to these classes. The labeling of pixels to color classes is
carried out by a Maximum Likelihood estimation.

When the pixels have been classified in this way the classes are not necessarily spa-
tially connected, e.g. the dark hair of a person could be assigned to the same class as a
dark pair of shoes or simply a checkered shirt could consists of many spatially discon-
nected classes of the same color. To make sure that each blob represents a region of con-
nected pixels a relabeling is done by making a connected component analysis. This is
done by finding the contours of all disconnected regions for the pixels in each color class
separately and giving all pixels within the boundary of these contours a unique label.

To avoid over-segmentation of the foreground similar blobs are merged. Blob sim-
ilarity is evaluated using four criteria [15] and two blobs are merged if either the first
criterion is true or if the three remaining criteria are all true: 1) a blob is completely sur-
rounded by another blob, 2) two blobs are adjacent, 3) two blobs share a large border,
4) two blobs are similar in terms of color. By use of these criteria the number of blobs is
reduced considerably and a set of blobs that are expected to represent relatively stable
parts of the foreground is obtained.

To define the merged blobs as either upper body or lower body we use ratios of the
bounding box as a guideline. The bounding box is divided into three regions as shown
in figure 2 [15]. All blobs with centroid in the range from 0 to 0.55 times the height
of the bounding box will define the lower body and blobs with centroid from 0.55 to
0.84 times the height of the bounding box will define the upper body. This way the
border between upper and lower body will not be a straight line but follow the borders
of dissimilar blobs. The final features representing a person (or silhouette) are listed in
the feature vector m:

m = [μx, μy, μH upper , μS upper , μH lower, μS lower]
T (2)

where μx and μy are the mean position or center of mass of the given person. The last
four parameters represent the mean color of the upper and lower body respectively in
terms of hue and saturation [15].
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Fig. 2. Ranges for partitioning the silhouette of a person into head, upper body and lower body in
relation to the height of the person. Note that the hand is assigned to the upper body even though
its located below the 0.55 line. This is due to the complex merging process described above.

3.2 Matching

The matching of identities is performed by calculating the dissimilarity in terms of the
Mahalanobis distance3 between all extracted silhouettes in the current frame, indexed
by i, and all known identities that have been tracked to this frame, indexed by j:

Δij = (mi − mj)T (Πi +Πj)−1(mi − mj) (3)

where Πi represents the between class covariance of all body models in the current
frame and Πj the between class covariance for the identities that the body models are
being matched to. These are pooled in order to compensate for the differences in the
variations of the body models and the identities they are being matched to. To simplify
the calculations only the diagonal of these covariances have been used. The between
class variances have been calculated as follows:

Π =
1
k

∑
k

(μk − μall)(μk − μall)
T (4)

where μk is the mean value of the kth body model/identity and μall is the mean of all
body models/identities present in the given region [15].

4 Results

The presented system has been tested at two levels. The figure-ground segmentation
have been tested to show its performance on very long video sequences (10 hours).
The bounding box representation and the tracking have been tested on the output of the
figure-ground segmentation to show the system’s overall capability to track people.

4.1 Test of Figure-Ground Segmentation

The video used for the test is a 10 hour video with a frame rate of 30 frames per second.The
video is captured from 9.15 AM to 7.15 PM. and the scene contains several challenging

3 Note that a weight is assigned to each feature in order to balance the positional features and
the appearance features. I.e., 0.3 for the positional features and 0.1 for the appearance features.
The weights are omitted from the equation for clarity.
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(a) (b)

Fig. 3. Results from the 10 hour test video. (a): The FAR and FRR in percent as a function of
time. The black line is the best linear fit of the FRR samples in the least-squares sense. Note that
the y-axis is logarithmic. (b): The number of successful and unsuccessful tracks. Each column
covers 30 minutes.

situations in the context of figure-ground segmentation, i.e. illumination changes, non-
static background, shadows, puddles, and foreground camouflage (see figure 4).

To calculate the false rejection rate (percentage of foreground pixels falsely classified
as background) and the false acceptance rate (percentage of background pixels falsely
classified as foreground) a set of 93 frames containing foreground objects (people) have
been sampled from the whole time span. The images used are the binary foreground
mask obtained from the figure-ground segmentation filtered with the median filter. For
each of the sampled frames the foreground region was marked by hand (based on the
original input frame) and used as the ground truth.

The calculation of the false acceptance rate is based on the above mentioned frames
in addition to a set of frames containing only background. The frames containing only
background were added since only a limited number of frames actually contain people,
and the additional frames would give a more representative result for the whole video.
The frames containing only background were sampled every 1000 frames. When sam-
pling every 1000 frames some of the frames contained people, but these frames were
discarded from the set giving a total of 971 frames.

Figure 3(a) shows FRR (false rejection rate) and FAR (false acceptance rate) in per-
cent as a function of time. FRR is in the range [0%;62.4%] with mean value 8.45%
and standard deviation 13.43. The black line represents the best linear fit of the FRR
samples in the least-squares sense and shows a slightly increasing tendency in FRR. The
increase does however not mean that the performance of the background subtraction de-
creases over time. The increase in FRR is caused by the low overall illumination level at
the end of the day which causes the problem of foreground camouflage to increase. The
FAR is in the range [0%;4.9%] with mean value 0.14% and standard deviation 0.33.
The FAR shows a slightly decreasing tendency over time. The mean FAR of 0.14%
shows that the background subtraction in general effectively models the background
and adapts to the changes present in the test video. The performance of the background
subtraction in terms of FAR in not dependent on how many hours it has been running,
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Fig. 4. Left: Examples of the changes in the scene during the 10 hours test video. Right: Tracking
results.

(a) 9.25 AM. The box shows an example of
a region with foreground camouflage.
Notice the puddles on the ground.

(b) The two persons are tracked correctly even
though they move near each other.

(c) 3.05 PM. The boxes show examples of
regions with strong shadows.
Furthermore, other shadows move rapidly
because of the wind.

(d) The three people are tracked correctly until
the two persons to the left get too close to each
other.

(e) 7.05 PM. The overall illumination
level changes significantly from morning to
the afternoon and again from the afternoon
to the evening

(f) The tracks of the two persons to the left are
swapped.
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but on the type of changes that happens in the scene, and the background subtraction
automatically recovers from changes that are not directly handled by the model.

4.2 Test of Tracking

The 10 hours of test video contains 267 persons that move through the scene4. The
tracking result of each person has been evaluated to see if the system successfully iden-
tifies each person and tracks the person.

The system identifies and tracks 247 persons successfully. 20 persons are not tracked
correctly and the system further identifies 15 blobs of noise as persons which gives a
total of 35 errors. The overall successful tracking rate yields 86.9%. Figure 3(b) shows
the tracking result for each 30 minutes interval.

Figure 3(b) indicates that the performance of the tracking is independent of the num-
ber of hours the system has been running. The number of tracking errors is most remark-
able in the 3rd and 9th hour. This is due to rapid background variations and low over-
all illumination, respectively, and not because the system has been running for several
hours. Figure 4 shows examples of tracking results (both successful and unsuccessful)
when multiple people are in the scene.

The errors that occur during tracking can be explained by either noisy foreground
segmentation (24 errors) or insufficient tracking or appearance model (11 errors). The
errors originating from noisy foreground segmentation are mainly due to moving veg-
etation and strong shadows that gets identified as humans. The errors originating from
insufficient tracking or appearance model often occur when two persons move close
past each other (resulting in switching identities) or when strong shadows makes the
silhouette of a person non-elliptic. The effect of both types of errors can possibly be
reduced by including temporal information.

5 Conclusion

In this paper we have presented a system to do figure-ground segmentation and tracking
of people in an outdoor scene continuously for several hours.

The system has been thoroughly tested on 10 hours of continuous video contain-
ing multiple difficult situations. The system was able to automatically update the back-
ground model allowing for tracking people with a success rate of 86.9%, and we believe
that this number can be increased with relatively simple improvements to the tracking
algorithm. To our knowledge this is the first system to present results on continuous
tracking in very long video sequences.
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Abstract. The general goal of our research is the creation of a natu-
ral and intuitive interface for input and recognition of American Sign
Language (ASL) math signs. The specific objective of this work is the
development of two new interfaces for the Mathsignertm application.
Mathsignertm is an interactive, 3D animation-based game designed to
increase the mathematical skills of deaf children. The program makes
use of standard input devices such as mouse and keyboard. In this paper
we show a significant extension of the application by proposing two new
user interfaces: (1) a glove-based interface, and (2) an interface based on
the use of a specialized keyboard. So far, the interfaces allow for real-time
input and recognition of the ASL numbers zero to twenty.

1 Introduction

Deaf education, and specifically math/science education, is a pressing national
problem [1,2]. To address the need to increase the abilities of young deaf children
in math, we have recently created an interactive computer animation program
(Mathsignertm) for classroom and home learning of K-3 (Kindergarten to third
grade) arithmetic concepts and signs [3]. The program, currently in use at the
Indiana School for the Deaf (ISD), is a web/CD-ROM deliverable desktop appli-
cation aimed at increasing the opportunity of deaf children to learn arithmetic
via interactive media, and the effectiveness of hearing parents in teaching arith-
metic to their deaf children. The application includes 3D animated signers that
teach ASL mathematics through a series of interactive activities based on stan-
dard elementary school math curriculum. The user interacts with the application
and responds to questions using mouse and keyboard.

Based on feedback collected from ISD teachers, parents and students, and
from signers who have tested the application extensively, the current interface
presents various limitations.

1. Young deaf children of deaf parents are likely to know the signs for the
numbers but might not be familiar yet with the corresponding math symbols.
In this case, the children should be able to enter the answer to a problem
by forming the correct ASL hand shapes, rather than by pressing a number
key.

2. Deaf children of hearing parents use the application not only to increase
their math skills, but also to learn the correct signs for math terminology.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 70–79, 2006.
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Presently, the program does not allow the students to test and get feedback
on their signing skills since all interactive activities require responses in the
form of mouse clicks and/or keystrokes.

3. Hearing parents, undertaking the study of the ASL signs for math termi-
nology, can only test their ability to recognize the signs; they do not have
the opportunity to self test their ability to produce the signs correctly (it is
common for beginner signers to perform the signs with slight inaccuracies).

In an effort to improve on the current implementation of the program, we
propose two new user interfaces which allow for real-time hand gesture input
and recognition. Interface (1) uses an 18-sensors Immersion cyberglove [4] as the
input device. The user wears the glove and inputs an ASL number in response
to a particular math question (for instance, ’8’ in response to question’3+5=?’).
A pre-trained neural network detects and recognizes the number sign. The re-
sult is sent to the Mathsignertm application which evaluates the answer to the
question and gives feedback to the user.

Interface (2) (currently under development) is based on the use of a recently
developed human-computer communication method for keyboard encoding of
hand gestures (KUI) [5], and a specialized keyboard for gesture control [6]. The
KUI method allows for input of any hand gesture by mapping each letter key
of the keyboard to one degree of freedom of a 3 dimensional hand. Each hand
configuration is visualized in real-time by the use of a 3D hand model, and en-
coded as an alphanumeric string. Hand posture recognition and communication
with the Mathsignertm are implemented as in interface (1).

In Section 2 of the paper we present a brief overview of current approaches
in sign language input and recognition. In Section 3 we describe the two new
user interfaces in detail, and in Section 4 we discuss their merits and limitations,
along with future work. Conclusive remarks are presented in the last section.

2 Background

’Computer technology offers the opportunity to create tools that enable literacy
and learning in ways accessible to signing users’ [7]. In order to be effective, these
tools need to support sign language interfaces, i.e., ways of input, recognition,
and display of signing gestures.

Sign language input and recognition has been an active area of research dur-
ing the past decade. Currently, there are two main approaches to gesture input:
direct-device and vision-based input [8,9,10]. The direct-device approach uses
a number of commercially available instrumented gloves, flexion sensors, body
trackers, etc. as input to gesture recognition [11,12]. Some advantages of direct
devices, such as data gloves, include: direct measurement of hand and finger
parameters (i.e., joint angles, wrist rotation and 3D spatial information), data
input at a high sample frequency, and no line-of-sign occlusion problems. Disad-
vantages include: reduced user’s range of motion and comfort and high cost of
accurate systems (i.e., gloves with a large number of sensors –18 or 22–).
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Vision based approaches use one or more video cameras to capture images
of the hands and interpret them to produce visual features that can be used
to recognize gestures. The main advantage of vision-based systems is that they
allow the users to remain unencumbered. Main disadvantages include: complex
computation requirements in order to extract usable information, line-of sign
occlusion problems, and sensitivity to lighting conditions.

Recently, researchers have started to develop gesture input systems that com-
bine image- and device- based techniques in order to gather more information
about gestures, and thereby enable more accurate recognition. Such hybrid sys-
tems are often used to capture hand gestures and facial expressions simultane-
ously [13].

Recognition methods vary depending on whether the signs are represented by
static hand poses or by moving gestures. Recognition of static signing gestures
can be accomplished using techniques such as template matching, geometric fea-
ture classification, neural networks, or other standard pattern recognition meth-
ods to classify the pose [14]. Recognition of dynamic gestures is more complex
because it requires consideration of temporal events. It is usually accomplished
through the use of techniques such as time-compressing templates, dynamic time
warping, Hidden Markov Models (HMMs) [15,16] and Bayesan Networks [17].

In this paper we are concerned with static or semi-static ASL gestures. The
goal is input and recognition of ASL numbers 0-20 which are represented by static
hand-shapes (numbers 0-9) and by hand gestures requiring a very limited range
of motion (numbers 10-20) [2,18]. To capture the hand gestures, we have chosen a
direct-device approach because research findings show that this approach yields
more accurate results [19]. The specialized keyboard of interface (2) is not a
whole-hand input device since the input is not derived from direct measurements
of hand motions, but from measurements of the motions (keystrokes) of a device
manipulated by the hand. However, the keyboard allows for intuitive and natural
input of hand gestures if we consider that the layout of the key sites corresponds
to the layout of the movable joints of the hand (see Figure 4). Thus, we can
think of the specialized keyboard as a ’semi direct’ input device.

3 Implementation

3.1 Interface (1): Glove-Based

This interface makes use of a light-weight Immersion cyberglove which provides
18 angles as inputs. The glove has two bend sensors on each finger, four abduction
sensors, and sensors for measuring thumb cross-over, palm arch, wrist flexion,
and wrist abduction. To recognize the sign gesture input via the glove, we have
used two approaches: (1) a basic metric measure in the space of the possible
glove configurations, and (2) neural networks.

Distance Metrics. For this approach, five signers used the glove to input the
ASL numbers 0-20 once. A stand alone program developed in C++ was used
to capture and store the hand-shapes for later comparison. During interaction
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within the Mathsignertm, the C++ application compares the distance measures
of the input gesture to the pre-stored ones. The distance measure is the classical
Euclidian metrics, where each of the two angles α and α′ is compared as:

dist =
√

(α− α′)2.

This test is performed for each angle. If the distance measures fall within the
sensitivity level, the hand shape is recognized. Based on the first-fail test, if
any distance measure is larger than the sensitivity level, the hand-shape is not
matched to any of the gestures in the training data set. The experimentally set
level was 30o. With this method, while speed of response was fairly high (20kHz),
recognition accuracy with unregistered users (i.e., users not represented in the
training data set) was low. This is due primarily to variations in users’ hand
size. The neural networks approach, described in the next section, provided a
better solution.

Neural Networks. This approach is based on the Fast Artificial Neural Net-
work Library, (FANN) [20] a freely available package from Sourceforge. This li-
brary supports various configurations of neural networks. We have experimented
with the following two configurations. The first one is based on a single neural
network for all signs, whereas the second one uses different neural networks for
different signs. The first configuration involves 18 neurons on the input and 21
on the output. The input neurons correspond to the input angles from the data
glove. The 21 output values define 1-of-21 possible hand gestures. While this
configuration yielded fairly accurate recognition results, it did not provide high
speed of recognition. The configuration described in the next paragraph provides
higher accuracy rate and real-time recognition.

This configuration is the standard complete backward propagation neural net-
work with symmetrical sigmoid activation function [20]. Instead of using one
neural network, it uses a set of networks (one per sign) with 18 input neurons
that corresponds to the 18 angles from the data glove. One output neuron for
each network determines whether the input configuration is correct (value close
to 1) or incorrect (value close to -1 because of symmetrical sigmoid function).
Each neural network uses two hidden layers of completely connected neurons,
each layer containing 25 neurons (see Fig. 1). The training error was set to
10−6 and training of all 21 neural networks for all the input sets was realized in
about 10 minutes on a standard laptop with 1.6 GHz Intel Pentium. The neural
networks were correctly trained after not more than 104 epochs.

The detection of one sign was, on the same computer, performed at the rate
of about 20Hz . The accuracy rate with registered users was 90%.The accuracy
rate with three unregistered users was 70%. The relatively poor performance
for unregistered users is probably due to the small training set of the neural
network.

Sign detection is described by the following pseudocode. It is important to
note that the signs 0-10 are represented as a single sign, while numbers greater
than 10 are represented as a sequence of two signs.
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Fig. 1. The neural network has 18 inputs in the input layer, two hidden layers with 25
neurons, and 1 output neuron. This network recognizes one sign.

1. Load all trained neural networks a[i].
2. Until the end of the simulation

(a) Read the data from the data glove
(b) for (i=0;i<10;i++) process the data with the a[i].

Remember the index of the maximum.
(c) If the maximum is greater than 10, read the following sign and process

it in the same way. The two signs define the number.
(d) Send the recognized number to the Mathsignertm.

3. Destroy networks, free memory

Training. The training data set was provided by five signers. Each signer input
the hand shapes corresponding to ASL numbers 0-20 three times. The training
data set for each number is composed of 3×5 correct signs and 15 incorrect signs.
The training set for each number includes the 15 ASL handshapes corresponding
to that number, and 15 randomly selected ASL configurations corresponding to
different numbers (provided by the same signers).

Communication with Mathsignertm. Continuous communication between
the cyberglove (or the specialized keyboard, for interface (2)) and the
Mathsignertm application (developed in Macromedia Director MX) was imple-
mented using a built-in Lingo function that allows access to the system ’clip-
board’. After sign recognition occurs, the C++ application formats and copies
the number corresponding to the ASL hand gesture to the ’clipboard’.

Fig. 2. Schema of the system, left; screenshot of the Mathsignertm with arrow pointing
to the button (and hand icon) used to input the sign answer, right
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Within Mathsignertm, the value retrieved from the ’clipboard’ is displayed
to the student. To submit an answer to a mathematical question, the student
has two options. The student can mouse-click on one of four possible answers,
only one being correct; or the student can press the ’Use Hand’ button and
submit the signing gesture corresponding to the answer (see Fig. 2). Upon
submission of the answer, the 3D avatar signs whether the student’s response
is right or wrong. A video illustrating the use of interface (1) is available at
http://www2.tech.purdue.edu/cgt/I3/mathinterface/.

3.2 Interface (2): Keyboard-Based

This interface makes use of a recently developed keyboard-based method for in-
put, modelling, and animation of hand gestures (KUI) [5]. KUI is based on the
realization that a hand gesture path requires the same number (26) of parame-
ters as the letters of the English alphabet, thus, via keyboard input, it is possible
to enter any hand pose in real-time. By touching a letter key, the user rotates
the corresponding joint of a 3D hand a pre-specified number of degrees around
a particular axis. The rotation ’quantum’ induced by each keystroke can be eas-
ily changed to increase or decrease hand configuration precision. The keystrokes
corresponding to particular hand poses are recorded and reduced to alphanu-
meric compact codes; the codes can be used for hand gesture recognition, or as
keyframes to produce animation sequences. Figure 3 shows the ASL handshapes
for numbers 8-10 produced with the KUI method, and their corresponding al-
phanumeric codes (the rotation ’quantum’ was set to 10 degrees for finger flexion
and 5 degrees for finger abduction).

Fig. 3. Alphanumeric codes for ASL numbers 8-10

Recently, the KUI method was developed into a more powerful technique by
the realization of a specialized, reconfigurable keyboard whose layout approxi-
mates the projection of the hand joints locations on a plain [6]. The keyboard is
shown in Fig. 4.

With this keyboard, the signer inputs a hand gesture by mimicking the fingers’
motion of a hand guiding another hand placed under it. The hand configuration,
represented by the alphanumeric code, is visualized in real-time in a floating
window. When the user is satisfied with the hand-shape, she/he clicks on the
’hand button’ (see Fig. 2) in the Mathsignertm application. The alphanumeric
code is converted to joint angles and recognition and communication with the
Mathsignertm are achieved as in interface (1). For this interface, the training
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Fig. 4. Alphabetical code for the hand joints, left; specialized keyboard, center; position
of hand over keyboard, right

data set was provided by five signers who used the specialized keyboard to input
ASL number configurations 0-20 three times.

4 Discussion

Both interfaces have their own merits and limitations. The main advantage of
interface (1) lies in allowing the user to input signs in a natural way, without in-
termediary devices. Another merit is high speed of sign recognition and accuracy
rate. One drawback is the high cost of the cyberglove due to the large number
of sensors required to input the hand gesture with precision. Currently, the cost
of the glove is a major obstacle to immediate dissemination of the program to
parents and children for testing at home, and for future commercialization of
the application. We are investigating more affordable types of gloves available
on the market (http://www.vrealities.com/glove.html) or created by researchers
specifically for input of signing gestures [21,22].

The main advantage of interface (2) is the low cost of the keypad. In addition,
even if interface (2) is still under development, we anticipate higher accuracy
level since variation in hand size is not an issue. The main drawback is that the
specialized keyboard is not a true direct input device like the glove. While input
of finger flexion (pitch rotations) is fairly natural and intuitive, input of fin-
ger abduction (yaw rotations) and wrist rotation and translation (position and
orientation of the hand in 3D space) requires a certain degree of learning, ab-
straction, and practice. The research team is currently working on development
of a new hand shaped keyboard which has an ’anatomical cradle’ to support the
hand, and which allows for more intuitive input of fingers’ yaw rotations.

Presently, a limitation of both interfaces is that recognition is restricted to
ASL numbers 0-20. In order to enable the user to answer any math question
included in the application, input and recognition need to be extended to in-
clude numbers 1-1000, decimals, fractions, and the finger-spelling alphabet. In
addition, one characteristic of ASL numbers is that they are signed in different
ways depending on their meaning (i.e., numbers used to describe quantities–
cardinals–, numbers for monetary values, numbers associated with tell-time ac-
tivities, etc.) [23]. For instance, for dollar numbers 1-9, the number hand-shape
is associated with a twisting motion (wrist roll) to indicate dollars. In future
implementations of the interfaces, the recognition system will consider these
variations.
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Many aspects of the interfaces still need to be tested and improved. A compar-
ative evaluation of the interfaces will be carried out in Fall 2006 at ISD with deaf
children, parents, and ASL teachers. Besides assessing the usability of the in-
terfaces, the full-scale evaluation will address the problem of signer-independent
recognition. An ideal sign recognition system should give good recognition ac-
curacy for signers not represented in the training data set [24]. Inter-person
variations that could impact sign recognition include different signing styles, dif-
ferent sign usage due to geographical and social background, and fit of gloves.
Many works report that recognition accuracy for unregistered signers decreases
severely (by 30- 40%) when the number of signers in the training set is small, and
when the signs involve significant, continuous movement [24]. For interface (1),
we are concerned with the problem of degradation of recognition accuracy due
to fit of the gloves, but we anticipate good recognition results considered that
many of the signs are static or involve minimal motion. Studies show that recog-
nition accuracy for unregistered signers is relatively good when only hand shapes
and/or limited motion are considered [25]. So far, three unregistered signers have
used interface (1); recognition accuracy was 70%.

5 Conclusions

The interfaces presented in this paper are still to be considered prototypes since
many of their features are only at a first stage of development. But in spite of
their limitations, they are, to our knowledge, the first sign language interfaces
specifically designed for input and recognition of ASL signs for mathematics.
One interface includes an 18-sensor cyberglove as the input device, and makes
use of neural networks for sign recognition. The other interface uses a specialized
keyboard for input of signing gestures, and neural networks for recognition.

Many applications to math and science education of the Deaf are conceivable
using these interfaces, even at this stage of development. Applications to Virtual
Environments are easy to envision. For example, future work involves adapting
the glove-based interface for navigation and gesture input/ recognition within
an Immersive Virtual Learning Environment that we have recently developed
for deaf children [26].

In conclusion, research findings show that automatic analysis of Sign Lan-
guage gestures has come a long way, and current work can successfully deal
with dynamic signs which involve movement and which appear in continuous se-
quences [24]. However, much remains to be done before sign language interfaces
may become commonplace in face to face computer human interaction. Aspects
of gesture recognition that need further investigation and attention are build-
ing signer-independent recognition systems, and addressing the most difficult
aspects of signing, such as grammatical inflections and mimetic signs, and non-
manual signals (NMS). While interpretation of NMS in conjunction with gesture
recognition is fundamental for understanding sign language communication in
general [27], it is not so important for ASL mathematics. Therefore, considered
that most ASL mathematics signs are represented by static or semi-static signs,
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and do not rely greatly on NMS, we believe that the realization of a natural
American Sign Language interface for mathematics is a goal achievable in the
near future.
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Abstract. Existing methods of gait recognition are mostly based on either ho-
listic shape information or kinematics features. Both of them are very important 
cues in human gait recognition. In this paper we propose a novel method via 
fusing shape and motion features. Firstly, the binary silhouette of a walking 
person is detected from each frame of the monocular image sequences. Then the 
static shape is represented using the ratio of the body’s height to width and the 
pixel number of silhouette. Meanwhile, a 2D stick figure model and trajec-
tory-based kinematics features are extracted from the image sequences for de-
scribing and analyzing the gait motion. Next, we discuss two fusion strategies 
relevant to the above mentioned feature sets: feature level fusion and decision 
level fusion. Finally, a similarity measurement based on the gait cycles and two 
different classifiers (Nearest Neighbor and KNN) are carried out to recognize 
different subjects. Experimental results on UCSD and CMU databases demon-
strate the feasibility of the proposed algorithm and show that fusion can be an 
effective strategy to improve the recognition performance. 

1   Introduction 

Gait is a new biometric aimed to recognize person via the style of people walking, 
which contains physiological or behavioral characteristics of human being. A unique 
advantage of gait is the ability to operate at a distance, when other biometrics is of too 
low a resolution to be perceived. Moreover, Gait measurements are also non-intrusive 
and difficult to disguise or conceal in application scenarios (e.g. face can be obscured 
by helmets and fingerprints can be hidden by gloves) [1]. All these related subjects lend 
strong support to the potential for gait as a useful biometrics measurement. 

Existing methods of gait recognition can be grouped into holistic ones and 
model-based ones. Holistic approaches aim to extract statistical features from a sub-
ject’s silhouette to distinguish different walkers. These include averaged silhouette [2], 
baseline algorithm [3], method based on silhouette representation and PCA [4], con-
tinuous HMMs [5] and discrete symmetry operator [1] etc. Model-based approaches, 
on the other hand, aim to model the motion of the body and the kinematics of joint 
angles. For example, Cunado et al [6] propose a technique, which considers the legs as 
an interlinked pendulum and uses the phase-weighted Fourier magnitude spectra as the 
feature to recognize different subjects. Ning et al [7] extract the dynamic gait signal by 
tracking the variation of the walker’s major joint angles. 
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These methods suffer, in our opinion, from a common shortcoming: only part of 
information of gait motion is used, either shape feature or kinematics of joint angles. 
However, human vision perception system is not only dependent on a single gait fea-
ture to recognize a person, for there are many properties of gait that might serve as 
recognition features. So fusing multiple features can be a strategy to improve the rec-
ognition performance. 

Usually, the properties of gait can be categorized as shape features and kinematics 
ones. The former reflect the holistic features of the body such as height and figure, 
while the latter represent gait motion features such as joint-angle trajectories of main 
limbs. In this paper, we use the ratio of the body’s height to width and the pixel number 
of silhouette to represent the shape. Meanwhile, a 2D stick figure is used to represent 
the human body model, and joint-angle trajectories are calculated to describe the gait 
motion. Then we fuse the above features on the feature level and the decision level 
respectively. Finally, the NN and KNN classifiers, together with the similarity meas-
urement based on the gait cycles, are carried out to recognize different subjects. 

2   Preprocessing 

Firstly, there are two assumptions for the human walking sequences in our experi-
ments: (1) The camera is static and the body in the field of view is not occluded by other 
objects or background, and (2) The image sequence of side-view is used since the gait 
of a person is best brought out in the side-view. 

2.1   Silhouette Extraction 

The silhouette extraction is necessary. It is essential to extract the required human body 
by eliminating irrelevant background from each image. The detailed steps are described 
as follows. 

1. To obtain an approximate background image of a walking sequence, a mean image is 
computed by averaging gray-level values for each pixel position over the entire 
image sequence (in Fig.1 (b)).  

2. Background subtraction is used to detect moving objects in each frame. 
3. Erosion, dilation and component labeling are used to remove small amount of noise, 

which have been introduced to the binary image map and fill the small hole in the 
silhouette (in Fig.1(c)).  

 
(a) Original image 

 
(b) Background 

 
(c) Silhouette 

Fig. 1. The silhouette extraction 
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2.2   Image Template 

In order to eliminate redundancies and speed up the processing, we need to normalize 
the segmented images into a scaled template. For each binary silhouette in the se-
quence, we firstly calculate the centroid, named as ( , )c cx y , and the height and width of 

segmented object. Then an appropriate length of side L  is chosen. Finally, by center-
ing on the centroid ( , )c cx y , we can fit the human silhouette into a fixed L L×  image 

template. Not only does the normalization carry out across different people, but also it 
can adjust the changes in scale due to the variation of the distance between the people 
and camera. The similar work can also be found in [8]. 

 
(a) Original image 

 

(b) Scaled image template 64 64×  

Fig. 2. Scaled image template from segmented object 

2.3   Gait Periodicity 

From the theoretical point of view, human gait is a form of periodic motion, especially 
when walking laterally. As a result, we can count the number of foreground pixels in 
the bottom half of the silhouette in each frame over time to estimate the gait periodicity, 
which is proposed in the paper [2]. This number will reach a maximum when the two 
legs are farthest apart (full stride stance) and drop to a minimum when the legs overlap 
(heels together stance). Figure 3 shows an instance of a sequence’s pixel numbers curve 
and the smoothed one by Gaussian filtering. 

Notice that two consecutive strides constitute a gait cycle. We compute the median 
of the distances among minima, skipping every other minimum. 

 

 
(a) Original pixel number curve 

 
(b) Smoothed curve 

Fig. 3. The curves of the pixel number of a gait sequence 
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3   Gait Signature Extraction 

3.1   Kinematics Features Acquisition 

To obtain the kinematics features for describing gait motion, we use the body segments 
properties guided by anatomical knowledge to extract the body main joints position, 
such as the position of head, neck, shoulder, pelvis, kneel and ankle [9, 10]. It is no-
ticeable that the upper limbs are ignored in our experiment because of the occlusion in 
the side-view sequence. The body segment properties are shown in Fig.4. 

 

Fig. 4. Body Segment Properties [10] 

First of all, we extract the skeleton of binary silhouette image and scan the skeleton 
image row by row from the top to the bottom. Then the junction of the scan line and 
skeleton is the joint position. There are 8 coordinates (joint points) in a human body, 
which are ( , )head headx y , ( , )neck neckx y , ( , )shoulder shoulderx y , ( , )pelvis pelvisx y , 1 1( , )knee kneex y , 

2 2( , )knee kneex y , 1 1( , )ankle anklex y  and 2 2( , )ankel anklex y [10]. The skeleton image and joint 

points are shown in Fig.5 (b). All of these coordinates are connected to form a 2D stick 
figure model. Furthermore, we can calculate the angle between main limbs and vertical 
line as the following formula (1). Moreover, there are 7 angles associated with these 
positions, including headθ , neckθ , backθ , 1thighθ , 2thighθ , 1shinθ  and 2shinθ . The sketch map 

of stick figure model and the definition of limb angles are show in Fig.5 (c).  

1 0

1 0

arctan
x x

y y
θ −
=

−
 (1) 

where, 0 0( , )x y  and 1 1( , )x y  are the coordinates of two conjointly joints.  

After the beforehand discussion, we find there are 23 dimension dynamic parameters 
in human stick figure model, which are 2 8 16× =  dimension ones for joint coordinates 
and 7 dimension ones for limb angles. Since the x  values of joint coordinates are 
usually fixed, we can ignore them and compress the parameters to 15 dimensions. 
Furthermore, to eliminate the influence of spatial scale, we normalize these dynamic 
parameters to a uniform magnitude [ / 2,3 / 2]π π . 
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(a) Original image 
 

(b) Skeleton image and joint points 

 
(c) Stick figure model 

and limb angles 

Fig. 5. Joint positions and limb angles in the gait 

Apart from the kinematics features, the shape and variation of silhouette are also 
important characteristics in walking style of human being. Herein, they are discussed in 
detail in next subsection. 

3.2   Shape Features Acquisition 

The other two important cues in gait recognition are the width and height of the body, 
which represent a person’s figure well. However, the two features are not always con-
sistent with the human themselves and vary with the camera’s focus. As a result, it’s not 
advisable to use them as gait features directly. In this paper, we propose to use the ratio 
of the silhouette’s height to width (H-W ratio) to represent the holistic shape, which is 
comparatively stable.  

However, the division of height by width also eliminates some useful information. 
For example when one is high and fat and the other one short and slim, then the H-W 
ratio may be the same or similar. To conquer the above shortcoming, we also count the 
number of foreground pixels in the silhouette in each frame, together with the H-W 
ratio, to represent the holistic shape of gait. Likewise, the magnitude normalization has 
to be done, too.  

3.3   Fusion Strategies 

The ultimate goal of designing pattern recognition systems is to achieve the best pos-
sible classification performance for the task at hand. Fusion of multiple properties of 
gait is likely to yield tangible benefits. In this paper, two different fusion strategies are 
used for gait recognition: feature level fusion and decision level fusion. In the feature 
level fusion, multiple sources of features are combined into a bigger feature as the gait 
signature (It is noticeable that the features from multiple sources must be normalized 
into the same interval). And then the pattern training and classification are carried out 
on the gait signature to recognize different subjects. While in the decision level fusion, 
multiple sources of features are regarded as independent gait patterns to be trained and 
to get classification decision data. Fusion is then carried out on these decision data to 
obtain the final classification result. These decision data, with quite different ranges 
and distributions, must also be normalized into the same interval before fusion. Herein, 
two approaches to classifier combination (the Sum and Product rules) are investigated 
respectively [11]. The flow charts of the two fusion strategies are shown in figure 6. 
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(a) Feature level fusion strategy             (b) Decision level fusion strategy 

Fig. 6. Diagram of two different fusion strategies 

4   Experimental Results 

In this section, we demonstrate the performance of our proposed algorithm on different 
databases. Our experiments aim to find out how well our method performs with respect 
to several different variations such as the size of database, speed of walking and etc. We 
have considered indoor as well as outdoor data for analysis. 

4.1   Experimental Data 

The video sequences are taken from the following databases, which are used to ex-
amine the influence to the size of database, outdoor/indoor and fast/slow walk. 

1. The University of California, San Diego (UCSD) database: It’s for the outdoor 
scene. The distance between the camera and subjects is comparatively far. There are 
6 subjects, 7 sequences for each subject and 2-3 gait cycles in each sequence. The 
original images of 320 160×  are normalized into 104 104×  image templates for our 
experiments. 

2. Carnegie Mellon University (CMU) database: It’s for the indoor scene. The distance 
between the camera and subjects is comparatively small. It has 25 subjects walking 
at a fast pace and slow pace respectively. There are about 7-8 gait cycles in each 
sequence. The original images of 640 480×  are fitted into 64 64×  image template for 
our experiments. 

4.2   Training Phase 

Given a gallery with C  sequences, a gait feature vector of 1 2( , ... )nf f f  ( n  is the di-

mensionality of the vector) is extracted from each frame of each sequence by using the 
procedure described in Section 3. The gait feature vector from the thj  frame of the thi  

sequence is denoted by 1 2
,X ( , ... )n

i j ij ij ijf f f= , 1 i C≤ ≤ , 1 ij N≤ ≤ , where iN  is the 

number of frames in the sequence. 
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4.3   Recognition Phase 

Let ,1 ,2 ,X {X ,X , ,X }
gg g g g N=  be a sequence in the gallery, and ,1 ,2X {X ,X ,p p p=  

,, X }
pp N  be an arbitrary one in the probe, where gN  and pN  are the total frame 

numbers of the two sequences, respectively. Due to the gait’s periodicity, we adopt a 
spatio-temporal similarity measurement based on the gait cycles, which is similar to the 
method in [2].  

Suppose the period length of the gait is N  in a sequence. We can partition the whole 

sequence into /pN N  subsequences. The thk  subsequence is denoted by 

, 1 , 2 ,X ( ) {X ,X , , X }p p k p k p k Nk + + += . Then for the subsequence in the probe and some 

one in the gallery, the distance between them can be calculated as 

(X ( ),X ) , ,
1

( ) X X
p g

N

k p k j g l j
j

dis l + +
=

= −  (2) 

where l  is the starting frame in the gallery sequence, from which we compare the two 
subsequences. The similarity of two whole sequences is defined as 

(X ( ),X )
1

1
(X , X ) 1 min( ( ))

p g

K

p g kl
k

Sim dis l
K =

= −  (3) 

In the experiments, the classification process is carried out using two different 
classification methods, which are the nearest neighbor classifier (NN) and the 
K-nearest neighbor classifier (KNN), respectively. 

4.4   Experimental Results and Performance Analysis 

We compute the unbiased estimation of the true classification rate using the 
leave-one-out cross-validation rule [4] to evaluate the performance of our proposed 
method. There are 42 sequences in UCSD database, within which we leave one ex-
ample out as the probe, and the rest as the gallery. The probe sequence is classified 
according to its similarity with respect to the stored gallery sequences. This process is 
repeated for 42 times, and the recognition rate is obtained from the number of correctly 
classified test examples out of the total 42. In the CMU database, there are 8 gait cycles 
in Fast Walk sequences and 7 cycles in Slow Walk sequences. We can also regard each 
gait cycle as a sequence, and we execute the leave-one-out process in the same way for 
the 8 or 7 gait cycles. For the convenience of the later discussion, these experiments are 
numbered as A-C. With the same experimental circumstance and databases, we carry 
out the above three experiments by using different feature sets: holistic shape features, 
kinematics features feature level fusion and decision level fusion (including the Sum 
and Product rules), respectively. The correct classification rates (CCR) are summarized 
in Table 1. 

Moreover, in order to evaluate the influence of speed to our method, we complete 
two other experiments on the CMU database with all the gait cycles. One is training on 
fast- walk and testing on slow-walk, the other is training on slow-walk and testing on 
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Table 1. CCR of different algorithm and their comparison 

Database UCSD Database CMU Database 
Speed of walking Normal walk Fast walk Slow walk 

Experiment A: Leave-one-out B: Leave-one-out C: Leave-one-out 

Classifier NN KNN  NN KNN NN  KNN 
Shape features only (%) 76.19 71.42 83 82.5 85.14 80 

Kinematics features only (%) 85.71 90.47 75.5 75.5 76 73.14 
Feature level fusion (%) 95.24 97.62 89 90 88.57 85.14 

Sum 97.62 97.62 92 92 90.86 87.43 Decision level 
fusion (%) Product 92.86 95.24 93.5 93.5 93.14 88.57 

fast-walk. These two experiments are numbered as D and E, respectively. We also use 
the measure of Cumulative Match Score (CMS) [12] to evaluate the performance of 
them. By plotting the CMS curves of experiment D and E in Fig.7, we further compare 
the performance of the above-mentioned algorithms. Note that the horizontal axis of the 
graph is rank and the vertical axis is the probability ( )p i  of the identification. Obvi-

ously, (1)p  is equivalent to the correct classification rates (CCR) of the NN classifier. 

              

(a)CMS of experiment D (train: fast, test: slow) (b)CMS of experiment E (train: slow, test: fast) 

Fig. 7. Recognition performance based on CMS 

4.5   Discussion 

From Table 1, we can see that both shape and kinematics features derived from the 
walking video can be employed alone for gait recognition, but fusion is indeed a more 
effective strategy to improve the recognition performance. Basically, the results using 
fusion strategy are much better than those using holistic shape or kinematics informa-
tion alone for experiment A, B and C. And the CCR of the experiments across speed 
test on the CMU database (D and E) has also increased to some extent. The following 
conclusions are drawn from Table 1 and Fig. 7: 

1. The results using kinematics information are somewhat better than those using  
holistic shape information on UCSD database (see experiment A). The contrary 
conclusion is drawn on CMU database (see experiment B and C). The reason may be 
that the distance between the camera and the subject on CMU database is smaller 
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than that of on UCSD database. Namely, the farther the distance is, the more il-
legibility the human figure is, so the kinematics information does their work better 
than shape information, and vice versa.  

2. For fusion algorithm, the average CCR of A is better than B and C. This is consistent 
with the results using kinematics information only. Herein, kinematics information 
contributes more to fusion results.  

3. The average CCR of the decision level fusion using the Sum rule is the highest on 
UCSD database. However, that of the decision level fusion using the Product rule is 
the highest on CMU database. On the whole, the identification performance of de-
cision level fusion is better than that of feature level fusion. 

4. The identification performance based on the CMS in Figure 7 also demonstrates the 
effectiveness of fusion. There are somewhat improvements both in the experiment D 
and E. 

5. In experiment D and E for the speed test, the identification performance of holistic 
shape information is the worst and that of feature level fusion is the best. Further-
more, we can see that the kinematics information contributes more than the holistic 
shape one in fusion algorithms. 

5   Conclusions 

In this paper, we propose to represent the holistic shape features by the H-W ratio of 
body and the pixel number of silhouette. We also propose a feature level fusion ap-
proach for gait recognition and compare it with the decision level fusion one. The 
kinematics features are represented by the joint-angle trajectories of main limbs. Both 
the holistic shape features and the kinematics ones can be employed alone for gait 
recognition task, but the fusion is a more effective strategy to improve the recognition 
performance. The experiments on real sequences of both indoor and outdoor scenes 
have demonstrated the feasibility of our approach. The identification performance on 
the larger database needs to be further tested. Future work will concentrate on fusing 
more sources of gait feature to improve the identification performance, and investiga-
tion of more excellent fusion strategies. 
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Abstract. The performance of appearance based face recognition algo-
rithms is adversely affected by illumination variations. Illumination nor-
malization can greatly improve their performance. We present a novel al-
gorithm for illumination normalization of color face images. Face Albedo
is estimated from a single color face image and its co-registered 3D im-
age (pointcloud). Unlike existing approaches, our algorithm takes into
account both Lambertian and specular reflections as well as attached
and cast shadows. Moreover, our algorithm is invariant to facial pose
and expression and can effectively handle the case of multiple extended
light sources. The approach is based on Phong’s lighting model. The pa-
rameters of the Phong’s model and the number, direction and intensities
of the dominant light sources are automatically estimated. Specularities
in the face image are used to estimate the directions of the dominant
light sources. Next, the 3D face model is ray-casted to find the shadows
of every light source. The intensities of the light sources and the param-
eters of the lighting model are estimated by fitting Phong’s model onto
the skin data of the face. Experiments were performed on the challenging
FRGC v2.0 data and satisfactory results were achieved (the mean fitting
error was 6.3% of the maximum color value).

1 Introduction

The acquisition of face biometrics is non-intrusive which makes it suitable for
many identification and verification applications. These applications include
forensics, security, access control to buildings and services. High recognition ac-
curacy is very crucial for these applications. Unfortunately, variations in lighting
conditions significantly degrades the performance of 2D face recognition. The dif-
ferences amongst images due to identity variations may be obscured by variations
caused by illumination.

Many approaches have been proposed to handle the illumination problem.
These approaches fall into three main categories namely, (1) illumination insensi-
tive representations, (2) modeling of illumination variations and (3) illumination
normalization to a canonical form.

Approaches in the first category are the earliest and the most widely used [3].
In this category, illumination invariant features are generally extracted from the
image for better recognition performance. Chen et al. [1] showed that there are

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 90–101, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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no discriminative illumination invariant functions for objects with a Lambertian
surface. Therefore, these feature can more appropriately be termed as illumina-
tion insensitive as opposed to illumination invariant. Another approach in this
category extracts edge maps for recognition [4][5]. Edge maps are compact rep-
resentations but lack the important information encoded in the intensity shade.
Moreover, illumination variations may also create incorrect edges. One may ex-
pect edge maps to work better in the case of object recognition compared to
face recognition because human faces have a similar structure. Derivatives of
gray scale images are also used to overcome the illumination problem [6][7] since
they are less sensitive to illumination. However, derivatives are sensitive to noise.
Inspired by the fact that the human eye cortex enhances edges, some researchers
convolved facial images with Gabor-like filters (which enhance edges) [8][9][10].
However, Adini et al. [2] have shown that edge maps, image derivatives and
Gabor-like filters are insufficient to overcome the illumination problem.

The second category i.e. illumination variations modeling, models the face
under all possible illuminations. The illumination cone method [11][12] selects
three images with constant pose but varying illumination to estimate the set
of images under all possible lighting conditions. Ramamoorthi et al. [13] and
Basri et al. [14] independently showed that a Lambertian surface under varying
illumination can be approximated by the first nine spherical harmonics. Basri
et al. [14] performed recognition by comparing the distance between a query
face with the nearest images that can be synthesized by the 3D face models and
their corresponding albedos under lighting conditions spanned by the first four
harmonics [14]. Both [13][14] assume known pose, a Lambertian surface and no
cast shadows.

The third category normalizes images to a canonical form by compensating
for illumination variations. Histogram equalization [15] and gamma intensity
correction [16] fall in this category. However, these methods are global and their
output is affected by directional lighting. Shan et al. [17] partitioned a face
image into four quarters and used histogram equalization and gamma intensity
correction in each quarter to eliminate side-lighting effects. However, due to
the complexity of human faces, patterns created by directional lighting cannot
be correctly represented by predefined fixed regions. Another approach in this
category estimates the direction of a single light source from a generic 3D face
and average albedo and relights the input face to a canonical form [18]. Their
approach [18] does not cope well with complex lighting conditions caused by
multiple light sources with varying intensities. Quotient image relighting is also
used to relight face images to a canonical form [19][17]. However, it requires the
computation of bootstrap set (the ratio of images in non-canonical forms to a
canonical form image) and assumes a similar shape (for a given individual’s face)
which is not true as the shape of the face significantly changes with expressions.
They [19] also claim that their technique could be extended to color images
assuming illumination does not affect hue and saturation of an image colors.
However, our findings (Section 2.1) show that the saturation of facial skin color
varies significantly with changes in illumination.
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We present a fully automatic illumination normalization algorithm for color
facial images. Our algorithm falls in the third category and unlike other tech-
niques it takes into account the cast shadows, multiple directional light sources
(including extended light sources), the effect of illumination on colors and both
Lambertian and specular light reflections. In addition, it does not assume any
prior knowledge about the facial pose or expressions. Our approach is based on
Phong’s lighting model which is widely used for rendering in computer graphics.
We calculate the face albedo from a single colored face image and its registered
3D model by reversing the image rendering process. First, the number and di-
rections of the dominant lights sources are automatically determined from the
specularities in the facial skin. Next, the parameters of Phong’s model and the
intensities of the light sources are estimated by fitting Phong’s model onto the
red, green and blue channels of the facial skin. Finally, the parameters of Phong’s
model, the intensities and directions of light sources and the original facial im-
age and its 3D model are used to calculate the colored face albedo. Experiments
were performed on the Face Recognition Grand Challenge (FRGC) v2.0 [27]
dataset (9,900 2D and 3D faces) which is challenging in the sense that the faces
have major expression variations and are illuminated by varying extended light
sources. Our results show that our algorithm can compensate for lighting varia-
tions without compromising the local features or effecting the color of the face
albedo.

2 Reflective Properties of the Human Face

There are two types of light reflections from surfaces namely Lambertian and
specular. A Lambertian surface reflects the incident light equally in all directions
but a specular surface reflects the incident light mostly in the mirror reflection
direction. In practice, surfaces reflect light with varying proportions of Lamber-
tian and specular components. Shafer et al. [20] show that the sensor response of
a red, green or blue color channel R to spectral light e(λ) reflected by a surface
is given by

R = KL(n̂, ŝ)
∫
f(λ)e(λ)cL(λ)dλ +KS(n̂, ŝ, v̂)

∫
f(λ)e(λ)cS(λ)dλ (1)

where f(λ) is the sensitivity of the color channel (different f(λ) for every color
channel). cL and cS are the albedo and Fresnel reflectance of the surface, re-
spectively. The functions KL and KS scale the Lambertian and the specular
components. KS depends on the the normal of the surface n̂, light source direc-
tion ŝ and viewer direction v̂ but KL depends only on n̂ and ŝ.

As stated in Section 1, existing illumination normalization algorithms assume
that the human face is a Lambertian surface. In this section, we show that it has
a considerable specular component which is responsible for the variations in the
color saturation of the facial skin. In fact, illumination causes variations in the
saturation even more than the value of the color of face skin. Before proceeding
to the details in Section 3, it is important to introduce Phong’s lighting model
(Section 2.1) and the HSV color space (Section 2.2).
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2.1 Phong’s Lighting Model

Phong’s lighting model is widely used in computer graphics for rendering [21][22].
The model takes into consideration both the Lambertian and specular light
reflections. Given a 3D computer model, its albedo, lighting sources and the
Phong’s model parameters, the image is rendered according to the following
equation.⎡⎣TR

TG

TB

⎤⎦=

⎡⎣ARDR

AGDG

ABDB

⎤⎦+
n∑

i=1

⎛⎝kl(N̂ · Ŝ)

⎡⎣ARLRi

AGLGi

ABLBi

⎤⎦+ ks(V̂ · R̂)m

⎡⎣FRLRi

FGLGi

FBLBi

⎤⎦⎞⎠ (2)

where A, D and Li are the albedo of the surface, ambient diffused light and the
intensity of the i-th light source. N̂ · Ŝ is the dot product between surface normal
N̂ and light source direction Ŝ, and V̂ · R̂ is the dot product between the viewer
direction V̂ and the mirror reflection angle of the light source R̂. The parameters
kl, ks andm determine the extent to which a surface is Lambertian. F represents
the Fresnel reflectance parameters of a surface i.e. the ratio of red, green and
blue components reflected in a specular fashion. Since specularly reflected light
from the facial skin has the same color as the incident light, F = [1 1 1]�.

2.2 HSV Color Space

In RGB format, a color is represented by the amount of red, green and blue
components it contains. Fig. 1.(a) shows the RGB color cube. If the three color
channels are equally balanced, the color is on the gray line (the diagonal connect-
ing the black to the white color). RGB is the most common color format because
it is suitable for sensors and display devices. However, with regards to color per-
ception, RGB is not always the best format and sometimes it is desirable to
represent colors by their hue, saturation (lightness) and value (brightness) [23].
Fig 1.(b) shows the HSV color space which is an affine transformation of the
RGB color cube to a cone. The hue is the angle around the gray line starting
from the red color. The saturation axis is perpendicular to the gray line and
ranges from 0 to 1. The further the color is from the gray line, the more satu-
ration it has (0 on the gray line and 1 on the sides of the cone). The value of a
color (range 0 to 1) is the distance from the black color to the projection of the
color on the gray line.

2.3 Variations in Facial Skin Color Due to Illumination

Phong’s lighting model is based on the physics of light reflections and is very
analogous to the sensor response in Eq. 1. This is the main reason we use this
model in our illumination normalization algorithm and analysis. Assuming white
light sources (equal R, G and B), Phong’s model reduces to⎡⎣TR

TG

TB

⎤⎦ = ID

⎡⎣AR

AG

AB

⎤⎦+
n∑

i=1

⎛⎝klIi(N̂ · Ŝ)

⎡⎣AR

AG

AB

⎤⎦+ ksIi(V̂ · R̂)m

⎡⎣1
1
1

⎤⎦⎞⎠ (3)

where Ii is the intensity of the i-th light source.
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Fig. 1. An affine transformation relates HSV and RGB color spaces

Facial skin of the same person generally has a fixed albedo. Let the number
of the light sources, their intensities, the geometry of the face, kl, ks and m have
arbitrary values. Eq. 3, shows that the total color T equals the sum of n + 1
vectors (the diffused and Lambertian components) in the direction of the albedo
and n vectors (the specular component) in the direction of the white color.
Since there are only two independent vectors (the albedo and the white color),
the resultant color T will always be in the plane spanned by the albedo and
the white color (see Fig. 2.(a)). This implies that T has a constant hue because
it does not rotate around the gray line. However, the saturation and value will
vary accordingly. As the value increases, the saturation decreases (also see Fig.
2.(d)) because the specular components bring T closer to the gray line.

Scatter plots of hue, saturation and value of a facial skin data (each point
represents a pixel) agree with these conclusions (see Fig. 2). Fig. 2.(a) shows
that there is very limited variation in the hue of the skin but the value varies
significantly. Fig. 2.(b) shows that there is significant variation in the saturation
which means that the human face reflects large proportion of the incident light
in specular reflection. Results of fitting Phong’s lighting model on facial skin
data shows that the ratio of the Lambertian to the specular reflection (kl:ks)
ranges from 1:4 to 1:6.5 (see Section 3.4 and 4).

3 Illumination Normalization Algorithm

In real world environments, illumination conditions are very complex. For exam-
ple, there are light reflections by objects to the face and extended light sources.
However, these can be approximated by a single diffused and a few directional
light sources. These unknowns and the parameters of Phong’s model are es-
timated by exploiting the variations in color saturation and value in a facial
skin image which are mainly caused by illumination (Section 2). The following
subsections give details of our algorithm.
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Fig. 2. Illustrations and tests which show that white illumination causes variations in
the value and the saturation but not the hue of a facial skin image

3.1 Skin Detection

The skin hue of different human races is very similar [24]. Hue statistics are
widely used in skin detection [24][25]. The mean μ

h
and standard deviation σ

h

of the skin hue are computed from many training images. A pixel p is considered
a skin pixel if its hue hp is within ± 2.5μ

h
.

Sg = {p ∈ Sg|hp > μh
− 2.5σ

h
and hp < μh

+ 2.5σ
h
} (4)

However, the skin pixels set Sg will include pixels from non-skin regions like lips
and eye brows because σ

h
might be larger than the hue differences between skin

and other facial regions of the same face as it is computed from a large set of
skin training data. To overcome this problem, we compute the person specific
hue statistics μhs and σhs from Sg and apply another skin detection iteration
using μhs and σhs to produce a more accurate skin pixel set Ss. Since σhs 	 σ

h
,

the pixels which have slight hue differences from the skin are not included in Ss.
The pixels which have color values less than a threshold Vth are dropped from
Ss because they are not reliable. Fig. 3.(a) and 3.(b) show a face image and its
detected skin mask, respectively.

3.2 Detection of the Dominant Light Sources

Specularities (highlights) occur at regions at which the mirror reflection direction
R̂ of a light source is very close to the direction of the viewer (sensor) V̂ . At
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these regions V̂ · R̂ is maximum which means that there are more specular
than Lambertian light reflections. In Section 2, we showed that the specular
reflection makes the saturation of a color decrease. As specular light reflection
from facial skin has more effects on saturation than value, it is more reliable to
use saturation for the detection of specularities. A few hundred skin pixels with
the minimum saturations are selected. These highlighted pixels may correspond
to one or more light sources. For each pixel, the direction of the light source Ŝ is
computed given the viewer direction V̂=[0 0 1]T and the surface normal N̂ from
the corresponding point in the 3D model as shown in the following equations.

θ
o

= cos−1(N̂ ·
[
0 0 1

]T ) (5)

P̂ = N̂ ×
[
0 0 1

]T (6)⎡⎣Sx

Sy

S
z

⎤⎦ =

⎡⎣ 0 0 1
Nx Ny Nz

P
x
P

y
P

z

⎤⎦−1 ⎡⎣ cos(2θ
o
)

cos(θo)
0

⎤⎦ (7)

Where θo and P̂ are the angle and the cross product between N̂ and V̂ , respec-
tively. Azimuth and elevation angles of the light source directions are calculated
by changing the Ŝ vectors from rectangular to spherical coordinates. The azimuth
and elevation angles of the highlight pixels which are caused by the same light
source will cluster together (see Fig. 3.(d) and 3.(e)). Hierarchal clustering [26]
with Cartesian distance as similarity measure is used to cluster light directions
into 10 clusters. The clusters which have entries less than 15% of total entries
are discarded. The remaining clusters represent the dominant light sources. For
each dominant light source, the average direction is computed (center of gravity
of the cluster). Wide direction clusters are divided into multiple clusters (i.e. an
extended light source is represented by multiple light sources).

3.3 Finding Shadows of a Light Source

The human face is self-shadowing. The shadows of an ideal directional light
source have a sharp transition from shadow to shine. However, this is not the
case in real world illumination. At the edges of a shadow, the light source is
partially visible, resulting in continuous shadows. We use fuzzy sets to produce
continuous shadows from the direction cluster of a light source. Each cluster
is divided into sectors as shown in Fig. 4.(a). The directions in each sector are
represented by a direction D̂

R
. Let D̂ =

[
θ φ

]� represent an individual direction,
D̄ is the mean direction of the cluster and n is the number of directions in a
sector. D̂Ri of the i-th sector is computed as follows.

M̂si =
1
n

n∑
j=1

‖D̂j − D̄‖(D̂j − D̄) (8)

D̂RMSi =
√

‖M̂si‖
M̂si

‖M̂si‖
(9)

D̂Ri = D̂RMSi + D̄ (10)
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(a) (b)

(c) (d) (e)

Fig. 3. (a) Original Face image. (b) Skin mask. (c) Randomly selected 1000 represen-
tative skin pixels. (d) Detected specularities in facial skin. (e) Direction Clustering:
despite that the specular pixels are disconnected spatially in this case they are all
pointing roughly to one direction.

(b) (c) (d)

(a) (e) (f) (g)

Fig. 4. (a) A direction cluster is divided into 4 sectors. (b),(c),(d),(e) and (f) are the
shadows of the sector representing directions and the average direction. (g) the fuzzy
shadows of the direction cluster.

The root mean square of the sector directions D̂RMS is used to push D̂R away
from D̄. The 3D model is ray-casted by directional lights from D̄ and D̂R of
every sector (see Fig. 4) to find the crisp shadow images of these directional light
sources (0’s for shadows and 1’s if shined). The fuzzy shadows membership M
of the cluster is calculated by averaging the crisp shadow images and smoothing
the resultant image using an average filter. At the center of a shined region, M
equals 1 but at edges it gradually changes from 1 to 0.

3.4 Estimation of Light Intensities and Phong’s Parameters

At this stage, the number of the dominant light sources, their directions and fuzzy
shadows M have been calculated. The intensities of the light sources and Phong’s
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model parameters are estimated by fitting the model (with these variables and
kl = 1 as known variables but the free variables are the intensities, an albedo
A, ks and m) on the facial skin. The kl parameter is kept constant but ks is
variable to avoid redundancy in the free variables. For efficiency, the model is
fitted only on 1000 randomly selected skin pixels (see Fig. 3.(c)). Experimental
results show that there is no noticeable degradation in performance when using
only 1000 skin pixels. However, it considerably cuts the fitting time. Fitting is
performed by minimizing the differences between the original skin pixels O and
those generated by the model T .

TRi

TGi

TBi

= |ID|
|AR|
|AG|
|AB |

+
n

i=1

|Ii| Mi(N̂ · Ŝ)
|AR|
|AG|
|AB |

+ Mi|ks|(V̂ · R̂)|m| (11)

F =
1000∑
i=1

(|ORi − TRi | + |OGi − TGi | + |OBi − TBi |) (12)

{AR, AG, AB, ID, I1, · · · , In and m} = argmin(F ) (13)

Since the free variables cannot be negative absolute values of the free variables
are introduced in Eq. 11 to avoid using a less efficient constrained minimization
algorithm. This will make every orthant of the objective function F symmetrical
to the positive orthant. Irrespective of which orthant the algorithm converges in,
we take the absolute values of the variables. ks and m do not vary significantly
among different faces. By examining the algorithm on many faces, the best re-
sults in terms of fitting error and quality of illumination normalization have ks

in the range of 4 to 6.5 and m in the range of 1 to 2. Constraining these two
parameters to these ranges gives better results and faster convergence especially
when there are many light sources. These constraints are imposed through the
objective function to avoid using a constrained minimization algorithm.

F = e|1.2(ks−5.25)|1.5
+ e|3(m−1.5)|1.5

+

1000

i=1

(|ORi − TRi | + |OGi − TGi | + |OBi − TBi |)
(14)

The first two terms have negligible cost if the variables are within the ranges
but it grows exponentially outside the ranges.

3.5 Calculation of Face Albedo

Once the lighting conditions and Phong’s parameters are known, face albedo can
be computed for every pixel P in the original face image as shown in Eq. 15 (see
Fig. 5). The specular components are first subtracted from P . The difference
represents the Lambertian components from which the albedo A is computed.⎡⎣ARi

AGi

ABi

⎤⎦=

⎡⎢⎣ (PRi −
∑n

j=1MijksIj(V̂ · R̂)m)/(ID +
∑n

j=1MijIj(N̂ · Ŝ))
(PGi −

∑n
j=1MijksIj(V̂ · R̂)m)/(ID +

∑n
j=1MijIj(N̂ · Ŝ))

(PBi −
∑n

j=1MijksIj(V̂ · R̂)m)/(ID +
∑n

j=1MijIj(N̂ · Ŝ))

⎤⎥⎦ (15)
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4 Results and Discussions

The algorithm was tested on the FRGC v2.0 [27] dataset which contains a large
number of co-registered face images and 3D models. Fig. 5 shows some sample
images (in color) and their corresponding normalized images produced by our
algorithm. A qualitative analysis of the normalized images shows that our algo-
rithm removes substantial amounts of illumination variation effects. The bright
regions of a face, which are shined by the dominant light sources, become more
similar in color saturation and value to the shadowed regions while preserving
the fine details of the face albedo. For example, the red dots in the first face
from the left are preserved in the normalized image. Since we only use the dom-
inant light sources, the resulting face albedo (as computed in Eq. 15) looks like
a frontal relight of the face more than an ideal albedo which means that there
is no need for an additional frontal relight stage.

Fig. 5.(b) shows a histogram of fitting error between the original facial skin
and the lighting model (error is defined as in Eq. 12). The average fitting error
for the 1000 used skin pixels (each color channel varies in the range 0 to 255) is
4.8 × 104 which gives an average fitting error of 16/pixel.channel (about 6.3%
of the maximum channel value).

(b)

(a)

Fig. 5. (a) Normalized face images: the original images (top) and the normalized im-
ages(bottom)(the figure is better viewed in color) (b) Histogram of fitting error
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5 Conclusion

We presented a fully automatic algorithm for the illumination normalization of
color face images with minimal assumptions. Our algorithm can accurately es-
timate the directions and intensities of multiple dominant light sources and the
reflective properties of a face. It calculates face albedo by reversing the process
of image formation. We stressed on the importance of considering specular re-
flection of the human face and cast shadows of multiple extended light sources
in illumination normalization for facial images. The algorithm was tested on
the challenging database of FRGC v2.0 containing complex illumination and
facial expression variations. Our results show that the algorithm is robust and
accurate.
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Abstract. This paper proposes an automatic approach to detecting ob-
jects appearing in front of planar background. A planar homography is
estimated with high accuracy in an off-line initialization phase. Given
a pair of binocular images, we apply the estimated homography to one
of the images, and then compute a similarity map between the trans-
formed image and the other. Normalized cross-correlation is used in the
computation of the similarity map to measure the similarity between
neighborhoods of overlapping pixels. Normalized cross-correlation mea-
sure is superior to absolute difference in alleviating the influence of image
noise and small mis-alignment caused by imperfect homography estima-
tion. The similarity map with pixel intensities ranging between 0 and
1 leads to an easy detection of out-of-plane objects because the values
of pixels corresponding to planar background are close to 1. Tracking
could be incorporated with our out-of-plane object detection method to
further improve robustness in live video applications. This approach has
been used in tracking people and demonstrated reliable performance.

1 Introduction

Detection of moving objects has gained a lot of importance in the last few years.
It is an indispensable step leading towards understanding moving objects, e.
g., identification of people, recognition of their behaviors and/or gestures. A
typical method of object detection is background subtraction [4], which detects
foreground objects by comparing live images to the statistic model of a static
background. However, Background subtraction is not robust against illumination
changes, especially when such changes are abrupt.

We often see planar structures in a 3D scene, examples include floors, walls,
screens, etc. Real-time detection of objects that are out of planar background
has many potential applications, such as detecting and tracking people on floors
[3], locating obstacles in autonomous navigation systems [2], and so on. This
paper introduces a stereo vision based method for detecting objects in front of
planar background which may vary photometrically during detection process.

Plane has been extensively studied and used in computer vision due to its
mathematical simplicity. Transformation between a plane in a 3D world and a
camera’s image plane is defined by a projective homography, a 3 × 3 matrix up
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to a scale, under the assumption that the camera observes the pin-hole model.
When more than one camera is used, the transformation between any pair of the
image planes forms a unique homography with respect to a plane in 3D scene.

Our method utilizes the homography between two stereo images, and avoids
the error-prone correspondence problem. First, homography is estimated as ac-
curately as possible. During real-time detection, one image is super-imposed onto
the other by applying the estimated homography, followed by calculation of a
similairty map. The similarity map with pixel values ranging from 0 to 1 can
be used in out-of-plane object detection because pixels corresponding to planar
background have values close to 1. The foreground pixels, on the contrary, have
lower values, which depend on the richness of local textures.

Normalized cross-correlation is used as similarity measure. It has an important
characteristic, scalability, which allows us to adjust the size of local areas (or
neighborhoods) to be taken into similarity calculation. The larger the scale is,
the more robust against noise and mis-alignment but less sensitive to out-of-
plane objects the similarity measure becomes.

The rest of the paper is organized as follows: We introduce our homography
estimation method in section 2. It can be considered as an adaptation of the
original direct linear transform (DLT) for a group of horizontal and vertical line
correspondences. In section 3, we describe how to compute similarity map to-
gether with strategy to accelerate the computation. Segmentation of foreground
objects out of similarity map is briefly discussed in section 4. Experimental re-
sults are presented and analyzed in section 5. Finally, the paper is concluded in
section 6.

2 Homography Estimation

Suppose a plane P is imaged by two cameras at different angles. Let I and I ′

be images of the plane from the two cameras. If the cameras satisfy the pin-
hole model, then the I-to-I ′ image transformation can be described by a planar
homography, a non-singular 3 × 3 projective matrix.

Given a pair of homogeneous coordinates of pixels p = [x, y, 1]T in I and
p′ = [x′, y′, 1]T in I ′ that correspond to the same point on plane P in a 3D
space, there exist a planar homography HP in regard to plane P

λp′ = HP p (1)

where

HP =

⎡⎣h11 h12 h13

h21 h22 h23

h31 h32 h33

⎤⎦
and λ is a scaling factor. We can determine HP up to a scale, which means HP

has 8 degrees of freedom.
In projective geometry, there exists duality between line and point. If a point

p = [wx,wy,w]T is on a line l = [a, b, c]T , then

pT l = lT p = w · (ax+ by + c) = 0
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Because of the duality, we can estimate homography HP from line correspon-
dences instead of point correspondences as below

αl′ = HP
−T l (2)

where
HP

−T = (HP
T )−1 = (HP

−1)T

Formula (2) can be re-written as

βl = HP
T l′ (3)

where β = 1/α. Equation (3) is the counterpart of (1) as result of the duality,
and will be used in our homography estimation.

Since one pair of point (or line) correspondences gives rise to three linear
equations in h11, h12, ... , h33, of which only two are linearly independent, so
we need at least four pairs of correspondences of non-collinear points (or non-
concurrent lines) to determine the underlying homography. If there are more than
four pairs of correspondences available we can obtain a least-squares solution.

We use a black-and-while checkerboard pattern as reference to calculate ho-
mography. We synthesize such a pattern and project it on a wall with an LCD
projector. Horizontal and vertical lines of the pattern are extracted in both im-
ages and paired up. We choose lines rather than points as features to form cor-
respondences as corner detection is sensitive to image noises while line detection
is more robust and accurate.

2.1 Line Detection

Our stereo vision system is set up in such a way that a checkerboard pattern
is projected onto a planar screen and is completely visible from both of the
cameras. Horizontal and vertical lines of the pattern are detected using Hough
transform. Since the horizontal and vertical lines of the checkerboard pattern
are roughly horizontal and vertical in both images so that we can detect them
separately. Below we will only introduce how to detect horizontal lines, vertical
lines are detected in the same manner except for the direction.

We first apply horizontal Prewitt edge detector to image. Most directional
edge detectors are acceptable for edge detection. Then, histogram analysis of
the edge map must be performed in order to determine a proper thresheld to
extract these horizontal edges.

Given an edge point [x, y], Hough transform

ρ = x cos θ + y sin θ (4)

translates it into a curve in the ρ-θ parameter space. Since the lines to be detected
are roughly horizontal, we can narrow θ down to range [90o − δθ, 90o + δθ]
(δθ = 25o in our experiment) in parameter space instead of full angle range. The
range of ρ can be truncated into [−h/2, h/2] (h is image height). This implies
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that we can have higher resolutions for both ρ and θ at the same cost of memory
and computation.

As the checkerboard pattern is known, we need to find exactly as many hori-
zontal/vertical lines as existing in the pattern. Detected horizotal lines are sorted
from bottom to top while vertical lines are sorted from left to right based on
their ρ values. This ordering assures we can have correct line correspondences
between left and right images so that RANSAC [1] is not necessary.

2.2 Adaptation of Normalized DLT

Planar homography is defined by a non-singular 3 × 3 matrix up to a scale,
as shown in equations (1) and (3). The traditional method for estimating ho-
mography is direct linear transformation (DLT) [6]. We will adapt the original
DLT so that line correspondences, instead of point correspondences, are used in
homography estimation.

We can get rid of the scaling factor β by taking cross-product with l on both
sides of equation (3):

l × (HP
T l′) = 0 (5)

Let’s denote HP = [h1,h2,h3], where hj is the j-th column of HP . Then

HP
T l′ = [h1

T l′,h2
T l′,h3

T l′]T

and equation (5) can be re-written as⎡⎣ bh3
T l′ − ch2

T l′

ch1
T l′ − ah3

T l′

ah2
T l′ − bh1

T l′

⎤⎦ = 0 (6)

or in the form of matrix equation:

Mh = 0 (7)

where

M =

⎡⎢⎣0T −cl′T bl′T

cl′T 0T −al′T

−bl′T al′T 0T

⎤⎥⎦ (8)

and

h =

⎡⎣h1

h2

h3

⎤⎦
Like a pair of point correspondences, a pair of line correspondences gives

rise to three linear equations in h11, h12, ..., h33, of which only two are linearly
independent. However, unlike point correspondences, things become a little more
complicated with line correspondences since one of the following two cases could
happen (1) a = c = 0; or (2) b = c = 0. This means that there is not a general
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rule to discard an equation from (7). We do not have the dilemma as the lines
extracted from checkerboard are group into horizontal and vertical ones. We can
discard the second equation in (7) for horizontal lines, and first equation for
vertical lines.

Given a set of line correspondences li ↔ l′i, i = 1, 2, ..., N (N ≥ 4) found in
the previous section, we are able to stack N 2× 9 matrices into a 2N × 9 matrix
A so that

Ah = 0 (9)

where

A =

⎡⎢⎢⎣
M̂1

M̂2

...

M̂N

⎤⎥⎥⎦
where M̂i represents the coefficient matrix of the two linearly independent equa-
tions, obtained by discarding one equation from (7).

The rank of A is 8 in the pure mathematical sense. In practice, both image
noise and discretization influence the accuracy of line detection so that the rank
is 9. Direct solution will suffer from instability due to the near-singularity of the
problem. We need to impose an extra constraint to obtain a numerically stable
solution, ||h|| = 1, and translate the problem into a minimization problem, i.e.,
finding h to minimize

||Ah|| subject to constraint: ||h|| = 1

or
||Ah||
||h||

The non-zero solution is the (unit) eigenvector of AT A with the least eigenvalue.
Equivalently, the solution is the right singular vector associated with the smallest
singular value of A, which can be solved by singular value decomposition (SVD)
of A:

A = UDV (10)

where D is a diagonal matrix with values sorted in descending order down the
diagonal. The last column of V corresponding the smallest singular value in D
is the solution for h. This is known as direct linear transformation (DLT).

The original DLT has the reputation of poor performance. Hartley and Zis-
serman [6] concluded that normalization of points could greatly improve the
accuracy of estimated homography. Such normalization has the effect of equal-
izing the error caused by each individual correspondence and therefore making
the solution more stable.

It is not trivial to adapt normalized DLT from point correspondence based
to be line correspondence based although point and line are dual elements in
projective geometry. For point correspndences, one can translate points so that
their centroid coincide with the origin, followed by scaling so that the mean
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distance to the origin is
√

2. Unfortunately, there is no counterpart for line
correspondences.

We normalize the projective coordinates of each pair of lines independently
so that ||li|| = 1 and ||l′i|| = 1. DLT yields a least-squares solution when N > 4,
in a sense of minimizing mean algebraic distance. Our normalization, in fact,
equalizes the algebraic error from each pair of line correspondence, achieving
effect similar to the normalization proposed by Hartley [6]. Unlike Hartley’s
normalization, we don’t need to transform the resultant homography to recover
the homography that corresponds to non-normalized coordinates.

3 Similarity Map

Different points on the surfaces of 3D objects are likely to have different col-
ors/intensities because (1) they might be made of different materials; and/or (2)
they might have different surface normals; and/or (3) they might be illuminated
differently. It is rare to see two randomly-selected points have the same (or close)
color/intensity in a texture-rich scene. When a 3D scene is imaged from two dif-
ferent points of view, pixels of two distinct physical points are unlikely to be of
the same color/intensity while pixels of the same point in 3D will have the same
or very close color/intensity.

Based on this observation, we have developed the concept of our similarity
map. For a pair of binocular images of a scene with planar background, we com-
pute a 2D array (or image) of the same size as that of the binocular images, called
similarity map, in which intensities, ranging from 0 to 1, reflect the likelihood
of pixels being planar background.

Our similarity map is calculated from a pair of gray-scale images. If color
images are available, one can either convert them into gray-scale images be-
fore computing similarity map, or compute one similarity map from each of the
R, G, B channels and somehow combine the three similarity maps afterwards.
The latter, which takes advantage of color information, generally produce better
results.

Given a pair of stereo images I and I ′, one image I is super-imposed upon
the other I ′ by transforming image I with the estimated homography HP that
is in regard to plane P in a 3D scene. There three possible cases of a overlapped
pixel pair:

1. both It[i, j] and I ′[i, j] are background;
2. both It[i, j] and I ′[i, j] are foreground;
3. one is foreground and the other is background.

where It is transformed I. You can see that It[i, j] and I ′[i, j] correspond to
the same point (on the plane P ) only in the first case. In other words, if
It[i, j] ≈ I ′[i, j], they are more likely to be background than foreground. In
the two remaining cases, It[i, j] and I ′[i, j] correspond to different 3D points and
are therefore more likely to be different.

A simple and straightforward way to distinguish background from foreground
is image difference, which is known to be senstitive to noise. It is desirable to
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have similarity measure between two pixels that is based on their neighbor-
hoods rather than themselves alone. We propose a scalable similarity measure
to overcome the influences of image noise and possible mis-alignment caused by
imperfect registration in homography estimation. A similarity map S(k)

I1↔I2
be-

tween images I1 and I2 with kernel size k at pixel [i, j] is defined as normalized
cross-correlation between two neighborhoods centered at the pixel:

S
(k)
I1↔I2

[i, j] =
R

(k)
I1I2

[i, j]√
R

(k)
I1I1

[i, j] ·R(k)
I2I2

[i, j]
(11)

where

R
(k)
I1I2

[i, j] =
k/2∑

u=−k/2

k/2∑
v=−k/2

I1[i+ u, j + v] · I2[i+ u, j + v]

and I1 = I ′ and I2 = It. Obviously, 0 ≤ S
(k)
I↔I′ [i, j] ≤ 1. Parameter k allows us

to tune up the similarity measure to compromise between noise-resistance and
sensitivity to difference.

Direct calculation of similarity map sized of m × n could be very time-
consuming (O(k2mn)), which is not acceptable in a real-time application. We
have figured out an efficient way to compute our similarity map, inspired by
Viola and Jones in their work [5].

Prior to computing similarity map, we compute integral images and keep them
in memory. The integral image JI1I2 is defined as:

JI1I2 [i, j] =
i∑

u=1

j∑
v=1

I1[u, v] · I2[u, v]

The computation of an integral image can be implemented in a recursive way:

1. JI1I2 [1, 1] = I1[1, 1] · I2[1, 1];
2. JI1I2 [i, j] = I1[i, j] · I2[i, j] + JI1I2 [i, j− 1] + JI1I2 [i− 1, j]− JI1I2 [i− 1, j− 1].

which can be completed in O(mn). Then R(k)
I1I2

can be immediately retrieved
from integral image JI1I2 in the following way:

R
(k)
I1I2

[i, j] = JI1I2 [i, j] + JI1I2 [i− k, j − k]−
JI1I2 [i, j − k] − JI1I2 [i− k, j]

R
(k)
I1I1

andR(k)
I2I2

can be acquired in a similar way from JI1I1 and JI2I2 respectively.

4 Detection of Out-of-Plane Objects

In most cases, it is sufficient to segment the foreground objects by simply thresh-
olding the similarity map. More sophisticated methods, such as morphological
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(a) Left image (b) Right image

(c) Transformed right image (d) Difference between (a) and (c)

Fig. 1. Stereo, transformed and absolute difference images

operations, shape analysis based on domain-specific knowledge could greatly im-
prove the segmentation results.

There is a ”double-edge” phenomenon in the similarity map, which makes the
foreground objects appear larger than they really are. The phenomenon is less
visible if the two cameras stay close to each other and the foreground objects
are not very close to cameras.

5 Experiments

We have tested our method on a PC computer with 1.7GHz CPU. Images were
captured through two USB cameras at resolution of 352×288. The original color
images were first converted to 8-bit gray-scale images before being processed. The
detection system can work at more than 20 frames per second.

In the initialization stage, we synthesized a checkerboard pattern and pro-
jected it on a wall, which was then captured by two cameras. Five horizontal
and five vertical lines in the pattern were extracted and paired up for homogra-
phy estimation, as discussed in section 2. In fig. 1, (a) and (b) are two images
of a projected slide with three cans in front of the wall. We super-imposed the
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(a) Similarity map with kernel size = 3 (b) Similarity map with kernel size = 7

(c) Similarity map with kernel size = 11 (d) Threshold image of (c) at T = 200

(e) Threshold image of (c) at T = 220 (f) Threshold image of (c) at T = 240

Fig. 2. Similarity maps at different scales

right image over the left image by warpping the right image, and compute the
difference between the warpped image and the left image is shown in (d).

Our scalable similarity maps (scaled to range 0-255) were calculated at three
different scales in Fig. 2 (a)-(c). You can see that larger scales depress more the
impact of mis-alignment while at the same time blur the foreground objects.
Objects can be segmented out by thresholding one of the similarity maps, and
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wide range of threshold values can achieve decent segmentation of the foreground
objects as shown in (d)-(f).

6 Conclusions

In this paper we describe a fully automatic, real-time approach to detecting
objects in front of a planar background. Our approach is superior to background
subtraction as it works when the planar background has dynamically varying
light reflection on its surface. The the variation in light reflection may be caused
by prejected video or variation in environment illumination.

The method has been successfully used in detection of people who are giving
presentations in front of a screen. Good performance results from the combina-
tion of our homography estimation and similarity measure. The method can be
extended to the case where background is composed of multiple planes, and we
need to estimate multiple homographies.

Viewing of the same point on an object surface from different angles may result
in variation in perception of color due to the fact that the specular component in
the reflected light vary in view point according to Phong’s illumination model.
This may break the assumption that It[i, j] ≈ I ′[i, j] for planar background.
One solution to this problem is bringing two cameras as close as possible, or
decreasing parallax in stereo vision terminology. However, you need to keep
certain amount of parallax to reveal out-of-plane objects. There is a trade-off in
stereo vision in regard to camera setup, which should be determined individually
for a particular application. Another solution is photometrical calbration in the
initialization stage if light sources do not change.
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Abstract. 3D images provide more information to human than their 2D 
counterparts and have many applications in entertainment, scientific data 
visualization, etc. The ability to generate accurate 3D dynamic scene and 3D 
movie from uncalibrated cameras is a challenge. We propose a systematic 
approach to stereo image/video generation. With our proposed approach, a 
realistic 3D scene can be created via either a single uncalibrated moving camera 
or two synchronized cameras. 3D video can also be generated through multiple 
synchronized video streams. Our approach first uses a Gabor filter bank to 
extract image features. Second, we develop an improved Elastic Graph 
Matching method to perform reliable image registration from multi-view 
images or video frames. Third, a fast and efficient image rectification method 
based on multi-view geometry is presented to create stereo image pairs. 
Extensive tests using real images collected from widely separated cameras were 
performed to test our proposed approach.  

1   Introduction 

In entertainment, gaming, and TV programs, one of the major steps towards natural 
and easy understanding and perception of image/video is 3D effects. Besides these 
applications, 3D image/video techniques are needed in many other civilian 
applications, i.e. medical operation, microscope, scientific data display, CAD/CAM, 
and surveillance systems. These technologies can also be used directly in target 
detection and recognition, precise strike, fly guidance, and some other military related 
applications. Actually, computer-based stereo vision system has been studied for 
many years, in which the major task is the estimation of 3D depth of the physical 
scene from a pair of cameras emulating the left and the right eyes in a human visual 
system. The fundamentals of depth estimation from a pair of stereo cameras (a stereo 
rig) can be illustrated in the following figure (Fig. 1). But, there are many limitations 
of conventional stereo vision systems, including the requirements of two identical 
cameras, narrow baseline, fixed parameter setting and position, limited field of view, 
and only suitable for short-range scene, etc. All of the above issues seriously limit the 
usage of conventional stereo vision systems in many areas. In real life, the 
cameras/sensors used for data acquisition are often nonstationary and located at 
different viewpoints which have wide distance between each other. Furthermore, the 
parameter settings of camera are usually unknown and unfixed during data 
acquisition.  

To generate a stereo (3D) image through a single moving camera or multiple 
synchronized cameras far from each other is a challenging problem. The main 
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reason comes from the fact that, in general, the cameras are not calibrated, thus 
simply using standard stereoscopic vision algorithms may not generate correct 
stereo images. Hence, advanced algorithms that can handle uncalibrated cameras 
are needed. In recent years, many research efforts have been made. Fusiello et al. 
(UK and Italy) [1] presented a compact and efficient algorithm to generate stereo 
image via image rectification. But, their approach assumes that the stereo rig is 
calibrated, which means the camera’s intrinsic parameters such as focal length, 
aspect ratio, and the relative position to each other are already precisely known or 
calculated. Unfortunately, as mentioned earlier, the camera’s parameters are hard to 
know and the relative position between cameras are difficult to obtain or calibrate 
in practice. Loop and Zhang at Microsoft Research [9] developed one method to 
construct stereo image with uncalibrated cameras. Their method is mainly designed 
for stereo matching and the residual distortion may prevent stereoscopic 
visualization. Hartley (GE Research) & Zisserman (U. of Oxford) [7], [8] proposed 
a novel method for stereo generation from uncalibrated cameras, which is the most 
advanced method in the literature based on our knowledge. One important 
advantage of their method is that the method is robust to many situations. However, 
one major limitation of the method is the quality of the stereo images can not be 
guaranteed. Undetermined image deformations such as shrink or distortion often 
occur in the stereo images.  

 

Fig. 1. Stereoscopic vision system 

In this paper, we propose a stereo imaging approach with uncalibrated camera(s), 
which is based on Gabor filter, improved Elastic Graph Matching, and multi-view 
geometry theories. The diagram of our proposed system is illustrated in Fig. 2. 
Compared with the current methods, the advantages of our approach include accurate 
feature detection and registration, stereo imaging without image deformation, and low 
computational complexity for potential real-time deployment.  
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Fig. 2. Conceptual diagram of our proposed stereo imaging system 

2   Algorithm Description 

The proposed approach consists of three sequential steps. The first step is Gabor 
filter-based feature extraction which provides an efficient way for image feature 
extraction. The second step is an improved Elastic Graph Matching (EGM) to find 
feature correspondence of input image pair. The last step is stereo image generation 
based on the theories of multi-view geometry. 

2.1   Gabor Filter 

In human visual system (HSV), research has shown that people are sensitive to both 
specific orientation and spatial frequencies of the target of interest. For  
feature representation and extraction, wavelets are good at modeling both the 
orientation and frequency characteristics of object of interest. A Gabor filter bank 
can act as a simple form of wavelet filter bank. Because of its simplicity  
and optimum joint spatial/spatial-frequency localization, Gabor filter has attracted 
many research efforts [2], [3] and has been applied in many image analysis and 
computer vision-based applications, e.g. face recognition and fingerprint 
verification.  

Gabor-filter bank is a group of 2-D filters which capture the optimal jointed 
localization properties of region of interest in both spatial and spectral domain. 
Typically, an image is filtered with a set of Gabor filters which have different or 
preferred orientations and spatial frequencies. To be specific, an image ( )I x  is 

filtered with a set of Gabor wavelets as follows, 

      0 0
( )( , ) ( ) ( )

k
wI k x x x I x dxφ= −                                                       
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k
φ  is the Gabor wavelet (filter) defined by  
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k k e μφ= controlling the orientation and the scale of the filters. By varying v 

and μ , we can get different Gabor filters with different orientations and scales. In our 
 



 Stereo Imaging with Uncalibrated Camera 115 

implementation, μ  controls the orientation and is assigned by any value of 0, 1, 2, to 
7 and v controls the spatial frequency and is assigned from 0, 1, and 2 with 

( ) v
vk 2/2/π=  and ( ) 8/μπφμ = . After filtering with a set of Gabor filters (24 filters 

from the above choice of v and μ ), the outputs on each pixel in the image form a 24-
dimensional vector called “jet”. The amplitude of the jet represents whether a pixel 
has significant gradient value in both orientation and frequency. Thus, it can be used 
to determine if this pixel is a good feature for matching and tracking. In [6], some 
more complicated criteria are given for selecting good feature. 

2.2   Feature Correspondence 

Given the scenario that stereo images are generated from two videos (image 
sequences) acquired at two different views or one video (image sequence) taken by 
one single moving camera, we need to solve the feature correspondence problem to 
each synchronized image pair of two views or the image pair selected from single 
mobile camera, which can be thought as the most important step in stereo imaging 
with uncalibrated camera(s). With the Gabor-filter based features, we develop an 
improved version of the Elastic Graph Matching (EGM) method to identify the 
correspondence to the image pair. EGM [3], [4] has been applied successfully in 
many applications. But, due to the possible arbitrary relative position between the 
sensors, different camera settings, and different distances to the scene of interest, 
the conventional EGM methods may never converge to the correct position  
because of the position, orientation, and scale difference between the two images of 
the pair, and thus we propose to roughly match the image pair first, and then use 
EGM method to tune the matching result further. The matching between two images 
with unknown rotation and size can be formulated using a non-orthogonal image 
expansion approach [5]. One important issue in stereo matching is that the same 
object might have different 2D projections at different viewpoints. Here, we  
assume the difference of the projections is not big. The assumption is reasonable to 
most cases, which is based on the fact that a single moving camera has high frame 
rate (>15frames/sec) or the inspected scene is far away from the two different- 
view cameras. For small or middle-level shape changes, called shape deformation, 
our modified EGM can work efficiently because of the philosophy of EGM  
which is designed specially for the deformed-shape matching. Note that to 
guarantee the correctness of using this modified EGM, we require the image pair 
for stereo imaging must have at least ½ overlap and the EGM is only applied  
to overlap. 

The main steps of feature correspondence are shown below: 

Step 1: Find approximate position: We use the novel template matching with 
unknown rotation and size parameter [5] to identify the initial 
correspondence/matching between a target and the template of reference 
image/database. From the correspondences, some corresponding pairs of pixels from 
target and template are selected as features whose magnitudes of the jets are 
obviously larger than that of other pixels.  
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Step 2: Verify position: We first average the magnitudes of the jets of each 
feature point. The jets to each pixel are termed as “bunch”.  Then, we assign the 
average value to the processed bunch and compute the similarity function aS  without 

phase comparison. 
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If the similarity is larger than a predefined threshold, the result by template 
matching is acceptable. Otherwise, error message will be generated and the EGM 
process is stopped. 

Step 3: Refine position and size: To the current bunch graph, we vary its position 
and size to tune the correspondence. For each bunch, we check the four different 
pixels ( 3± , 3± ) displaced from its corresponded position in the target image. At each 
position, we check two different sizes with a factor of 1.2 smaller or larger the bunch 
graph.    

Step 4: Refine aspect ratio: A similar relaxation process as described in Step 3 is 
performed. But at this time, we apply the operation only to x and y dimensions 
respectively.  

2.3   Stereo Image Creation 

It is not a trivial problem to create a pair of stereo images, even after finding the 
feature correspondence of the two images from uncalibrated cameras. With the 
knowledge of the correspondence of the two images, we need to rectify the two 
images of general viewpoints to form a stereo pair so that the stereo images  look the 
same as if they were taken from a true stereo camera system. Conventional image 
rectification research focuses primarily only on making stereo matching easier but 
pays little attention to whether the rectified images form a natural stereo pair like 
those from a stereo camera (which is critical to the 3D display application). Here we 
present a rectification scheme that makes the rectified images look like a true stereo 
image that satisfies the constraints of the 3D display, and hence enables stereoscopic 
visualization of two general views of the same scene.  

2.3.1   Standard Stereo System 
We first consider the standard stereo setup, as shown in Fig. 3, which satisfies the 
following constraints: 
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1) The two optical axes are parallel and perpendicular 
to the baseline.  

2) The two cameras have the same intrinsic parameters. 
3) Two image planes are aligned, which means that the 

x axes of the two images are parallel to the baseline. 
 
The stereo imaging for standard stereo system can be 
found in many references and text books. 
 
2.3.2   Solution to Uncalibrated Camera 
Here we propose an efficient algorithm for constructing a 
stereo image from two different-view images. For any two video frames or two 
different-view images, the corresponding camera(s) setup may vary or are different 
during data acquisition and the constraints listed above may not be satisfied anymore. 
Therefore, our task of stereo imaging can be defined as rectifying the images so that 
they appear to come from a standard stereo camera. It can be easily shown that, for 
pure rotation or any internal parameter change, there exists a homography 
transformation for image rectification, which means that we do not have to translate 
the cameras directly to set a stereo camera (it is not feasible in real life), but we can 
achieve this by rectifying the images with a homography transformation. That is to 
say, we can “rotate” and “change camera matrix” by applying a proper homography 
to the two images, so that the two images are transformed to a stereo pair identical to 
one captured by a standard stereo camera. In summary, our problem of constructing a 
stereo image from a single moving camera can be defined as: Given two video frames 
captured at two general viewpoints, called “Camera 1” and “Camera 2” as illustrated 
in Fig. 4 (a), we aim at getting a true stereo pair from these two images through image 
rectification. The rectification process can be broken down into two steps. First, by 
finding and applying a homography to each image, we transform these two images to 
the new ones, which are identical to the ones captured by two parallel cameras, as 
illustrated in Fig. 4 (b). Second, we adjust the wide or narrow baseline of the two 
parallel cameras to a proper value (say standard base line) by translating the new 
images with a proper value. Thus, the desired stereo pair is constructed in Fig. 4 (c). 

   
(a) Two general image plane           (b) Rectified image planes     (c) Stereo image pair with proper baseline 

Fig. 4. Image Rectification 

•  Transforming Each Image By Its Homography 
In this case, the epipolar constraint [7] is followed. That is, after rectification, we 
should have the following properties: (1) Any epipolar line in each image should be 
horizontal. This means that the epipole is at ( ,0,0)Tk . (2)The corresponding epipolar 
lines should be the same. This means that, given two corresponding epipolar  
lines { , '}l l  such that ' [ ]l F k l×= , 'l should equal to l . There are already some 

 
Fig. 3. A standard stereo 
setup 
 

C1 C2 

Optical Axis 
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methods [7-11] for stereo imaging based on multi-view geometry. Here, we give a 
very concise description for stereo imaging which is the summary of the above 
methods. To make the stereo images look like standard stereo setup as much as 
possible, we give the following major steps for stereo image generation: 
 
Algorithm. Stereo Image Generation from Uncalibrated Camera  
Step 1. Estimate fundamental matrix F which represents the difference between the 

two images 
Step 2. Compute the rectification matrix H2 for the second image  
Step 3. Compute the rectification matrix H1 for the first image 
Step 4. Rectify each pixel of the two selected images by multiplying H1 and H2 

respectively to generate wide-baseline stereo pair 
Step 5. Compute the average Z value of the center part of image and translate image 

to configure a proper baseline for 3D display 

 
• Improving Stereo Pair Quality By Accurately Computing {a, b, c} 
In the stereo imaging via multi-view geometry, matrix F and H2 can be calculated 
accurately, according to [7-11]. But, for H1, we need to estimate the matrix AH , 

which is the unknown component of H1 in the form of )01,0;0,1,0;,,( cba . In 

conventional methods, such as [7-11], solving for AH  is not clearly addressed. 
Sometime, a solution would be given, but is only suitable to stereo matching, and 
therefore not applicable to our case. We have to develop some criteria to determine 
the vector ( ,  a b , c ) more accurately while still being suitable to our case. 
Conventional methods use a criterion that minimizes the disparity of the selected 
point pairs for stereo matching. This criterion cannot be used for our case as we want 
the results undistorted with respect to a standard stereo pair. Therefore, we propose to 
use a new minimization criterion to estimate vector ( ,  a b , c ). First, we first segment 
the image pair into many regions according to the image homogeneity. Second, we 
select some feature points in the first image, such as edge points, from each region 
and find their correspondence in the second image. Third, because the feature points 
with same depth in the same region have same disparity, we formulize a minimization 
equation to compute ( ,  a b , c ).      

∈
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Here pA  is a set of points such that for , pi j A∈ , ix  and jx  have the same depth and 

in the same image. ix  and '
ix  is the corresponding pair in the two image.  

3   Experimental Results 

Extensive tests including indoor/outdoor scenarios were performed to validate the 
efficiency of our proposed algorithm. 3D video generation for moving target 
inspection was also performed. Note that all the stereo results illustrated in the 
paper are in red-cyan format. Reader can perceive these 3D images with regular 
red-cyan 3D glasses.  
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3.1   Tests with a Single Moving Camera 

A set of multiple-view images was taken by a hand-hold moving camera. The 
resolution of the true-color image is 1024x768 and the internal parameters (such as 
focal length, aspect ratio, lens, shutter speed, etc.) of camera are unknown. The 
relative position and the orientation of the multi-views were not calculated.  

•  Test in Indoor Environment 
Indoor tests were performed with a mobile camera. Fig. 5 shows the process and results. 
It can be seen (with 3D glasses) that the stereo image has been successfully created. 

 

Fig. 5. Example of indoor test 

•   Test in Outdoor Environment 
Outdoor images were taken with objects hiding in grasses. Fig. 6 shows that a 3D 
image was successfully created. 3D effect of the scene can be easily perceived with 
3D glasses.  

 

Fig. 6. Test in out-door environment 

•  Test on Depth Perception 
Two images at two different viewpoints were captured and then a stereo image was 
formed. Fig. 7 illustrates the result. 
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Fig. 7. Test on 3D depth perception 

3.2   Moving Target Inspection with Two Video Cameras 

Several video clips were captured by two ordinary video camcorders set around the 
scene of interest. Each video clip is at least 15 seconds long. The resolution of the 
color video is set as 640x480 and the internal parameters (such as focal length, aspect 
ratio, lens, shutter speed, etc.) of camcorder are unknown. The relative position and 
orientation of two cameras are also uncalculated. In the test, a moving target (pen) 
was moving forward and backward between two hanging balls. The Z-direction 
movement can not be observed in 2D video. But, with 3D video, the Z-direction 
movement can be easily perceived. Fig. 8 and Fig. 9 illustrate the 3D results. 

 

Fig. 8. Pen moving toward front: (a), (b), and (c) are red-cyan stereo images for different time 
instances 

 

Fig. 9. Pen moving toward back: (a), (b), and (c) are red-cyan stereo images for different time 
instances 

(a) (b) (c) 

(b) (c) (a) 
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4   Conclusions 

We have presented a systematic approach for stereo image generation. The approach 
consists of robust feature generation via Gabor filters, accurate feature 
correspondence by EGM, and reliable stereo image creation. Tests with real-life data 
clearly demonstrated the efficacy of our proposed method. 
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Abstract. Immersive virtual environments with life-like interaction ca-
pabilities have very demanding requirements including high precision
and processing speed. These issues raise many challenges for computer
vision-based motion estimation algorithms. In this study, we consider
the problem of hand tracking using multiple cameras and estimating its
3D global pose (i.e., position and orientation of the palm). Our interest
is in developing an accurate and robust algorithm to be employed in
an immersive virtual training environment, called ”Virtual GloveboX”
(VGX) [1], which is currently under development at NASA Ames. In
this context, we present a marker-based, hand tracking and 3D global
pose estimation algorithm that operates in a controlled, multi-camera,
environment built to track the user’s hand inside VGX. The key idea of
the proposed algorithm is tracking the 3D position and orientation of an
elliptical marker placed on the dorsal part of the hand using model-based
tracking approaches and active camera selection. It should be noted that,
the use of markers is well justified in the context of our application since
VGX naturally allows for the use of gloves without disrupting the fidelity
of the interaction. Our experimental results and comparisons illustrate
that the proposed approach is more accurate and robust than related
approaches. A byproduct of our multi-camera ellipse tracking algorithm
is that, with only minor modifications, the same algorithm can be used
to automatically re-calibrate (i.e., fine-tune) the extrinsic parameters of
a multi-camera system leading to more accurate pose estimates.

1 Introduction

Virtual environments (VEs) should provide effective human computer interac-
tion (HCI) for deployment in applications involving complex interaction tasks.
In these applications, users should be supplied with sophisticated interfaces al-
lowing them to navigate in the VE, select objects, and manipulate them. Imple-
menting such interfaces raises challenging research issues including the issue of
providing effective input/output. At the input level, new modalities are neces-
sary to allow natural interaction based on direct sensing of the hands, eye-gaze,
head or even the whole body.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 122–132, 2006.
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Computer vision (CV) has a distinctive role as a direct sensing method be-
cause of its non-intrusive, non-contact nature; on the other hand, it is also facing
various challenges in terms of precision, robustness and processing speed require-
ments. Various solutions have been proposed to support simple applications (i.e.,
no intricate object manipulation) based on gesture classification and rough esti-
mates of almost rigid hand motion. However, systems that can support advanced
VE applications with life-like interaction requirements have yet to come. Appli-
cations such as immersive training or surgical simulations require very accurate
and high frequency estimates of the 3D pose of the hand in a view indepen-
dent fashion (i.e., the user need not even know where the cameras are located).
Recovering the full degrees of freedom (DOF) hand motion from images with
unavoidable self-occlusions is a very challenging and computationally intensive
problem [2][3].

This study is part of an effort to improve the fidelity of interaction in an
immersive virtual environment, called ”Virtual GloveboX” (VGX) [1], which
is currently under development at NASA Ames (see Fig. 1). Our objective is
to employ computer vision-based hand motion capture. VGX is being designed
to assist in training astronauts to conduct technically challenging life-science
experiments in a glovebox aboard the International Space Station. It integrates
high-fidelity graphics, force-feedback devices, and real-time computer simulation
engines to achieve an immersive training environment.

Fig. 1. Virtual Glove Box: A stereoscopic display station provides a high-resolution
immersive environment corresponding to a glovebox facility. The users interact with
virtual objects using datagloves.

The effectiveness of VGX as a training tool depends both on precision of the
sensed motion and ease of use. The current interface of VGX uses off-the-shelf
tracking and haptic feedback devices which contain cumbersome elements such
as wired gloves, tethered magnetic trackers, and haptic armatures inside the
workspace. All of these hinder the ease and naturalness with which the user
can interact with the computer controlled environment and calibration of each
measured degree of freedom is time consuming and imprecise. Further research
is thus required to reduce the need for encumbered interface devices and increase
the value of VGX as a training tool.
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A fully generic unconstrained and precise solution to the hand pose estimation
is not available yet. Existing unadorned hand tracking systems are mostly limited
to a single camera and implicitly or explicitly accompanied with a number of
viewing constraints to minimize self-occlusions [2][3]. Obviously, such approaches
are not acceptable in this and similar applications. Although some marker-based
approaches are available, precision issues are often not addressed in these studies.

In this paper, we present an marker-based 3D global hand pose (i.e., position
and orientation of the palm) estimation system that operates in a multi-camera
environment built to track the user’s hand inside the VGX. The use of markers
is well justified in the context of our application since VGX naturally allows for
the use of gloves without disrupting the fidelity of the interaction. Moreover,
users are not looking at their hands during the simulation but at graphical hand
models displayed in the virtual environment (see Fig. 1).

Estimating the global pose of the hand has several advantages. First, it re-
duces the dimensionality of hand pose estimation by 6 DOF. Second, it is a
requirement for inverse kinematics-based methods. Finally, for some interfaces
(e.g. navigation in VE), estimating the rigid motion of the hand is sufficient to
generate control signals for the application. Our experimental results illustrate
that the proposed approach is more accurate and robust than related approaches.
A byproduct of our multi-camera ellipse tracking algorithm is that, with only mi-
nor modifications, the same algorithm can be used to automatically re-calibrate
(i.e., fine-tune) the extrinsic parameters of a multi-camera system. In our case,
camera re-calibration leads to improved hand pose estimates.

The rest of the paper is organized as follows: in the next Section, we present a
brief review of previous work on marker-based hand pose estimation approaches.
In Section 3, we describe the multiple camera environment used track the hand
in the context of our application. In Sections 4 and 5, we provide detailed de-
scriptions of the multiple camera ellipse tracking algorithm and its application
to camera re-calibration. Section 6 presents our experimental results and com-
parisons. Finally, Section 7 concludes this study.

2 Previous Work

Marker-based hand tracking is not a very common approach due its intru-
sive nature. Nevertheless, there have been many attempts using point markers
[4,5,6,7,8,9]. Placing a number of markers on the dorsal surface of the hand,
fingertips and/or joints can provide valuable information that can be used to
estimate joint angles by solving an inverse kinematics problem. In [6], Holden
applied model-based tracking using fingertip and joint markers for ASL recogni-
tion. Lien et al. [7] and Lee [8] used stereo cameras to extract the 3D locations
of a number of markers on the palm and fingertips and then applied Genetic Al-
gorithms (GAs) to estimate the orientation of the palm. The state of the fingers
was estimated using inverse kinematics and regression techniques. In [4], closed
form solutions were derived to calculate the angles from 2D marker positions
under orthographic projection. In a more recent study, Kim et al. [9] used white
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fingertip markers under black-light and stereo cameras to extract 3D fingertip
locations for gesture classification.

The main problem with point markers is their susceptibility to occlusions and
localization difficulties. Because of the proximity and flexibility of fingers, loosing
some of the markers completely or collision of the markers on the image plane are
very likely events that increase the complexity of tracking [6]. Moreover, when
the hand is allowed to move in a relatively large area, it is not feasible to use point
markers due to localization errors which affect the precision of pose estimates.
In the case of fingers, it is not quite possible to use other than point or line
markers, which do not guarantee good precision and robustness due to practical
resolution constraints and abundance of these features in images. The palm,
however, is large enough allowing the use of more robust markers. Among them,
conics have often proved to be good candidates due to several following reasons
[10]. First, like points or straight lines, they are preserved under perspective and
projective transformations. Second, conics are more compact primitives which
contain global information of an object’s pose. Finally, a conic can be represented
by a symmetric matrix which is easy to manipulate. In some cases, a closed-form
solution [10,11] can be obtained, avoiding more expensive non-linear iterative
techniques.

To the best of our knowledge, Maggioni et al. [12] is the only study using
conics, (i.e., two concentric circular markers) for estimating global hand pose
in 3D. Viewing the markers from a single camera is sufficient to obtain the
orientation and position of the palm.

3 Operational Environment

The glovebox environment has some features that can be easily exploited by
vision-based algorithms for hand tracking. First, the users are expected to wear
gloves, which enables the use of markers naturally. Second, hand motion is re-
stricted to a relatively small area inside the glovebox. This justifies the use of
multiple cameras to deal with occlusions and controlled lighting along with uni-
form background to enable segmentation of the hands. Taking these facts into
consideration, we have built a mock-up of VGX to perform our experiments as
shown in Figure 3.

Specifically, the VGX mock-up contains 8 hardware-synchronized cameras lo-
cated at the corners of the box, several fluorescent lights, and a white background
to help segmenting the hands. The intrinsic parameters of the cameras and radial
distortion parameters were calibrated using Matlab’s Calibration Toolbox [13].
To estimate the extrinsic camera parameters, Svoboda’s [14] multiple camera
self-calibration procedure was used.

During simulation, users wear a glove with an elliptical marker placed on the
dorsal part of the palm. In principle, it is possible to estimate the pose of the
hand using two coplanar ellipses [10], however, resolution limitations combined
with un-constrained hand motion can make it difficult to locate each ellipse
separately. Therefore, we decided to use a single ellipse, which would need to be



126 J. Usabiaga et al.

visible from at least two cameras for estimating its pose [11]. Camera placement
in the VGX mock-up satisfies this visibility constraint.

4 Multiple-Camera Ellipse Tracking

Ellipse pose estimation is a well studied topic and there exist several efficient al-
gorithms for estimating pose information using one or two cameras under certain
conditions. In our initial experiments, we found Quan’s algorithm [11] using two
views of a single ellipse to be very efficient, fast, and accurate. This algorithm
deals with the problem of conic correspondences and reconstruction in 3D from
two views using projective properties of quadric surfaces. A closed-form solution
for both projective and Euclidean reconstruction of conics as well as a mecha-
nism to select the correct two ellipses in each of the two images are described
in [11].

The use of multiple cameras was deemed necessary in our application to allow
hand tracking independent of viewpoint. In our system, the elliptical marker
could be visible from up to four cameras. Although not all of the cameras would
contain reliable information for pose estimation (i.e., see Section 4.1), it would
be possible in general to use information from more than two cameras to im-
prove pose estimation and robustness. Therefore, we have developed a model-
based hand tracking approach that integrates information from any number of
cameras.

In model-based tracking, at each frame of an image sequence, a search in
the parameter space is performed to find the best parameters that minimize a
matching error between groups of model features and groups of features extracted
from the input images. In the case of multiple cameras, the errors over all the
available views are accumulated. The search is often initiated by a prediction
based on the dynamics of the system. In the first frame, however, a prediction
is not available and a separate initialization procedure is required.

In our system, we have used Quan’s algorithm [11] for initialization purposes.
There are many different ways to conducting the search or equivalently mini-
mize the matching error. Here, we present an algorithm based on Martin and
Horaud’s [15] extension of Lowe’s model-based pose estimation algorithm [16].
Specifically, there are three main processing steps in our algorithm: (1) active
camera selection, where the best cameras for pose estimation are determined, (2)
matching error computation, where the similarity between the projected model
ellipse and the image features is calculated, and (3) pose estimation, where the
matching error is minimized.

4.1 Active Camera Selection

We use a number of criteria to select the ”best” cameras for pose estimation.
First, we select only those cameras that provide us with images of the ellipse at a
satisfactory resolution. If the ellipse is too far away, large changes in its pose will
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only cause small image displacements. The criterion used to test this constraint
is the area covered by the ellipse in the image. Second, we try to avoid selecting
cameras that provide an image where the contour of the ellipse is too close to
the silhouette of the hand. The criterion used for this is the angle between the
normal to the ellipse and the vector that goes from the center of the camera to
the center of the ellipse. Finally, we do not consider cameras that provide images
where the ellipse is completely or partially occluded.

4.2 Computation of Matching Error

The ellipse model is represented by a set of uniformly sampled points on its
boundary. For each active camera i, a signed error vector ei is computed by
(1) projecting the m points onto the camera’s image plane using the current
prediction of the pose of the ellipse, and (2) searching for the maximum gradient
along the normal to the projected contour at the sampled points. The errors of
all the points are concatenated to form a vector:

ei =
[
ei
1, ..., ei

m

]T
(1)

where i denotes camera i. It should be noted that, a large number of sample
points m would provide a better estimate; however, it would also slow down the
system significantly.

4.3 Pose Estimation

Pose estimation corresponds to finding the pose parameters T (i.e., position
and orientation of the ellipse) that minimize the matching error. Many studies
[16] [15] employ Newton’s method which subtracts a vector of corrections, x
from the current estimate for T at each iteration. If T k is the parameter vector
corresponding to iteration k, then,

T k+1 = T k − x (2)

By linearizing the system at the current estimate, the correction vector is
calculated by solving an over-determined system of equations:

e = Jx (3)

where J is the Jacobian. The total error vector e is is obtained by weighting and
concatenating the error vectors (see Eq. 1) of the active cameras given by:

e =
[
w1e1, ..., wnen

]T
(4)

where the weights wi are calculated as a combination of (1) calibration error
(i.e., the larger the calibration error the smaller the weight), and (2) area (i.e.,
the larger the area covered by the ellipse on this camera’s image the larger the
weight). Weighting mainly helps to reduce the number of iterations required by
the algorithm to converge an it does not really improve results.
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5 Extrinsic Parameters Re-calibration

Multiple camera calibration assuming an arbitrary camera configuration is a dif-
ficult problem. Svoboda’s [14] approach provides a relatively practical solution.
Instead of a complex calibration pattern, it uses a colored light source (e.g.,
a small LED in our case), which is visible by many cameras simultaneously.
Calibration is performed by moving the light source arbitrarily inside the area
covered by the cameras. The trajectory of the light source as perceived from
different cameras provides the necessary information for calibration purposes.
However, this process is rather slow, it requires some user interaction, and it
does not always guarantee good results since it depends on how well the trajec-
tory of the light source covers the area enclosed by the cameras.

Re-calibration of a multi-camera system could be necessary for many reasons,
for example, when the cameras move. In this case, even a slight variation in the
position or orientation of the cameras could affect pose estimation. To update
and further optimize the extrinsic camera parameters, we have employed our
ellipse tracking algorithm. Specifically, re-calibration works as follows:

1. For all frames run the tracking algorithm and record (i) the pose of the
ellipse and (ii) which cameras are active for each frame (see Table 1, top).

2. For each camera, load the poses, images, and frames p where this camera
was active; we will be referring to these frames as active frames (see Table
1 bottom).

3. Using this information, compute the errors as explained in 4.2, however,
instead of putting them in a vector, add their absolute values (m is the
number of samples per frame):

ei =
p∑

k=1

m∑
j=1

| ei
kj(x

i) | (5)

where k indicates the frame number, j indicates the sample number, and
i indicates the camera number. eikj is a function of the extrinsic camera
parameters xi. The Nelder-Mead’s Simplex algorithm [17] was used to find
the Δxi that minimizes the error ei.

4. Go to step 1 until the error is smaller than a threshold or a maximum number
of iterations has been reached.

6 Experimental Results

In this section, we present quantitative and visual experimental results to eval-
uate the pose estimation and re-calibration algorithms. In all the experiments,
we assumed that the ellipse was placed flat on the dorsal part of the hand (see
Fig. 2).
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Table 1. Example for a sequence with 999 frames. Top Recover the ellipse pose for
all frames. Bottom Run re-calibration for all cameras (A = Active camera/frame; I
= Inactive camera/frame).

1- Run ellipse tracking for whole training sequence

Frame Camera Ellipse pose
⇓ 0 1 . . . 7 Orientation Position
1 I I . . . A → θ1 p1

2 I I . . . A → θ2 p2

...
... →

...
...

997 A A . . . I → θ997 p997

998 A A . . . I → θ998 p998

999 A A . . . I → θ999 p999

Total 300 351 . . . 415

2- Run re-calibration for all cameras

Camera Frame Extrinsic Parameters
⇓ 0 1 . . . 999 Rotation Translation
0 I I A → R0 t0
1 I I A → R1 t1
2 I I I → R2 t2
3 I I . . . I → R3 t3
4 A A I → R4 t4
5 I I A → R5 t5
6 I I A → R6 t6
7 A A I → R7 t7

6.1 Accuracy of Ellipse Pose Estimation

To evaluate the accuracy of pose estimation, we compared our algorithm with
Quan’s ellipse pose estimation algorithm, which, in our opinion, is the best avail-
able algorithm for a two camera system. To be able to use Quan’s algorithm in
our multi-camera environment, we used the same criteria given in section 4.1 for
selecting the best two cameras.

Fig. 2 shows the re-projection error (i.e., matching error given in section 4.2)
for both algorithms. The square wave shaped curve on the top of the graph indi-
cates the number of active cameras at each frame. Two interesting observations
can be made:

1. When only two cameras are active in the case of the multiple-camera al-
gorithm, both algorithms give very close results. However, when more than
two cameras are active, the performance of the multiple-camera algorithm
is significantly better.
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Fig. 2. The re-projection error of Quan’s algorithm and our algorithm
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Fig. 3. (Left) Sum of squares differences of position coordinates between two and
multiple-camera algorithms. (Right) Re-projection of the ellipse on the input images
for frame 42 of a sequence. The images where the re-projected ellipse is drawn in green
correspond to the active cameras.

2. Although the re-projection error is smaller in the multiple-camera case, it
increases with the number of cameras. The reason is that there are more
calibration errors involved as the number of cameras increases.

Fig. 3(Left) shows the differences in the position estimates of the two algo-
rithms. Interestingly enough, these differences resemble the differences in the
re-projection error shown in Fig. 2. Overall, we can conclude that when both
algorithms use the same two cameras, the results are very similar, however, when
more cameras are available, the multiple-camera approach yields more accurate
position estimates which implies lower re-projection error. Similar observations
can be made for the orientation estimates of the ellipse.

Finally, Fig. 3(Right) shows several examples to demonstrate our multiple-
camera algorithm in the case of three active cameras.
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Fig. 4. The re-projection error on a testing sequence with and without re-calibration.
(Left) Average re-projection error per frame for the testing sequence computed with the
extrinsic parameters iterations 0, 4 and 9. (Right) Average error of the whole sequence
per camera.

6.2 Processing Speed

A disadvantage of the multiple camera tracking system is the higher computa-
tional requirements due to its iterative nature. Quan’s algorithm processes each
frame in about 4 ms. The multiple camera algorithm deals with more cameras
and computational cost depends linearly on the number of sampled points of
the ellipse used for re-projection. Using a rather conservative number of samples
(100) and un-optimized code, the processing speed was about 150 ms per frame.
The most expensive part of the algorithm is the matching error calculation step,
which is repeated a few times at each frame.

6.3 Effects of Re-calibration

The results of the multiple-camera algorithm on a sequence taken in the VGX
were used to re-calibrate the extrinsic camera parameters. To asses the effects
of re-calibration, the modified extrinsic parameters were used to estimate the
pose parameters on a different test sequence. Fig. 4 shows the re-projection
errors obtained with and without re-calibration assuming different number of
iterations. As it can be observed, lack of re-calibration increases the re-projection
error as number of active cameras increases. However, re-calibration reduces the
dependency of the re-projection error on the number of active cameras, to the
point where it is almost constant.

7 Conclusion and Further Work

We have presented a multiple camera, model-based ellipse tracking algorithm
for global hand-pose estimation in an immersive training environment. We have
also shown how to employ the proposed algorithm for re-calibrating the extrinsic
parameters of a multi-camera system. Our experimental results illustrate the
effectiveness of the proposed approach both in terms of pose estimation and re-
calibration. For future work, we plan to consider the problem of estimating the
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full DOF of the hand. Estimating the global pose of the hand is an important
step in this process.
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Abstract. This paper describes an idea for determining self-organization using 
visual land marks. The critical geometric dimensions of a pentagon are used 
here to locate the relative position of the mobile robot with respect to the 
pattern. This method has the advantages of simplicity and flexibility. This 
pentagon is also provided with a unique identification, using invariant features 
and colors that enable the system to find the absolute location of the patterns. 
This algorithm determines both the correspondence between observed 
landmarks and a stored sequence, computes the absolute location of the 
observer using those correspondences, and calculates relative position from a 
pentagon using its five vertices. The algorithm has been implemented and 
tested. In several trials it computes location accurate to within 5.4 centimeters 
in less than 0.3 second. 

Keywords: pentagon, camera calibration, self-localization, AGV(Autonomous 
Guided Vehicle). 

1   Introduction 

Self-localization is important for AGV. There have been diverse researches focused 
on the problem of indoor environment [1, 2]. The self-localization should not 
accumulate position errors, so that ultrasonic sensor and vision systems are preferred 
to dead-reckoning systems. Because CCD camera becomes cheaper and the vision 
system does not depend upon the surface characteristics of irregular reflectance 
differently from ultra sonic sensors, it will become a popular modality. But the major 
difficulty of vision sensor is originated from ambiguity due to illumination changes 
and geometric distortions. To overcome such inherent difficulties in the vision 
system, one can rely on sophisticated image analysis algorithms. Such approach, 
however, inevitably increases complexity and makes the system slow. Rather 
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landmark-based approach is simple and robust even though its application is limited 
to well-defined indoor environments. In this article, we propose colored pentagons as 
landmarks. There can be many types of landmarks such as a circle with vertical bars, 
and colored rectangles [1]. These methods, however, may provide some constraints to 
the camera attached to an AGV. For example, the optical axis should pass the center 
of a circle in the former approach, and the height of camera should be aligned with 
that of landmark in the latter one. In such sense, proposed scheme is more flexible, 
because the only constraint is the landmark should be located in the field of view of a 
camera. 

2   Proposed Landmarks 

A pentagon on a plane has invariant features to perspective transforms as shown in 
Fig. 1 [3]. Equation (1) represents invariant features defined by perspective 
transforms. 

 

Fig. 1. Perspective Transform of a Pentagon 

 

 
(1) 

where matricies Mijk=(Pi, Pj, Pk) and mijk=(pi, pj, pk), pi and pi are the coordinates of a 
pair of corresponding vertices, and |Mijk| is the determinant of Mijk. In order to 
simplify image processing and recognition steps, we impose following conditions for 
the shape of pentagons. 

1) Distances of invariant features among pentagons are as large as possible. 
2) Each pentagon has the same area. 
3) Inner or outer angle at a vertex should not be close to 0 or 180 degrees. 

Upon the above conditions, we recommend 5 pentagons as shown in Fig. 2. Note that 
rotated or mirrored versions of the pentagons can also be included in the landmark. 
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Fig. 2. Five Types of Basic Pentagons 

Color is another factor to discriminate a landmark. We propose the colors of 
landmarks with different hues which are highly saturated so that the illumination 
change may not affect the differentiation. Note that the shapes and colors can be 
flexibly selected according to the working environment of AGV. 

3 Image Processing and Self-localization 

Assume that the internal parameters including camera constant (f) and scale factors 
of the camera are accurately calibrated before running in the environment. Then the 
camera is fixed to an AGV and its viewing direction is assumed to be oriented to 
the wall where landmarks are attached. During AGV running, the procedures to 
recognize the shape and color of a landmark and eventually to find self-location are 
as follows. 
 
Step 1: Segment the current-captured frame to find a pentagon. 
Step 2: Find vertexes of the pentagon. 
Step 3: Recognize the shape and color of the pentagon to differentiate global location. 
Step 4: Calibrate camera to determine the relative position and orientation of mobile 
object. 
 
In Step 1, the intensity component from a color image is extracted and its edge map is 
taken by Canny edge detector. Every edge component whose number of pixels is 
greater than a threshold is labeled in the edge map. Again, the curvatures of pixels 
along each labeled edge component are calculated in order to verify whether it is on a 
boundary of pentagon or not. Note that there are five peaks of curvatures 
corresponding to the vertexes of a pentagon. Once the boundary of a pentagon is 
found, the pixel positions between the consecutive peaks are approximated by LMS 
(least mean square) fitting and a vertex of the pentagon is obtained by the intersection 
of two successive line equations. In Step 3, the invariant features of the pentagon are 
calculated and M uniform samples inside its boundary are taken to obtain the mode of 
hue distribution. Those features and the mode of hue are compared with the stored 
models to differentiate the shape and color of the pentagon. This gives the global 
location of a mobile object.  

The camera model is defined by the equations. [4] 
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Equation (2), (3), and (4) represents the absolute orientation of camera coordinates, 
the perspectives transform, and the mapping from the image plane to the  
pixel coordinates. There are two types of camera calibration. The one is internal 
camera calibration that is done before running. The camera constant (f), scale 
factors (ScaleX and ScaleY), and displacements (Xce and Yce) are calculated  
using a reference grid pattern before running. Once those internal parameters are 
fixed, the external parameters associated with absolute transform are calculated 
using corresponding pairs of vertexes of a pentagon in Step 4. The parameters 
provides the translation amounts along x, y, and z axes and the orientation of 
camera including pan, tilt, and role. Among those parameters, the distance from  
a landmark and the pan angle is important to determine the heading direction of  
an AGV.  

4  Experimental Results 

In the experiment, we chose 15 shapes and 7 colors for making landmarks. That 
means there are 15x7 different landmarks. In 15 shapes, rotated or mirrored 
versions of the basic pentagons in Fig. 3 are also included. Corresponding hues of 
colors are given in Table 1. We took 2058 frames with JVC900Kr Camera, among 
which 1248 frames included at least one pentagon. For acquisition of images, Table 
2 shows the performance of landmark detection by the image processing. Even 
though there are some missing frames that has at least one pentagon, the context of 
landmark sequence in the mobile environment can make it possible to determine the 
global position of AGV. Fig. 4 shows the clusters of pentagons in the invariant 
feature space. Note that the clusters are sufficiently far apart so that the nearest 
neighbor classification is well suited to recognize a pentagon. The internal 
parameters before running are estimated by Tsai’s method, and listed in Table 3. In 
the running mode, we can estimate external parameters. Among them, the pan angle 
and the distance from the wall are important. The calibration by Tsai’s method with 
five pairs of correspondence provided the results shown in Fig. 5 and Fig. 6. For the 
camera, the effective area in which the relative orientation and distance from wall 
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Fig. 3. Mirrored and Rotated Versions of Basic Pentagons 

 

Fig. 4. Clusters of Pentagons in Invariant Feature Space 

 

Fig. 5. Estimated amount of Pan(Ave. Difference 0.82 degree, Std Dev. of Difference 0.87 
degree at Amount of Tilt = -0.5 degree, Role = 0, , tx=240, ty=-100, tz=1600) 
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Fig. 6. Estimated Distance from Wall (Ave. Difference =7.75cm, Std. Dev. of Difference = 
5.351cm at Tilt -Tilt=-7, Pan=-3, Role=0.5, X0=30, Y0=280) 

 

Fig. 7. Effective Area of Measurements of Pan and Distance 

are stable enough given in Fig. 7. During the running, the calculated AGV positions 
are displayed, and Fig. 8 shows a part of locus of AGV. The time required to capture 
a frame and to estimate positions with relative angle was about 0.3 sec in Pentium 4 
(2.4GHz). 
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Fig. 8. Part of Self-localization in Corridor 

Table 1. Hue of Colors of Pentagons 

Colors 
Minimum of Hue 

(degree) 
Maximum of Hue 

(degree) 

1 10 25 

2 45 55 
3 62 75 
4 90 100 
5 110 125 
6 135 150 
7 170 180 

Table 2. Detection Performance of Landmarks expressed by a confusion matrix 

Real 
Detected 

Frame with 
pentagon 

Frame Without 
pentagon 

Total 

Frame with 
pentagon 

1107 141 1248 

Frame without 
pentagon 

0 810 810 
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Table 3. Estimated Internal Parameters 

 Eastimated Error Ratio 

Focal Length 
focus×ScaleX : 977.55503 
focus×ScaleY : 957.62681 

X axis : 3.92925 
Y axis : 3.68278 

Principal point 
Xce : 342.40179 
Yce : 210.58527 

X axis : 3.50703 
Y axis : 4.82543 

5  Conclusion 

This article proposes the colored pentagons as landmarks for self-localization of 
autonomous guided vehicle (AGV). This vision-based method can provide simple, 
robust and flexible localization of global position as well as relative orientation of 
AGV, because the invariance of colors and pentagons to the illumination changes and 
geometric distortions 
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Abstract. This paper describes a novel method for the industrial inspection of 
ophthalmic contact lenses in a time constrained production line environment. 
We discuss the background to this problem, look at previous solutions and rele-
vant allied work before describing our system. An overview of the system is 
given together with detailed descriptions of the algorithms used to perform the 
image processing, classification and inspection system. We conclude with a 
preliminary assessment of the system performance and discuss future work 
needed to complete the system. 

1   Introduction 

Industrial inspection is a vital part of the manufacturing process, especially in safety 
critical products such as medical devices. In this paper we describe a novel system for 
the inspection of ophthalmic contact lenses in a time constrained production line envi-
ronment. Ophthalmic contact lenses are formed by injecting a monomer into an indi-
vidual disposable hard plastic mould, formed to give the required lens curvature. 
Once the monomer had been cured in an oven, a manufacturing machine breaks open 
the moulds and separates the lens from the mould base. It is then transferred to an 
individual window for inspection before packaging (Fig. 1). 

Due to the mechanical nature of the removal from the mould, together with occa-
sional defects in the molding process, lenses are prone to a number of manufacturing 
defects. These include: bubbles within the monomer, splits or chips in the lens due to 
poor forming or damage in removal from the mould, attached monomer or rough edge 
due to poor removal from the mould, and contamination with particles of dust or de-
bris. Since ophthalmic contact lenses are medical devices, the size and number of 
these defects must be strictly monitored and controlled. These inspection standards 
are laid down by government regulators and vary depending on the type and envis-
aged longevity of the lens. 

We seek to produce a system that will perform automated inspection of ophthalmic 
contact lenses in a manufacturing environment. It is required to perform this  
inspection task at the accuracy level of a trained human operator whilst maintaining 
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production line speeds. There have been a number of partial contact lens inspection or 
characterization systems described in the literature [1-3], as well as fault detection 
systems for other lens types [4]. However none of the systems described in the litera-
ture report the accurate fault detection and performance required for this system. 

 

Fig. 1. An example lens image 

This paper firstly provides an overview of the developed system including its inter-
action with the manufacturing equipment and human operators. This high level over-
view describes both the inspection system and allied control and monitoring software. 
We then describe in detail the methods used for processing the lens image, extracting 
relevant feature metrics, classifying fault types and comparing these classified fea-
tures with the customer’s inspection standards. The testing regime that has been im-
plemented is discussed both with reference to the accuracy of the algorithms and the 
performance of the system as a whole. 

We conclude by discussing the likely deployment of the system, work that remains 
to be completed and our work’s wider relevance to industrial inspection. 

2 System Overview 

The system is divided into two separate processes designed to be run on separate 
machines. This allows monitoring and reporting to be separate from inspection; ena-
bling remote working and multiple inspections to be running in parallel. The image 
processor contains modules to perform the full range of inspection activity and a sepa-
rate process is instigated for each camera. On a single manufacturing line it is ex-
pected that there would be multiple cameras (and hence image processors) inspecting 
lenses in parallel. Provided there is sufficient processing power it is not necessary that 
this translates to one image processor per CPU requirement; this decision would be 
taken after fully considering the desired performance of the software and the  
hardware specification of the servers available. These multiple image processors are 
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designed to be under the control of a single workstation process, run on a separate 
machine. The workstation process is responsible for set-up, display and reporting for 
the system.  This workstation connects to the image processors remotely via TCP/IP 
and hence those deploying or monitoring the system do not need to be co-located with 
the manufacturing line. 

This paper focuses primarily with the function of the image processor software; 
however we believe it is useful for the reader to understand the operation of the full 
system and its interaction with the wider manufacturing environment. A system dia-
gram can be seen in Fig. 2. 

 

 

Fig. 2. The system diagram 

Before a new ‘batch’ of lenses is to be inspected, the user must initialize the sys-
tem. This involves firstly choosing which process modules are to be used, adjusting 
the settings for each module, loading the classifiers initialization files and creating the 
inspection standards for the lenses to be compared against. In the first instance these 
setups will be created by a supervisor and on subsequent runs the operator will simply 
select the appropriate setup for the type of lens on the manufacturing line. 

Once the system is set up it may begin inspecting lenses. On the manufacturing 
line, once the lenses have been removed from their moulds but prior to being placed 
into packaging they pass below high resolution grey-scale cameras where an image of 
the lens is captured for inspection. The timing of this process is synchronized with the 
production process and is controlled by a Commercial Off The Shelf (COTS) process 
control device. This device tells the servers when a lens is under the camera and ready 
to be inspected, triggering the image processor to acquire the image and begin inspec-
tion. Whilst the image processor is inspecting the acquired image the process control-
ler monitors the elapsed inspection time to avoid schedule overrun, should an overrun 
occur a signal is sent to abort the inspection of that image and reject the lens (in these 
cases the image would be queued for an offline inspection to diagnose the system 
fault that may have occurred). In the typical case where inspection is successfully 
completed within the stipulated time the process controller is informed of the pass/fail 
decision and the lens is either transferred to packaging or rejected as appropriate. The 
pass/fail decision as well as relevant statistics (feature counts and sizes etc) are passed 
via XML to the workstation for collation and reporting.  

After a run is completed the operator can use the workstation to review the fault 
profile for that run and reprocess any images that timed out, in order to diagnose the 
system fault that caused this. During the run the workstation can be used to monitor 
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the current and historic yield and identify recurring faults that may be indicative of a 
systemic manufacturing fault. 

3 Modules 

In order to maximize future flexibility the image processor is divided into separate 
modules. Each module typically implements one task or algorithm with a well defined 
set of inputs and outputs. This design methodology allows new techniques or addi-
tional functionality to be quickly added to the system. Each of the modules developed 
for the current system are described in this section. 

3.1  Image and Lens Pre-processing 

This module comprises of a number of algorithms which must be performed immedi-
ately after image acquisition to make the lens image ready for feature detection and 
further processing. Before processing of the lens occurs a check is made on the image 
where clear background is expected to be visible. The intensity is calculated and com-
pared to standard values. If it diverges from expected values then this highlights either 
an obstructed view (i.e. debris on the window) or a failing illumination source or 
camera.  

The initial processing step is calculating the centre of the lens. This is achieved by 
detecting the edge transition at spaced points around the lens. Once a number of 
points have been found then the centre may be converged upon using simple trigo-
nometry. If no centre can be reliably found the software concludes that the lens is 
either not present or is suffering from some gross defect; in either case the steps de-
scribed in below and in sections 3.2 through 3.6 are not performed and instead the 
algorithm described in section 3.7 is invoked. 

Having detected an accurate centre for the lens it is now necessary to fit appropri-
ate ellipse parameters to describe the edge. Initially we considered using an active 
contour approach [5], however this proved overly complex for the regular shape of 
the lens. In initial tests direct fitting [6] and Constrained Hough Transforms [7, 8] 
were also judged computationally inefficient in our constrained environment with 
predictable lens shapes. The method found to be both sufficiently accurate and effi-
cient was a the Randomized Hough Transform which has been variously described [9, 
10]. Since the normal size and shape of the lens will be known for any given batch of 
lenses and that the centre has already been accurately calculated, it is possible to 
strongly constrain the RHT to very rapidly converge on accurate parameters. 

Once the centre and ellipse parameters have been accurately estimated, the real 
outer and inner edges of the lens are extracted. This is achieved by finding the transi-
tion from the darker edge to the lighter inner lens (the inner edge) and from the darker 
edge to the much lighter background (the outer edge). 

3.2 Surface Feature Detection 

Our system defines the surface area as a circular region covering the centre 90% of 
the lens. It is in this region that surface features are searched for, the special case of a 
feature extending between the surface and edge region is dealt with in section 3.3. 

To find surface features of interest a modified Canny operator [11] with a 5x5  
window is run over the entire surface region. In order to prevent small gaps creating 
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multiple features out of a single poorly defined feature the hysteresis thresholding 
stage is allowed to consider pixels in a 5x5 neighborhood rather than simply adjoining 
pixels. The Canny operator produces a binary image of feature points that will be of 
interest to us. 

   

Fig. 3. A bubble hole in the lens monomer before and after extraction 

Once the Canny operator has been used; spatially separate features are extracted 
for feature description. Starting with the uppermost pixel in the surface region we 
scan left to right working progressively downwards until we find a pixel that has been 
marked by the Canny operator as a feature pixel. This then becomes a seed point for a 
new feature. Any feature points within a 5x5 neighborhood of this pixel are also 
added as seed points for the feature and their neighborhood is examined. Once all 
adjoining pixels have been checked the scan for feature pixels continues and when a 
new feature pixel is found the extraction of neighbors is repeated to yield another 
feature. This is repeated until all surface features have been extracted into separate 
array lists containing the pixel locations. An example of a bubble in the monomer and 
the extracted feature after processing described in section 3.4 can be seen in Fig. 3. 

3.3   Edge Feature Extraction 

The edge region of the lens is defined as an annulus covering the outer 10% of the 
lens and for our purposes we also consider a small region outside of the outer edge to 
search for debris attached to the lens. 

Using the extracted ellipse parameters we ‘unwrap’ the annulus to form a rectangu-
lar image. Having formed the unwrapped image we then perform checks along the 
outer and inner edge to find small edge faults. These tests look for significant devia-
tion in the spacing between the outer and inner edges, deviation of the edge from the 
fitted ellipse and variations in intensity. 

After performing heuristic checks for faults features in the edge band are extracted 
in the same manner as described in section 3.2 with one important exception. If a 
feature extends into the surface the edge feature extractor searches the interface region 
for connecting features and merges these into one. Fig. 4 shows an edge fault in the 
original image and the same edge fault after extraction in the unwrapped edge image. 

 

  

Fig. 4. An edge fault before and after unwrapping and extraction 



146 A.I. Bazin et al. 

3.4 Feature Description 

Once we have a set of features, all stored as ordered array lists of pixels we process 
each feature to extract mathematical descriptors for classification.  

We first extract the perimeter of the feature (i.e. identify those pixels that fully en-
close the feature). We achieve this by starting with the upper left pixel of the feature 
and progressing in a clockwise direction to find the next neighboring pixel. By struc-
turing our neighbor search in a clockwise direction we can guarantee that we always 
find the outermost neighboring pixel. 

Having extracted the perimeter of the feature we then fill it for use in further 
mathematical descriptors. The fill is performed by working clockwise and filling 
between the perimeter in either an upwards or downward direction as appropriate. 
Checks are made to ensure the perimeter is not a single line at this point to ensure that 
the fill does not escape the feature. 

Given a collection of pixels representing the perimeter and filled feature we can 
then extract mathematical measures of the shape for classification. We firstly calcu-
late gross shape measures: perimeter length, area, maximum chord, minimum chord, 
dispersion and compactness [12]. Compactness is a measure of the perimeter relative 
to the area and dispersion is the ratio of the largest circle enclosed by the feature to 
the smallest circle enclosing the feature. More complex measures are produced by 
calculating the first four rotation invariant moments [13]. These moments are invari-
ant to position, size and rotation.  

We also extract information about the grey-scale intensity of the feature; mean in-
tensity and standard deviation. Additional features in the edge region have Boolean 
information appended to describe their position in the region and whether they extend 
outside of the lens or into the surface region. 

3.5 Feature Classification 

Once we have extracted mathematical information to describe our feature we then 
must classify which fault type the feature most closely resembles. To simplify this we 
split the features into three types based on their location within the lens: surface fea-
ture, edge feature, and surface feature in edge band. We do this in order to remove 
implausible classification possibilities from the set of outcomes and because the sur-
face and edge features have different feature vectors due to additional Boolean tests 
on the edge. 

A probabilistic classifier is implemented for the two groups of surface features. 
This type of classifier is used to provide additional feedback to the system for further 
analysis and diagnostics. Probabilistic classifiers output a decision confidence in addi-
tion to their decision; this is useful since it provides operators with feedback as to how 
well the classifier is performing and whether the decision is good enough to be relied 
upon. 

We implement a Bayesian probabilistic classifier based on logistic functions [14]. 
This implementation was chosen because of its high performance on continuous  
data. For our formulation we assume that the classes form a complete and mutually 
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exclusive set, and currently assume that each class is equiprobable (though this is to 
be tuned once sufficient evidence is obtained).  

The edge classifier is implemented as a C4.5 decision tree [15] trained to identify 
those faults that may be found in the edge region and other non-fault artifacts that 
may also be detected. A different implementation to the surface classifier was used 
due to the Boolean values in the edge feature vectors, making a Bayesian classifier 
unsuitable. The classifier is implemented as a java bean from Neuscience’s NeuJDesk 
range, and is trained offline using hand labeled faults that have been extracted in the 
manner described in sections 3.1 through 3.4. 

3.6 Inspection Standards Comparison 

As discussed in section 1 there exist strict criteria for the size and number of defects 
that may be present in any ophthalmic contact lens and as with most other medical 
regulations the outcome of these comparisons must be deterministic, strictly adhered 
to and carefully documented.  

Having determined the fault type of each feature (section 3.5) and the size of the 
feature (section 3.4) we may then compare each feature against the predefined inspec-
tion standard for the lens type under examination. Every feature is recorded according 
to whether it causes an outright fail, whether it could contribute to a cumulative fail, 
or whether it is of a type or size to not be significant for our decision.  

Once every feature has been compared against the standard, the whole standard is 
checked to see if any failures have been recorded; either cumulative or outright. If 
there are one or more failures then the COTS process controller is instructed to reject 
the lens and the major failure mode is recorded; otherwise then the COTS process 
controller is instructed to pass the lens for packaging and an entry of ‘no failure’ is 
entered into the system logs. 

We have also made it possible that inspections against multiple standards are pos-
sible for regulatory or commercial reasons, however only the primary standard is used 
to instruct the COTS process controller. 

3.7 Gross Fault Detection 

Should a valid lens centre or ellipse not be detected as described in section 3.1, rather 
than processing the lens in a way which is likely to fail in a catastrophic manner, we 
instead perform a high level examination of the image in order to determine one of 
three gross failure modes: no lens present, lens fragment, shattered lens. There is the 
possibility that large debris could have obscured the window though this would likely 
cause the illumination check to fail. An example of a lens suffering from a gross fail-
ure can be seen in Fig. 5. 

To perform this check we accumulate pixels over the entire image into three ‘bins’. 
These are: pixels of about background intensity, pixels of about lens surface intensity, 
and pixels of about lens edge intensity. By comparing these with the number expected 
of a complete lens we can judge how much of a lens is present. Furthermore by com-
paring the ratio of edge intensity to surface intensity pixels we can determine the 
extent to the deformation of the lens. 
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Fig. 5. A shattered lens 

4 Testing 

In evaluating the system against the requirements of the project we have considered a 
number of tests both at the module and system level. 

4.1 Module Tests 

We have tested each module sequentially and compared the outputs with expert opin-
ion and the performance of other systems. In the pre-processing stage we compared 
the extracted centre coordinates and ellipse parameters with hand marked lenses to 
ensure pixel level accuracy in the extraction. For feature extraction steps we have 
consulted widely with experts in the field to ensure that the system detects all features 
and artifacts that are detected by a human expert.  

The classifiers have been trained and tested on separate hand-labeled features and 
perform at a very high level of accuracy. We have also ensured that the feature extrac-
tion and inspection standards processes perform as intended by careful comparison 
with reference implantations. 

4.2 System Tests 

Having ensured that all system components are performing as expected we have per-
formed tests on the whole system to ensure that timing and yields are as expected. In 
initial tests on a small number of images (a few hundred) we can achieve correct re-
ject/accept decisions on 100% of lenses including correct largest failure mode. Cur-
rent trials indicate that sub one second processing times are achievable on standard 
1GHz, 512MB Windows 2003 Enterprise Server and there is scope for further com-
piler optimization. The use of comparable exhaustive established techniques for fea-
ture detection would fail to meet these time constraints. 
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5 Conclusions 

In this paper we have described a novel method for the industrial inspection of oph-
thalmic contact lenses in a time constrained production line environment. In describ-
ing this system we have discussed the requirement for a fast an accurate inspection 
system for fault detection in regulated medical devices. We have given an overview 
of the system including interfaces to other systems and with operators. We also have 
described in detail the modules that comprise the inspection system and the tests that 
these modules have undergone. Finally we briefly describe the full system tests we 
have performed to establish that our system meets the specifications laid down. 

There still exists work to be completed on this system, particularly in interfaces to 
the manufacturing controller, logging and reporting and the user interface. We also 
wish to continue our work on the characterization of the system across a much greater 
numbers of lenses and on more typical server platforms.  

This work has applicability to a wider field than inspection of ophthalmic contact 
lenses; there are many products that need rapid accurate fault detection with similar 
fault profiles to those seen in this work. This is especially relevant to those situa-
tions where immediate feedback of such results can be used to adjust process pa-
rameters. Additionally the processes developed here may find uses in non industrial 
inspection applications, such as pathological screening applications and object rec-
ognition systems. 
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Efficient Motion Search in Large Motion
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Abstract. Large human motion databases contain variants of natural
motions that are valuable for animation generation and synthesis. But
retrieving visually similar motions is still a difficult and time-consuming
problem. This paper provides methods for identifying visually and nu-
merically similar motions in a large database given a query of motion
segment. We propose an efficient indexing strategy that represents the
motions compactly through a preprocessing. This representation scales
down the range of searching the database. Motions in this range are pos-
sible candidates of the final matches. For detailed comparisons between
the query and the candidates, we propose an algorithm that compares the
motions’ curves swiftly. Our methods can apply to large human motion
databases and achieve high performance and accuracy compared with
previous work. We present experimental results on testing a database of
about 2.9 million frames, or about 27 hours of motions played at 30 Hz.

1 Introduction

Recently, large motion capture databases have become commonplace due to real-
world projects requiring expressive character motions. These databases contain
many different kinds of actions and any action can have many variants. Theo-
retically, it seems that we do not need to capture motions redundantly and that
we could create realistic motions simply by connecting the required motions in
the database. This might be feasible if only we could find appropriate motions
fast enough. This is not as easy as it looks, especially with large databases.

The main reason is that the currently used retrieval strategy involves hand-
annotating each motion with a descriptive label. The annotations are often far
from describing the motion clearly. For example, a label “punch” may represent
many different motions. Different annotations may also be unable to reflect the
relations between motions. For instance, a “punch” may related closely with a
“dodge a counter-blow”. A real world user often has to scan the database, exam-
ine every possible candidate motion, and crop the frames of interest. Manually
searching a large database is an insufferably time-consuming job.

There exist approaches that allow the query to be a short motion segment,
and that automatically retrieve all motion segments in the database contain-
ing parts or aspects similar to the query. The basic idea of these kinds of ap-
proaches is that the database is preprocessed using an indexing strategy for fast
retrieval.Various indexing strategies have been developed in the past few years,
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such as constructing match webs [1], partitioning motions using geometric fea-
tures [2], and clustering frames using index trees [3]. However, there is always a
tradeoff between accuracy and efficiency for this problem. Previous work either
focuses more on “accuracy” with less “efficiency” consideration, or vice versa.

In this paper, we present efficient indexing and retrieval methods for searching
large databases given a query of a motion segment. The indexing method limits
the range of data access and detailed comparisons for retrieval. This range con-
tains a set of candidate motions with similar geometric features. In this set, the
retrieval method can search for best matches swiftly. In this way, the methods
can achieve high accuracy and efficiency.

The paper is organized as follows. The reminder of this section presents an
overview of our methods and a summary of contributions. In Section 2 we discuss
related work. In Section 3 we details of our indexing method. In Section 4 we
introduce our motion matching algorithm. In Section 5, we present experimental
results. Finally, in Section 6 we conclude this paper by discussing the advantages
and limitations of our methods and providing directions for future work.

1.1 Overview

1. Geometric feature based indexing. Since we aim at large databases (in
our project, we use the CMU motion capture database [4], whose size is about
2.2 gigabytes), it is not realistic to load the whole database into the main
memory, especially for high-performance applications. Multiple accesses of
the hard disk will decrease the performance greatly. This problem has sel-
dom been considered by previous work. We propose an indexing method
which preprocesses the database by partitioning motions into segments and
clustering the similar motions based on a general class of geometric features.
This index structure will accelerate retrieval by rapidly selecting a small set
of candidate motions from the full database.

2. Efficient motion curve matching. After the candidate set has been deter-
mined, we compare the query and the motion in the set by high-performance
applications calculating their similarity distance. The typical matching me-
thod is dynamic time warping (DTW), which is expensive in computation re-
quiring O(mn) time (where m is the number of frames of the query, n is the
number of frames of the motion, andm ≤ n). DTW is used in most of the cur-
rent motion retrieval systems. We propose an efficient motion curve matching
which only requires O(k) time (where k ≤ m). This method can find similar
motion segments with different length and frequency as the query.

3. Both visual similarity and numerical similarity. Visually similar char-
acter motions may be numerically dissimilar because corresponding frames
may have very different joint orientations and angular velocities. Traditional
algorithms implicitly equate numerical similarity with visual similarity, and
they are often unable to distinguish motions that are unrelated from those
that are different versions of the same kind of action. Our indexing method
considers geometric features and clusters visually similar motions into a can-
didate set for detailed comparisons of matching.
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2 Related Work

Motion capture data has only recently become available publicly. However, ef-
ficient retrieval techniques in multimedia databases, such as text, image, music
and video data have been researched for many years and a vast literature exists
[5,6,7]. Some of these methods can be extended to the motion retrieval problem,
such as indexing by hashing tables or trees, content-based retrievals and motion
matching using DTW.

DTW is the typical method to compare two time series. DTW finds “legal”
paths with minimal costs in the distance matrix. DTW can achieve highly nu-
merically accurate similarity but its efficiency is low. In addition, the numerical
comparison in the distance function may not reflect the real visual similarity.
One improvement is to use the found motions as new queries to find more sim-
ilar motions [1]. In this way, visually similar motions can be found iteratively.
Obviously, this method requires more computation time.

In 1994, Faloutsos et al. proposed the GEMINI framework for motion se-
quence retrieval followed by many researchers [8]. The basic idea of the GEMINI
framework is the following. First, it approximates the high-dimensional data
to a low dimensional representation using dimension reduction methods. This
representation can be expressed as a Fourier transform [9], wavelet transform
[10], average values in adjacent windows [11], or bounding boxes [12]. Then a
distance metric is defined over this approximation. The low-dimensional data is
often stored in a spatial data structure, like an R-tree [13]. This low-dimensional
expression accelerates processing, but sacrifices accuracy.

Some researchers have investigated methods without dimension reduction. For
frame comparisons, the distance function is based on theLp norm, which may vary
with different applications, as do the actual values that are compared.For example,
Lee et al. [14] use joint orientations and velocities, which are common parameters.
A similar hybrid method proposed by Arikan and Forsyth [15] involves joint ac-
celerations. Usually, a weight parameter is given to each bone to specify influence
of the bone on the whole pose. Although this kinds of distance functions based on
the entire set of data causes low efficiency, it has become the basic universal met-
ric function of frame comparison. What is not agreed on is how we should set the
weights. It is obvious that some bones are more important than others, but how to
specify the weights is still under argument. Wang and Bodenheimer [16] optimize
the weights based on the cost metric used in Lee et al.’s work [14]. Our matching
method is similar to this kind of methods. The distance cost is the weighted sum
of the distances between motion curve peaks, instead of frames.

Recently, researchers begin to consider geometric features as distance metrics
directly. One example is Muller et al. [2] who presented a system in which user-
specified geometric features are a part of the query with the motion itself. The
indexing strategy is also based on these features. This method is difficult to apply
to complex feature combinations. Its query mode requires more labor for the user.
If the geometric features change, the database has to be re-indexed completely. In
our paper, we use a general class of geometric features to indexing the database
automatically, which does not require the user to input the geometric features.
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3 Geometric Feature Based Indexing

We construct an index tree with the levels as bones and the branches as the
geometric features of the bones. For most motions, only some bones dominate the
pose, such as the back, the arms and the legs. So we only consider the geometric
features of these important bones, which we called featured bones. In this way, the
height of the index tree that we are going to build can be shortened greatly, and
the searching efficiency can be improved. Unlike the Boolean geometric features
in [2], which are coarse and express only a single geometric aspect, ours is a class
of general features. The featured bones in our prototype system are: torso, left
upper leg, right upper leg, left upper arm and right upper arm. They consist of
five levels of the tree from top to bottom. We choose these bones because we
notice that these bones influence the visual similarity most.

The basic idea of building the index tree is to partition motion into segments
based on geometric features and to insert “similar” segments into a leaf of the
index tree. Each leaf is a cluster of motion segments with the same feature code.
Each branch represents a geometric feature of one bone using a feature code. We
define a feature coding function to represent a frame as

f : M [j] ← {0, 1, 2}k,

where k is the number of the featured bones and f is our feature function. We
suppose the signed distance from p to the plane (p1, p2, p3) is d(p1, p2, p3; p), in
short d. Our feature definition is

f(p1, p2, p3 : p4) :=

⎧⎨⎩
0, d ∈ [dmin, dmax]
1, d > dmax

2, d < dmin

, (1)

where dmin and dmax are pre-defined threshold values. Table 1 lists current fea-
tures used in our prototype system.

Each leaf node is associated with a subset which contains promising similar
motion segments with the same feature code. All these subsets constitute the
whole motion database. The leaves of the tree are shown in Figure 1. Similar
motion segments are clustered in the motion set. The sequence between motion
segments are linked by bidirectional pointers. Each leaf node in the motion index
tree contains the index structures that we called inodes. An inode structure is
given by: inode = code, file, start frame #, end frame #, link to previous inode,
link to next inode.

3.1 Motion Curve Matching

The expensive dynamic time warping method prohibits high-performance and
real-time applications. In order to reduce computation time, we may ask: do
we need to compare each pair of corresponding frames of the two segments?
In fact, this problem has been investigated well in the bioinformatics area to
find approximate repeats or homologies in DNA sequences. Many sophisticated
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Table 1. Our general geometric features

Feature set Explanations

ftorso torso stands up, leans forward or bends backward

flleg left leg stands, move forward or back backward

frleg right leg stands, move forward or back backward

flarm left arm drops down, move forward or back backward

frarm left arm stands, move forward or back backward

Fig. 1. Similar motion segments are clustered in the motion set. The motion segments
are linked by bidirectional pointers.

algorithms haven been proposed, e.g., [17,18]. Some bioinformatics algorithms
improve the time to O(kn) (k << m) by using matching patterns. Unlike DNA
sequences that are purely discrete, motion sequences are essentially continuous.
So we can not apply these patterns directly to motion comparisons. However,
inspired by this idea, we develop a curve peak pattern matching method. Since
we know all the matching candidates should have the same feature sequence, we
propose an efficient curve matching algorithm which only compare the peaks of
the curves.

We suppose the query motion is Q[1 : m] and the one matching candidate is
Mi[1 : n] (m ≤ n). The mean frames of Q and Mi are mean(Q) =

∑k
j=1Q[j]

and mean(Mi) =
∑k

j=1Mi[j]. We then compute the variances of the frames. We
define the peaks as those variances that are the maximums or minimums in a
continuous range of values that are greater or smaller than the mean value. This
method is illustrated in Figure 2. Supposing the peak sequences of the query
and one matching candidate are x1, x2, · · · , xm and y1, y2, · · · , ym, · · · , yn, the
similarity cost of the sequences is:

cost =
m∑

j=1

wj |xj − yj |ec|sign(xi)−sign(yi)|,
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Fig. 2. The motion curve of one bone’s parameter is shows as the blue curve. The black
line is the mean value. The red points are the peaks.

Table 2. The performance of indexing four motion segments

Motion description # Segment # Frame Time (s)

Walk 3 120 0.137

Run jump 9 100 0.297

Run 7 90 0.159

Kick a ball 12 150 0.197

where wb is the weight assigned to a bone, B is the number of bones, and c is a
constant. The matching candidate having the least cost is the best match.

This method can reduce computation time greatly. It does not consider the
length and the frequency of the query and the candidates. It can find matching
segments with the same style but different lengths and frequencies as the query.
In our experiments, we use a threshold value dl to select those matches whose
lengths are in a range of dl distant from the length of the query. In this way, we
constrain the matches in the frequency field.

4 Experiments and Results

We implemented our indexing and matching algorithms in Java and tested them
on a database containing 1460 AMC files, about 2.9 million frames (about 26
hours sampled at 30 Hz.) The experiments were run on a 2.6GHz Pentium 4
with 512MB of main memory.

Indexing the whole database took 1,591.864 seconds (about 26.53 minutes)
clustering 69,372 motion segments and 139 sets. We use four motion segments
as queries, which involve motions of walk, run jump, run and kick a ball. The
performance of indexing these queries is shown in Table 2.

The performance of matching is shown in Table 3. We scale dl from 0 to 110.
We use a segment in the database as the query to test the exact matching. From
the table, we can see that if dl is too small (≤ 10), the method do not find the
exact match. We examine the first ten best matches found by the method and
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Table 3. The performance of matching

dl # Segment # Frame Indexing
(s)

Matching
(s)

Loading
(s)

# Visual
matches

# Exact
matches

0 0 0 0.029 0 0 0 No

5 8 959 0.105 0.098 0.581 0 No

10 25 2,978 0.171 0.165 1.111 2 Yes

20 60 7,058 0.183 0.231 3.531 2 Yes

30 93 10,752 0.230 0.332 4.809 3 Yes

40 125 14,242 0.194 0.380 9.717 3 Yes

50 164 17,597 0.283 0.438 15.518 4 Yes

70 270 25,249 0.334 0.563 23.946 6 Yes

90 356 29,903 0.362 0.775 31.019 7 Yes

110 383 31,573 0.509 0.669 35.396 7 Yes

Fig. 3. (a) Samples of a query of walking (120 frames) (b) The best match (c) the 5th
match

call those that are visually similar to the query the visual matches. We see that
with dl increases, there are more visual matches in the top ten. However, the
processing time increases too. Fortunately, all the processing time is within one
second. The time-consuming part is loading data from the hard disk to the main
memory. This is a hardware issue and unable to be improved by software.

The matching results are shown in Figure 3, 4, 5 and 6. Here we use dl = 50.
In Figure 3, we can see the motion of best match is very close to the query, while
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Fig. 4. (a) Samples of a query of running (90 frames) (b) The best match

Fig. 5. (a) Samples of a query of running and jumping (100 frames) (b) The best match

Fig. 6. (a) Samples of a query of kicking a ball (150 frames) (b) The best match
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the difference from the 5th match and the query is quite obvious. But they are
still visually similar walking.

5 Conclusion and Future Work

In this paper we focus on providing solutions for efficiently searching a large
human motion database. Our solutions achieve high accuracy and efficiency.
The resulting motions of the matches are visually similar to the query motion.
Compared with previous work, we use the geometric feature based indexing
tree to limit the range of hard disk access and data comparison. Based on this
indexing strategy, our matching algorithm swiftly compare two motion segments
by comparing the peaks of the motion curves. It achieves constant computation
time.

The most brittle part of our system is the geometric feature selection. Since
different motion styles have different significant features, our general class of
geometric features may not work for all kinds of motions. If the features are not
selected appropriately, the matching results will be visually unsatisfied. In Table
3, we can see that some of found matches are not visual matches in the top ten
matches.This is mainly because of the feature selection. However, if the user only
wants several matches, our methods work can provide immediate results.

Future Work: We will further experiment feature selection and try to abstract
better general features. Motion data is high dimensional data and the channels
of data are independent from each other, which is very suitable for GPU parallel
processing. Our next step is to investigate the algorithms with GPU acceleration.
There are applications that could use our work. One example is the animation
of crowds. A lot of characters move simultaneously. It requires high performance
of computation. Also, real-time user interfaces of animation could be built on
top of our system if the performance is sufficient.
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Abstract. In the past, it is difficult to simulate light shafts effect in real-time. 
One major reason is the high computational expense to perform the physi-
cally-accurate computation of atmosphere scattering. Another is due to the 
limitation of computer resource, especially lack of power and programmabil-
ity in the graphic hardware. Recently, with the advent of more powerful 
graphic card in standard PC platform and the development of programmable 
stages in the graphic pipeline, a lot of computational expensive algorithms are 
made available in modern commercial games. In this paper, we propose a 
novel method of rendering light shafts with atmospheric scattering based on 
actual physical phenomena. The proposed method utilizes hardware frame 
buffer object and a mesh refinement pattern to achieve photorealistic effect at 
high frame rate. 

1   Introduction 

Realistic image synthesis is one of the most important research subjects in computer 
graphics. To create physically-accurate realistic image, the effect of the scattering and 
absorption of light due to atmospheric particles is one of the most important elements 
to be taken into consideration. This effect mainly includes sunlight, skylight, aerial 
perspective and light beams caused by headlights of automobiles, street lamps, studio 
spotlights, and light passing through stained glass windows. During the past, those 
effects were seldom rendered correctly in real time. In computer games, simple tex-
ture blending or hardware fog was generally used to simulate light shafts. However, 
texture blending cannot handle the scenario when the viewer is totally inside the shaft 
volume. And hardware fog is totally wrong in terms of the physical model. Even 
though many physical models have been proposed to render light shafts, yet, few of 
them can be done in real time. 

Recently, the processing speed of graphics card has been becoming faster and 
faster. In addition, the vertex processing unit (called vertex shader) and pixel process-
ing unit (called pixel shader) have now become fully programmable. With the advent 
of programmability inside the graphics pipeline, a lot of expensive operations, which 
are used be done on CPU sequentially for each vertex, can now be carried out in  
parallel on GPU. Therefore, study of GPU-accelerated rendering is one of the most 
important research areas for real-time rendering. 
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In this paper, we proposed a rendering method of light shafts with atmosphere scat-
tering by making use of GPU. The proposed method utilizes the programmability and 
parallel architecture of the GPU to display light shafts in real-time. Also, this method 
can handle shadow in atmosphere. 

The paper is organized as follows. Previous work on rendering light shafts is dis-
cussed in Section 2 and an overview of the atmospheric scattering model and shading 
model we utilize is described in Section 3. In section 4, the core of our GPU-
accelerated rendering method is proposed. Results and several examples are presented 
in Section 5. Finally, we draw the conclusion and discuss our future work. 

2   Previous Work 

A simple method to simulate the scattering and absorption due to atmospheric parti-
cles is to attenuate colors of objects according to the distance from the viewpoint. 
This method is computationally inexpensive and is implemented as one of the stan-
dard graphics APIs in OpenGL. However, this method is based on a heuristic function 
and is totally wrong in terms of actual physical phenomena. Hence, a more accurate 
model is required to simulate the atmospheric scattering effect. 

To simulate the actual phenomena of atmospheric scattering, several models for 
atmospheric scattering have been proposed [1][2][3]. Based on Nishita’s model, Do-
bashi proposed hardware-accelerated methods to render light shafts [4][5]. His 
method utilizes hardware texture blending and hardware Gouraud shading function to 
accelerate the rendering process and achieve interactive frame rate. However, due to 
the lack of programmability in the graphics pipeline, his method requires multiple 
passes and exploits little parallelism. Besides, in his method, the objects in the scene 
are required to render multiple times each frame to create the atmospheric shadow. 

Our work uses the same shading model with Dobashi’s, and is an extension and 
optimization on current programmable GPU. Also our proposed method only require 
two passes each frame and complex models in the scene are only rendered once to 
create the atmospheric shadow. 

3   Overview of the Shading Model 

Our method utilized a model proposed by Nishita [1]. We first describe the physical 
model briefly [6]. For the sake of simplicity, we only consider the case when there is 
only one light source. And our method can handle multiple light sources in a straight-
forward way. 

Fig.1 shows the concept of atmospheric scattering. Here, a point light source is as-
sumed. For parallel light source, the case will be simpler. In general, the intensity 
along a ray from the object reaching to the viewpoint is expressed by the Eq.1: 

0

( ) ( ) * ( ) ( ) ( ) ( , ) ( )
T

eye obj p
I I T F H t I t t dt

λ λ λ
λ λ β α λ β= +  (1) 
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Fig. 1. Shading model for atmospheric scattering 

where ( )
eye

I λ  is the intensity reaching the viewpoint, ( )
obj

I λ  is the intensity of an 

object, ( )tλβ  the attenuation ratio due to atmospheric particles between the viewpoint 

and a point P on the viewing ray, t the distance between the viewpoint and point P, T the 
distance between the viewpoint and the object, and ( , )pI tλ the intensity of light from the 

light source reaching point P. ( )H t  is a visibility function that returns the value 1 if the 
light source is visible from point P, or 0 otherwise. ( )Fλ α  is a phase function of the 

atmospheric particles and  is the phase angle (see Fig. 1).  Because we only consider 
atmospheric scattering near to the ground, ( )tλβ can be given by the Eq.2: 

( ) sc tt e
λβ

λβ
−=  (2) 

where sc
λβ is the scattering coefficient for light with wavelength λ . And for point light 

source, ( , )pI tλ is given by the Eq.3: 

2( , ) ( , ) /sc r
pI t I e r

λβ
λλ θ ϕ −=

 (3) 

where ( , )Iλ θ ϕ is the intensity of light emanating from the light source toward the 
direction of point P and ( , )θ ϕ indicates the direction. If the light source is a parallel 
light source, ( , )pI tλ = 0 ( )I λ , where 0 ( )I λ is a constant. The phase function can be 

given by a weight sum of the Mie scattering and Rayleigh scattering, and the weight 
is selected according to atmosphere condition [7][8][9]. 

In Equation 1, the first term account for out-scattering, which is called aerial per-
spective, while the second term sI  account for in-scattering. The calculation of the 

first term is somewhat obvious, and can be easily implemented in shader. The calcula-
tion of the second term can be written as: 

( ) ( ) ( , ) ( , )sI F H t I tλ λα θ ϕ ξ λ=
 (4) 

( ) ( ) ( , ) ( , )sI F H t I tλ λα θ ϕ ξ λΔ =  (5) 

2( , ) /sc sct rt e e t r
λ λβ βξ λ − −= Δ  (6) 

A fast method to calculate sI  is proposed in the following section. 
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4   GPU-Accelerated Rendering of Light Shafts 

In order to compute the scattering effect of light shaft volume, virtual planes should 
be placed in front of the viewpoint firstly for sampling. Each virtual plane is parallel 
to the screen and is represented by a u vn n× lattices mesh (see Fig.2). For a viewing 

ray v, sI is computed numerically by taking samples at intersections between the ray 

and the virtual planes. For point light source, ( , )Iλ θ ϕ can be precompiled and used as 

a texture in rendering. Also we pre-calculate ( )Fλ α and the result is then loaded into 

the graphic memory as a texture. tΔ  is a constant on the viewing ray since the sam-
pling planes are placed at the same intervals.  

To take into account shadow, ( )H t must be calculated for each lattice point. In our 
method, the camera is first placed at the position of the light source, then the scene is 
rendered and the color buffer is written with each pixel’s depth value instead of each 
pixel’s color. This color buffer, which contains the depth information of the objects in 
light space, is then used as a floating point depth texture to calculate ( )H t in later 
stage. The calculation of depth value can be done in shader. First, we calculate the 
position of each vertex in light space in vertex shader, and the result is assigned to a 
varying variable. Then, the fragment shader read the varying variable from output of 
the vertex shader, now this variable contains the position of the fragment in light 
space, and we write the z coordinate of this fragment into the color buffer. Also in this 
stage, since only the geometry information is required, texture and lighting are dis-
abled to accelerate rendering. 

 

 
Fig. 2. Virtual planes and light computation on each lattices 
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In addition, every virtual plane is divided evenly into a u vn n×  lattices mesh and 
( , t)ξ λ is calculated for each lattice point. In our method, the calculation of the light 

intensity of each lattice point can be achieved in parallel by using a generic mesh 
refinement pattern [10]. This pattern is used to create additional inner vertices for 
each virtual plane by using the coordinates of its four corners. It is defined as a set of 
2-tuple ( , )t tu v .  

2

1 0 0 0 1 0 0(( ) ( )) * ( ) /( * )tu V V P V P V V V P V= − • − − − −
 (7) 

2

3 0 0 0 3 0 0(( ) ( )) * ( ) /( * )tv V V P V P V V V P V= − • − − − −  (8) 

where P(xt,yt,zt) is a lattice point on a virtual plane, V0,V1,V2,V3 are the four corners of 
the virtual plane respectively (see Fig.3). Since each virtual plane is evenly divided 
into a u vn n×  lattices mesh, the pattern is the same for all the virtual planes. Therefore, 

this pattern is uploaded into the graphics memory once during initialization, and is 
transferred from graphics memory to the vertex processing unit each time we draw a 
virtual plane. To calculate the world position and light intensity of each lattice point 
on the virtual plane, we send the world coordinates of V0,V1,V2 and V3 into the graph-
ics pipeline as uniform variables and draw the pattern (each 2-tuple ( , )t tu v  in the 

pattern is regarded as a 2D vertex coordinate). In vertex shader, we read V0,V1,V2 and 
V3  and calculate the world coordinate of each lattice point using the Eq.9. 

3 0 1 0* ( ) * ( )t tP v V V u V V V= − + − +  (9) 

( , t)ξ λ  is then calculated using the world coordinate. Finally, ( , t)ξ λ  of other points 
on the virtual plane can be interpolated by using their adjacent lattice points, and the 
interpolation is performed using Gouraud shading.  

In the fragment shader, we compute the depth value (in light space) of the fragment 
and compare it with stored value in the depth texture (the lookup of the stored value 
can be achieved using projective texture mapping algorithm), if the fragment’s depth 
in light space is greater than the stored value, it is then in shadow, ( )H t =0, otherwise, 

( )H t =1. At last, ( )Fλ α and ( , )Iλ θ ϕ  are read back from textures respectively and used 
to calculate sIΔ  together with ( )H t  and ( , t)ξ λ . 
The procedure for our rendering method using OpenGL is summarized as follows: 

1) Preprocess ( )Fλ α and ( , )Iλ θ ϕ as textures and upload them into the graphics 
memory. Precompute the pattern of the lattice mesh and upload it into the graph-
ics memory through a static Vertex Buffer Object. 

2) For each frame, attach a floating point depth texture to a frame buffer object, and 
place the camera at the position of the light source, then the scene is rendered 
into the frame buffer object and color buffer is updated with the depth value of 
the objects. Since we only care about the depth value, texture and lighting can be 
disabled to accelerate rendering. 

3) For each virtual plane, send the coordinates of its four corners to vertex shader 
as uniform variables, and draw the pattern of the lattice mesh. In the shader, the 
process of each lattice point is as the following: 
a) Calculate the eye coordinates of the lattice points using the four corners of 

the virtual plane and the refinement pattern. 
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Fig. 3. Virtual plane refinement pattern 

b) Calculate the light coordinate of the lattice point. By using the projective 
texture mapping technique, we can lookup the corresponding light intensity 
Iλ  and depth value z (in light space) for each lattice point in texture 

( , )Iλ θ ϕ  and the depth texture respectively. 

c) Calculate the depth of the lattice point in light coordinate, and compare it 
with z. If z is smaller, this lattice point is in shadow. Otherwise, we lookup 

( )Fλ α  from texture and compute sIΔ .  

4) All the virtual planes are rendered using additive blending function. 

5   Experiments  

Our experiments are performed on a PC workstation (Pentium 4 3.2GHz HT, 1 Giga-
byte RAM) with ATI X800 GTO. All the images are rendered at the resolution of 
800x640. Some results are shown in table 1. We find out that the efficiency of our 
method is inversely proportional to the number of virtual planes. Also, as the refine-
ment pattern becomes finer, the computational time increases. This should be due to  
 

Table 1. Statistics data of light shaft rendering 

Figure 
No. 

Virtual 
planes 

Lattices 
points 

Depth 
texture 

Light-map 
 

Frame rate 
(fps) 

4(a) 50 32x32 256x256 64x64 30 
4(b) 50 64x64 256x256 64x64 26 
4(c) 50 64x64 512x512 64x64 24 
4(d) 50 64x64 512x512 256x256 22 
4(e) 100 32x32 256x256 64x64 16 
4(f) 100 96x96 512x512 128x128 10 

5(a-d) 100 96x96 512x512 128x128 9 
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(a)                                                                          (b) 

      

(c)                                                       (d) 

      

(e) (f) 

Fig. 4. Rendering of the light shaft using different rendering setting listed in Tab. 1 

a bottleneck between the vertex fetch unit and the vertex processing unit, since there 
is usually 6-8 parallel vertex processing pipeline while the vertex fetch unit might 
fetch more vertices at a time. Besides, as we increase the resolution of the depth  
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                                  (a)                                                                          (b)      
 

    

                                  (c)                                                                              (d) 

Fig. 5. Rendering of the light shaft when viewpoint located in the shaft volume under a  
complex scene 

texture, the performance drops a little bit. This should be due to the bandwidth bottle-
neck between GPU and graphics memory. What is more, in Fig. 5(a-d), the scene 
complexity is around 43k triangles, and the performance drops only 10% when com-
pared with the scene showed in Fig. 4. 

6   Conclusion 

In this paper, we have proposed a new method of rendering light shafts with atmos-
pheric scattering in real-time. The proposed method makes use of the programmabil-
ity and parallel architecture on modern GPU to achieve fast frame rate and photoreal-
istic effect. The advantages of our method are as follows. 

1) By utilizing the depth texture, our method requires two passes for each frame. 
The depth texture is only rendered at the beginning of each frame, and is read 
multiple times for each virtual plane. Hence, the objects in the scene casting 
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shadows are rendered twice in total at each frame. (One is for the depth texture, 
the other is for the scene displayed on the screen) 

2) Our method utilizes a mesh refinement pattern, and this pattern is the same 
across all the virtual planes. It is uploaded as a static vertex buffer into graphics 
memory and reused multiple times when we draw a virtual plane. Therefore, the 
footprint between CPU and GPU is greatly reduced, making full use of the fast 
transfer rate between GPU and graphics memory (around 35GB/s). 

3) In the past, ( , t)ξ λ  of each lattice point is calculated sequentially on CPU. In our 
method, by making use of a mesh refinement pattern, ( , t)ξ λ  of lattice points can 
be calculated in parallel inside the graphic pipeline. 

In future work, we need to develop a method to render multiple scattering in real-
time [9]. Also, the sampling error due to the numerical integral in Equation 4 needs to 
be solved in order to create more photorealistic images.  
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Abstract. This paper presents a computational model of stylistic similarity be-
tween human motions that is statistically derived from a comprehensive collec-
tion of captured, stylistically similar motion pairs. In this model, a set of hyper-
surfaces learned by single-class SVM and kernel PCA characterize the region
occupied by stylistically similar motion pairs in the space of all possible pairs.
The proposed model is further applied to a system for adapting an existing clip of
human motion to a new environment, where stylistic distortion is avoided by en-
forcing stylistic similarity of the synthesized motion to the existing motion. The
effectiveness of the system has been verified by 18 distinct adaptations, which
produced walking, jumping, and running motions that exhibit the intended styles
as well as the intended contact configurations.

1 Introduction

Human motions come in various types or styles, such as walking, limping, running,
jumping, etc. Animators are always going to great pains to ensure that the produced
character motions exhibit styles that match the exact styles they intend. Even if motions
matching animators’ stylistic intentions occasionally exist in motion capture databases,
such canned motions usually cannot be directly reused due to the inability of these
very motions to (geometrically) fit in the current scenes. What underlies an animator’s
effort to check a produced style against an intended or canned style, is a perceptual
similarity between two motions, which we call the stylistic similarity between human
motions. This work aims to automate this similarity judgment made by animators—we
believe that such automation would greatly facilitate character animation. Specifically,
automated stylistic similarity judgments can be applied to human motion adaptation,
where a canned or captured motion with the desired style, which we call the example
motion, is adapted to the geometry of the current scene (see Figure 1) with stylistic
details preserved. We present a framework for human motion adaptation where stylistic
similarity of the synthesized motion to the example motion is ensured by building the
automated similarity judgment into the spacetime constraints formulation [1].

In this work, we regard the similarity judgment as a classification task, where the ob-
server decides whether two motions are stylistically similar or not. Instead of gathering
training motion pairs of both classes and adopting a two-class pattern recognition tech-
nique like SVM, we utilize a comprehensive collection of stylistically similar motion
pairs made available by motion capture, and take an unsupervised learning approach

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 170–179, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Learning the Stylistic Similarity Between Human Motions 171

Fig. 1. A system for human motion adaptation adapts a user-supplied (example) motion to a new
environment while preserving its stylistic details. Left: A typical example motion (walking on
the flat ground, with the left foot raised off the ground in this snapshot), which is geometrically
undesirable with respect to the intended environment shown here, in that the foot-contact con-
figurations deviate from the targets on the marble steps so much that severe penetrations into
the marble steps occur. Middle: The intended new motion for this particular scenario (example
motion and intended environment), which has been adapted to the surface of the marble steps
without being stylistically distorted. Right: A stylistically undesirable new motion for the same
scenario, where the foot contacts have been adapted to the surface of the marble steps while the
left foot penetrates into the marble steps due to the abnormally straight pose of the left leg.

to automating this similarity judgment, using single-class SVM (1-SVM) [2] and ker-
nel PCA (KPCA) [3] to model the distribution of stylistically similar motion pairs.
Moreover, in order to extract from two motions appropriate features for use with these
statistical techniques, we propose a set of rules for segmentation of human motions and
alignment of segmented motions, which rules form a structural paradigm for treating
human motions that is novel in the world of character animation.

One concern about our model of stylistic similarity would be the lack of a formal
definition of what we mean by “style,” which term always derives its definition from
some subjective taxonomy implied by its context. Since the algorithms we adopt for
building the model, i.e. 1-SVM and KPCA, generalize entirely from the training data,
the “styles” considered in this work are actually defined by the exact labeling system
used in the CMU Graphics Lab Motion Capture Database. In practice, we collected
walking, running, and jumping data exactly as they are labeled in the database. We
believe that the proposed technique for modeling stylistic similarity can be applied to
any specific setting of stylistic taxonomy, or even any other perceptual (perhaps not
visual) modalities, as long as appropriate data and features can be provided.

2 Related Work

Extraction of stylistically relevant features from human motion is essential to the effec-
tiveness and efficiency of the following two tasks:

– Style-based posture estimation: In [4], each transition pose in jumps was rep-
resented by some centers of body-part mass while estimated. In [5], joint angles,
vertical components in pelvis orientation, and their time-derivatives were extracted
for estimation of the probability density of human posture in a particular style of
motion; and



172 Y.-R. Chien and J.-S. Liu

– Human activity recognition: In [6], joint positions were extracted for short-time
recognition of motion styles. In [7], a fixed number of frames were randomly
sampled from the 2-D motion; from each of these frames, global 2-D angular
poses/velocities were extracted. In [8], feature extraction from an arm motion was
performed by sampling the 2-D hand trajectory at every impulse of the hand accel-
eration signal.

There has been much research into human motion adaptation. Certain details in the
example motion can be preserved in the new motion by minimizing a weighted sum
of squared changes in motion parameters [9,10,11,12], or by iteratively modifying the
(initially example) motion with the gradient method [13] or with a non-statistical variant
of the Kalman filter [14]. In [15], [16], and [17], force patterns were extracted from the
example motion and enforced in the new motion.

3 Segmentation and Alignment

In this work, we decompose each motion into a set of motion segments, rather than a
sequence of postures, as the basic units of processing. The rationale behind this choice
is that motion segments are more psychologically relevant than postures—we do not
perceive and control our motions as individual postures, but as such basic movements
as steps and twists [18]. Also inspired by the fact that we would at some times observe
the motions of various body parts as a whole, and at other times focus on the motion
of a particular limb, we break each motion both into whole-body motion segments and
into limb-specific motion segments.

Segmentation of the motion of a specific limb is based on the interaction of its end-
effector with the environment. There are two states to this interaction: the in-contact
state and the free state. The motion is segmented at every state transition, e.g. at the
heel-down frame and the toe-off frame of each foot contact, so that the resulting motion
segments sequentially alternate between the two states.

Segmentation of a whole-body motion is achieved by fusing limb-specific motion
segmentations, which in turn consists in grouping by concurrence all the limb-specific
motion segments (originally grouped by limb). Let the sets A and B denote the frame
numbers spanned by two limb-specific motion segments, and assume that |A| ≥ |B| (| · |
denotes the set cardinality). The two segments are declared to be in the same group if
and only if |A∩B|> |B|

2 , where ∩ denotes the set intersection. We define a whole-body
motion segment for each of the resulting (mutually exclusive) groups by assigning the
union of the limb-specific frame spans to the whole-body frame span.

Consider two motions M1 and M2 of the same limb that share the same state se-
quence of length N, i.e. that start with the same state of interaction with the environ-
ment and both undergo exactly N −1 state transitions. To relate M1 and M2 in a struc-
tural manner, we align them by the state sequence, giving N pairs of aligned motion
segments. In general for two alignable motions, the i-th (whole-body or limb-specific)
segment in one motion can only be aligned with the corresponding (i-th) segment in
the other. A pair of aligned motion segments extracted from a motion capture database
generally have different durations.
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4 A Framework for Human Motion Adaptation

4.1 Parameterization

The new motion to be optimized is represented by a vector made up of the following
variables:

– 6 rigid DOFs per frame for pelvis motion; and
– 60 standardized principal components for each motion segment of each limb with

which the character touches the environment. Any limb or torso that never touches
the environment inherits its motion from the example motion without taking up any
variables.

A concatenation of a 25-sample version of the angular signals represented by the 60
components can be computed by transforming the components according to a learned
subspace [18].

For subspace learning, we have collected 98 motion clips of such types as climbing,
jumping, running, walking, etc. By collecting limb-specific motion segments across
all the clips, we have as training data 514 (507, resp.) segments for the left leg (right
leg, resp.). After performing PCA on the training patterns extracted from the training
segments [18], we found the first 60 of the 175 principal components for each (7-DOF)
leg to account for about 99.9% of the total variation.

The low dimensionality of this motion representation is intended to avoid any pro-
hibitive amount of computation time or failure of convergence in the optimization,
which would generally be incurred by simply representing the motion by tens of postu-
ral variables per frame.

4.2 Constraints and Objectives

The synthesized motion x∗ minimizes the function

F(x) = wp ·P(x)+ wc ·C(x)+ wq ·Q(x)

subject to the constraints S(x) ≥ 0 and bl ≤ V(x) ≤ bu.
The objective function P(·) represents the stylistic similarity of the new motion to the

example motion, giving the sum-square value of Nl + Nw nonnegative distortion scores
based on the KPCA, where Nl is the number of limb-specific motion segments repre-
sented by x, and Nw is the number of whole-body motion segments in each of the new
motion and the example motion. Each distortion score measures the stylistic distortion
of a motion segment in the new motion from its aligned counterpart in the example
motion, so that the score is close to zero if and only if the aligned pair is stylistically
similar. In addition, C(·) represents the sum-square distance of end-effectors from user-
specified targets during contacts, and Q(·) penalizes 1) excessive contact torques about
centers of support [4,19], and 2) loss of balance [4] at frames specified by the user for
balancing.

The constraint function S(·) also represents the stylistic similarity of the new motion
to the example motion, giving a vector of Nl +Nw similarity scores based on the 1-SVM.
Each similarity score measures how a pair of aligned motion segments (a segment in the
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new motion and its aligned counterpart in the example motion) are stylistically similar
to each other, so that the score is nonnegative if and only if the pair is stylistically
similar. Moreover, V(·) is intended to realize joint limits, intersegmental continuity,
smoothness of pelvis motion, and flight-phase dynamics.

Since F(·) has a sum-square structure, this particular nonlinear program can be
treated as a constrained nonlinear least squares problem.

5 Stylistic Similarity

In this section, we develop algorithms for constructing from motion capture data com-
putational models of the stylistic similarity between motion segments. These algorithms
are based on the abstraction of a space of all possible motion segment pairs, and the
characterization of a dichotomy in that space that represents the difference between
stylistic similarity and stylistic distortion. To be specific, we take advantage of the abun-
dance of instances of stylistic similarity in a motion capture database to characterize the
region occupied by all possible stylistically similar pairs, which we call the similarity
region. Our intended models of stylistic similarity will be given by approximations of
the similarity region.

To approximate the geometry of a region in the 3-D space, one might sample the
region and simply fit a surface to the boundary samples; however, if the region is part
of any surface, it would be more effective to also fit one or two surfaces to all the sam-
ples. In view of this, we apply two approximation techniques to the similarity region:
the 1-SVM [2] and the KPCA [3], which respectively solve the above two classes of
approximation problems, giving a supporting hypersurface and a set of fitted hypersur-
faces for the sampled similarity region.

5.1 Feature Extraction

In this section, we describe the actual features extracted to represent each point in the
space of all possible motion segment pairs. Specifically, we consider multiple spaces
of motion segment pairs: one for pairs formed by whole-body motion segments, and
the others for pairs formed by limb-specific motion segments (one space per limb). The
features extracted for each space will underlie the approximation of the corresponding
similarity region.

Whole-Body Features. The procedure defined in this section takes a pair of whole-
body motion segments (A,B) as input, and gives as output a feature vector that encodes
the Cartesian postural evolutions of major body parts in A and B. As shown in Figure
2, the extraction process starts by linearly interpolating each of A and B at K uni-
formly spaced instants to give K postures (totally 2K postures for A and B). For each
such posture, consider a reference frame that has origin at pelvis, y-axis upward, and
z-axis anterior (see Figure 2), which serves to remove all the global information, except
the balance information, from the features for the posture. The process then computes
(using the mass distribution data reported in [20]) centers of upper-body, left-leg, and
right-leg mass (see Figure 2) with respect to the reference frame for each of the 2K
postures. Concatenating the COM position vectors for all the three body parts and for
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Fig. 2. Whole-body feature extraction. Left: The procedures. (FK stands for forward kinematics.)
Middle: The reference frame. The character exactly faces the left. Right: The COMs computed.

all the postures, the process finally produces an 18K-dimensional vector as the feature
vector. We set K to 6 in all experiments.

Limb-Specific Features. The feature vector for a pair of motion segments (A,B) of a
limb is 30-dimensional, composed of the first 15 standardized principal components for
each of A and B. The 15 components are extracted from each segment by the analysis
procedures given in Section 4.1, except with a further truncated subspace.

5.2 Building the Models

To sample the similarity region in the space defined by each extracted set of features,
i.e. to gather training patterns, we have collected about 70 pairs of captured motion
clips, each pair formed by two motions of the same type (walking, jumping, or running)
and with the same sequence of end-effectors in contact with the environment (e.g. two
walks both starting with a left-foot contact and lasting for five steps, or two jumps both
composed of a doubly supported takeoff, a flight stage, and a doubly supported landing,
so that their segmentations can be aligned). To extract three sets of training patterns
from the clips (one dataset for whole-body features, one for left-leg features, and the
other for right-leg features; in each dataset we have approximately 90 patterns from
walking, 70 from jumping, and 90 from running), we applied the whole-body feature
extraction procedure described in Section 5.1 to each pair of aligned whole-body motion
segments found in each pair of clips, and the limb-specific procedure in Section 5.1 to
each pair of aligned limb-specific (leg) motion segments found in each pair of clips.

Models Based on the 1-SVM. As the first part of our modeling efforts, for each dataset
{pi ∈ Rn : i = 1, . . . , I} , we fit a hypersurface {p ∈ Rn : fs(p) = 0} to the boundary
samples in the dataset such that fs(pi) ≥ 0, ∀i ∈ {1, . . . , I}, i.e. all the training patterns
lie on the same side of the supporting hypersurface, using the single-class SVM training
routine in the OSU Support Vector Machines Toolbox, which is based on the LIBSVM
library. 1-SVM [2] and the better-known two-class SVM differs in that instead of find-
ing a separating hypersurface between the respective supports of two groups of training
patterns, the 1-SVM algorithm simply estimates the support of a single group of training
patterns, i.e. its purpose is to detect novelty given a set of usual patterns.
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Fig. 3. Left: Illustrating the feature-space distance of a testing pattern from the subspace spanned
by the lower-order principal axes. The x-y plane represents the ∞-D feature space. The x′- and
y′-coordinates represent the lower-order and the higher-order principal components, respectively.
The dot represents the testing pattern. The blue line segment on the y′-axis represents the distance.
Right: Cross-validation result for the hypersurfaces fitted to the whole-body dataset.

In the theory of 1-SVM, the supporting hypersurface can be represented by a sup-
porting hyperplane in an infinite-dimensional space related to the original space by a
radial basis function kernel, fk(x,y) = exp

(
−γ · ‖x−y‖2

)
. Here we adopt this kernel

function with the parameter γ tuned to give the best cross-validation accuracy possi-
ble. To estimate the modeling accuracy of each supporting hypersurface learned by the
1-SVM algorithm, we have conducted 20-fold cross-validation on the corresponding
dataset. The probability of leakage of sample p ∈ Rn beyond the whole-body (left-
leg, right-leg, resp.) supporting hypersurface, Prob [ fs(p)< 0] , is estimated to be 0.048
(0.0332, 0.0413, resp.) with the 95% confidence interval calculated to be [0.025,0.0823]
([0.0144,0.0644], [0.02,0.0747], resp.).

Models Based on the KPCA. As the second part of our modeling efforts, we fit a set of
hypersurfaces to the samples in each dataset by means of the KPCA algorithm [3]. In the
theory of KPCA, one can perform PCA on the training patterns in the same ∞-D feature
space as defined for 1-SVM modeling above. For each resulting principal component
that has small variance, we have a corresponding hyperplane that is fitted to the training
patterns in the ∞-D space: {p ∈ R∞ : e · (p− μμμ) = 0} , which is perpendicular to the
corresponding principal axis e ∈ R∞, passes through the mean μμμ ∈ R∞, and defines a
corresponding input-space fitted hypersurface. One may find principal components to
have small variances starting from order Oc. For all these small components, which
we call higher-order principal components, we have a corresponding set of input-space
hypersurfaces that are all fitted to the training patterns, so that each training pattern is
known to lie on the intersection of the set of hypersurfaces. Consider a testing pattern
represented in the ∞-D space by the principal components z = (z1,z2, . . .). We measure
how close the pattern is to the intersection of input-space fitted hypersurfaces by the
proportion of its feature-space squared norm contributed by the higher-order principal
components (‖z‖2 −∑Oc−1

i=1 z2
i )/‖z‖2, which we call the relative leakage of the pattern

with respect to the fitted hypersurfaces. As depicted in Figure 3, the numerator can be
interpreted as the squared distance of the pattern from the subspace spanned by the
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lower-order principal axes. Note that as an inner product in the centered ∞-D space,
‖z‖2 can be computed via fk(·, ·) and centering [3]. In our experiments, the cut-off
order Oc is set to 16 for the whole-body dataset and to 22 for each single-leg dataset.

To estimate the modeling accuracy of each set of fitted hypersurfaces learned by
the KPCA algorithm, we have conducted 20-fold cross-validation on the corresponding
dataset. For the hypersurfaces fitted to the whole-body dataset, we plot the histogram of
the relative leakage over all validating patterns in Figure 3; for the hypersurfaces fitted
to the single-leg datasets, the same histograms are again computed, as not shown here
due to the space limit. For every set of fitted hypersurfaces, the average relative leakage
over all the validating patterns is found to be roughly 0.1, and about 90% of the patterns
are found to have relative leakages below 0.2.

6 Adaptation Experiments

In our implementation of the adaptation system presented in Section 4, for better effi-
ciency of the optimization, we apply the transformation proposed by Schittkowski [21]
to the constrained nonlinear least squares problem defined in Section 4.2. The result-
ing nonlinear program is coded in ANSI Fortran 77, augmented with sparse deriva-
tive computation by the ADIFOR 2.0 automatic differentiation tool, and solved by the
sparse nonlinear programming routine in the NAG Fortran Library, which is based on
the SNOPT package described in [22], on a Pentium-4 1.8-GHz PC running Red Hat
(7.2) Linux with 512-MB RAM. Note that low-dimensional representation of human
motion serves here to prevent variables from significantly outnumbering constraints,
thereby favoring the efficiency of SNOPT and ADIFOR-generated codes. In our exper-
iments, every adaptation took less than thirty minutes.

To evaluate the effectiveness of our adaptation system, we have tested it on 18 distinct
motion adaptation tasks. In these tasks, the example motions are of the types walking,
jumping, and running (6 tasks for each type) and apart from those used in preparation
of the datasets from which the models of stylistic similarity were learned, and most of
them are each composed of 3 or 4 whole-body motion segments. We specified contact
targets such that each example motion significantly deviates from the associated targets
in the new environment, and the targets still look attainable for the specific activity
in the example motion, thereby controlling the task difficulty. By playing back and
watching each of the 18 synthesized motions, we found that each motion exhibits the
intended style, as well as a realistic contact during each contact event. All these tasks
were performed with the same parameter setting, except that in running tasks only 30
standardized principal components were used to represent each leg motion segment
in order for the number of variables to roughly match the relatively small number of
constraints in running tasks. Only ending frames in jumps were marked for balancing.

To verify the necessity of enforcing stylistic similarity to the example motion, we
created a crippled version of our system by dropping from the nonlinear program the
functions representing the similarity, i.e. S(·) and P(·), and repeated all the above 18
tasks using this crippled version instead. The new motions resulting from this verification
were each found to be stylistically distorted. Manifestations of such distortion include
abnormal poses, abnormal variations in speed of movement, and abnormal directions of
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movement. On the other hand, robustness in attaining geometrical goals was also impaired—
two of these motions were found to be geometrically highly undesirable. One interesting
implication of this verification is that collisions and kinematical singularities are usually
accompanied by stylistic distortion and can be adequately avoided by enforcing stylistic
similarity to the example motion, which is obvious when we notice that abnormal poses
brought about penetrations in several tasks, and that local minimums of the geometrical
sum-square error are a specific form of kinematical singularities.

7 Discussion

We have presented a motion adaptation system that is sensitive to stylistic fidelity in its
quest for the optimal solution. In this final part of the paper, we discuss the uniqueness of
this system by providing some in-depth comparisons with the system proposed in [12]:

– Both muscle forces and contact forces are bound-constrained in [12]. We also con-
strain contact forces in our system. However, without computing muscle forces, we
let the new motion imitate the example motion according to the data-driven model
of stylistic similarity, which we believe has the effect of capturing not only the
bounds on, but also the patterns of, muscle forces. Such pattern-following mecha-
nism is also present in [12] in the form of minimum sum-square difference between
Cartesian representations of the example motion and the new motion.

– Both systems generate new motions by solving spacetime optimization with the
same sparse nonlinear programming solver, and, for better convergence of the op-
timization, simplify the underlying postural parameterization according to the spe-
cific behavioral characteristics in the example motion. We also build into our param-
eterization a data-driven set of constraints that account for the inherent spacetime
characteristics of all human motions, thereby further lowering the dimensionality.

– Both systems are shown in extensive experiments to accurately adapt jumping/
running examples to new environments while preserving stylistic quality. We addi-
tionally present style-preserving adaptations for walking motions.
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ACM Trans. Graph. 23 (2004) 522–531

6. Arikan, O., Forsyth, D.A., O’Brien, J.F.: Motion synthesis from annotations. ACM Transac-
tions on Graphics (TOG) 22 (2003) 402–408

7. Ben-Arie, J., Wang, Z., Pandit, P., Rajaram, S.: Human activity recognition using multidi-
mensional indexing. IEEE Trans. Pat. Anal. Mach. Intel. 24 (2002) 1091–1104

8. Rao, C., Yilmaz, A., Shah, M.: View-invariant representation and recognition of actions.
International Journal of Computer Vision 50 (2002) 203–226

9. Gleicher, M.: Motion editing with spacetime constraints. In: Proceedings of the 1997 sym-
posium on Interactive 3D graphics. (1997) 139–ff.

10. Gleicher, M.: Retargetting motion to new characters. In: SIGGRAPH. (1998) 33–42
11. Lee, J., Shin, S.Y.: A hierarchical approach to interactive motion editing for human-like

figures. In: SIGGRAPH. (1999) 39–48
12. Popović, Z., Witkin, A.: Physically based motion transformation. In: SIGGRAPH. (1999)
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18. Fod, A., Matarić, M.J., Jenkins, O.C.: Automated derivation of primitives for movement

classification. Autonomous Robots 12 (2002) 39–54
19. Fang, A.C., Pollard, N.S.: Efficient synthesis of physically valid human motion. ACM

Transactions on Graphics (TOG) 22 (2003) 417–426
20. de Leva, P.: Adjustments to Zatsiorsky-Seluyanov’s segment inertia parameters. J. Biome-

chanics 29 (1996) 1223–1230
21. Schittkowski, K.: Solving constrained nonlinear least squares problems by a general purpose

SQP-method. In Hoffmann, K.H., et al., eds.: Trends in Math. Optim. (1988) 295–309
22. Gill, P.E., Murray, W., Saunders, M.A.: SNOPT: An SQP algorithm for large-scale con-

strained optimization. Technical Report NA–97–2, Dept. Mathematics, UCSD (1997)



Effects of Layer Partitioning in Collaborative 3D

Visualizations

Lars Winkler Pettersson1, Andreas Kjellin2, Mats Lind2, and Stefan Seipel1,3

1 Dept. of Information Technology, Uppsala University
lwp@it.uu.se

2 Dept. of Information Science, Uppsala University
{mats.lind, andreas.kjellin}@dis.uu.se

3 Dept. of Mathematics, Natural and Computer Sciences, University of Gävle
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Abstract. Display technologies that support multiple independent views
of the same co-located 3D visualization volume make new forms of collabo-
ration possible. In this field of research, until now most efforts have focused
on technical solutions and their applications. The main contribution of this
paper is the results from a study comparing integral and partitioned 3D
content in a head coupled stereoscopic environment through independent
views of a shared 3D visualization.

In our study we used a geospatial task that was solved by ten pairs
of collaborating individuals (dyads). We measured task performance by
time and error rate for the dyads in two main conditions: a) an integral
visualization that presented a map in the display surface and four layers
at different depths below the display surface to each of the observers,
and b) a partitioned visualization, where two mutually exclusive subsets
of the layers were presented to each of the observers together with the
map in the display surface.

The results from the study showed significant differences in regard to
performance times between the two conditions. Task performance was
significantly better in the condition with layer partitioning. Partitioned
visualizations can thus, at least in some cases, improve performance in
tasks requiring collaboration between users.

1 Introduction

Collaboration between two or more people in the same location can, in addition
to the use of direct communication such as spoken language or body language, be
supported by artifacts in our environment. Artifacts can help mediate informa-
tion in terms of their position, form or other qualities. In the history of military
operations, artifacts have been used in mission planning to describe previous,
current or future situations. Artifacts have for example been rocks, sand, paper
and pencils, symbols, maps, etc. Today we rely on the use of computer systems
as artifacts to process and present information. For instance, the paradigm of
network centric warfare requires computer systems to process and provide a
wealth of information even for small geographic areas. Other fields that rely on
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computer systems to gather and present large amounts of data for geographic
regions are meteorology, disaster relief planning, prospecting and seismic survey.

Designing systems that support collaborating stakeholders in decision making
is a complex task requiring development of functional display environments as
well as appropriate visualizations for the situation at hand. In this paper, we first
give an overview of related research in the field of collaborative visualization
environments, which has led to technical solutions that support multiple 3D
views but also general ways of partitioning visualizations for collaborative work.
In our research we substantiate some research issues, discussed in the papers cited
in the next section by presenting an experimental study aimed at investigating
effects of visualizations of layer partitioning in collaborative spatial tasks.

2 Displays for Co-located Visualization

Many collaborative 3D environments support only one correctly rendered view
for one user. Examples of such systems are the Responsive Workbench [1] and the
CAVE [2]. With only one correctly rendered view it is problematic to discuss
visualizations, since the same geometric feature is perceived differently from
each user’s perspective. In some collaborative 3D environments this problem has
been solved by visualizing only views corresponding to those of a real physical
environment. Examples of such environments are true volumetric displays like
the Crossed-Beam Volumetric Displays [3] and Spatially Augmented Reality [4]
where textures and illumination hints can be painted on physical models.

In our research we work with environments that in addition to realistic per-
spectives also can provide independently rendered views of the same co-located
environment for multiple users. There are several different technical approaches
capable of rendering independent views for multiple users [5,6,7,8,9,10,11,12].
The Two-user Responsive Workbench uses time multiplexing to generate two
stereoscopic views [5]. The Virtual Showcase [6] is a system that uses half sil-
vered mirrors together with a workbench that in addition of multiple independent
views also can spatially augment real objects. IllusionHole uses a constrained
spatial segmentation of a workbench display to provide independent views [7].
SCAPE uses head mounted projective displays to combine the inside-out views
of a CAVE system with the outside-in views of workbench systems using retro-
reflective material to avoid crosstalk between independent views [8]. Virtual Re-
ality (VR) and Augmented Reality (AR) define a large field of interaction tech-
niques that can provide independent views to individual collaborators [9,10,11].
In the context of co-located visualizations only optical see-through AR [9] is of
interest, since it also allows for natural face-to-face collaboration between users.

The Multiple-Viewer Display Environment (Figure 1) produced by VAB
(www.vargogat.se) and described in [12], provides four independent stereoscopic
views by using pairwise projector polarization and a retro-projection screen that
allows projected images to pass through the screen primarily along the opti-
cal axis. One objective for these technologies, capable of rendering independent
views for multiple users, is to support view-dependent co-located visualizations.
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Fig. 1. The display used in the experiment can provide four independent stereoscopic
views

3 View-Dependent Co-located Visualization

In the technical papers above many different terms have been used to describe
how independent views for multiple users can support visualization in collabora-
tive 3D environments. Agrawala et al. used the term specialized views of a shared
environment to describe this form of visualization [5]. Bimber et al. used the term
view-dependent image presentation [6]. Hua et al. called it multiple independent
views. We have previously used the term view-dependent co-located visualization
to emphasize that these kinds of visualizations share the same physical location
[12,13], and we will consequently use it throughout the rest of this paper.

Inview-dependent co-locatedvisualizations, viewswith completelydifferent con-
tent can be presented as well. However they do not support direct collaboration on
the same data, due to the lack of common reference points. When at least one ob-
ject is co-located in multiple views, it is possible to augment it with independent
information. Agrawala et al. described this as ”when displaying specialized infor-
mation, the challenge is to ensure that the notion of a shared space is not lost” [5].
In their paper the authors make an assumption that the two-user responsive work-
bench can keep the users from being overwhelmed by extraneous information and
help them to focus their attention on the most relevant details of the environment.



Effects of Layer Partitioning in Collaborative 3D Visualizations 183

They demonstrate three scenarios of general strategies showing how specialized
information can be presented.

The general strategies, according to [5], are:

– layer partitioning
– spatial partitioning
– private information

Layer partitioning is used to display only those layers of a visualization that each
individual viewer is interested in as well as different abstraction levels of the same
layer. Spatial partitioning is suggested for large display surfaces to decompose the
viewing area into focus and non-focus regions, rendered in different resolutions.
The last strategy, private information, is used to present information relevant
only to one of the viewers. We have previously examined a fronto-parallel symbol
visualization technique which does not fit in either of these strategies for spe-
cialized views [13]. The fronto-parallel visualization is neither layer or spatially
partitioned nor is its main purpose to display private information. Its purpose
is to enhance the readability of symbols and textual information of the collabo-
rative 3D environment. Hua et al. have also suggested that “displaying multiple
independent views offers the intriguing possibility of presenting different aspects
or levels of detail of a shared environment in each user’s view” [8]. It is therefore
clear that the strategies suggested by Agrawala et al. need to be extended.

Although various ways of supporting view-dependent co-located visualization
have been proposed in [5,6,7,8,12], only a few formal evaluations of their potential
benefits have been carried out. In this paper we describe our initial research
where we evaluate the efficiency of layer partitioning in a collaborative spatial
task.

4 Experiment

4.1 Layer Partitioning

Integral and partitioned displays may well have an effect on the amount of
communication needed between the collaborating users. At the same time, they
also have an effect on the amount of visual clutter in each view. In an integral
view, the visual clutter is larger for each user but the amount of communication
needed is, at least potentially, smaller. In a partitioned view the effects are
opposite. Do integral and partitioned views differ in efficiency, and if so, which
alternative is more efficient?

To begin evaluating the efficiency of integral versus partitioned visualizations,
we designed an experiment where pairs of observers (dyads) collaborated to solve
a complex spatial task. See figure 2. A map was aligned with the surface of the
display. Below the map the 3D visualization contained four layers with randomly
distributed and irregularly shaped patches. From a reference point in the map
the task was to identify the shortest distance to a borehole that intersects at
least two specific layers.
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(a) Integral view, observer one (b) Integral view, observer two

(c) Partitioned view, observer one (d) Partitioned view, observer two

Fig. 2. The screenshots of one stimulus in integral and partitioned condition illustrate
varying degrees of visual clutter

In regard to a certain borehole in question, several spatial assessments are of
interest:

– assessment of a qualitative spatial relation, if a borehole intersects or does
not intersect

– assessment of relative spatial distance between entry point of borehole and
the reference point in the 2D map

– identification of certain combinations of borehole intersections with the four
layers

4.2 Stimuli

In the task a two-dimensional map was aligned with the surface of the display
to provide a common frame of reference. See figure 2. The map was rendered
transparently using alpha blending and in the same position as if a real physical
map would have been placed on the surface of the display. Underneath that map,
layers with spatially separated and irregularly shaped patches represented the
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spread of four different properties below ground. The patches were coded with
distinctive colours. We used red and green as well as yellow and blue which are
colour opponents located most distantly on the two chromatic axes according
to the colour opponent theory [14]. Also, lightness levels were chosen such as to
provide good luminance contrast.

The layers consisted of patches rendered in solid colors; however, in order
to enhance spatial representation, they were perforated with a random stipple
pattern, such that the layers underneath were partly visible through the upper
layers. At fifteen randomly chosen positions in the map, boreholes were directed
downward from the map surface. The angles of the boreholes could randomly
vary up to ten degrees from the vertical axis. On the top of the boreholes a
grey sphere indicated the origin of the borehole in the map. In each stimulus
presentation the layers had different order and rotation. All boreholes had the
same length, which was sufficiently long to pass through all layer depths. Each
borehole could intersect none, one, or several layers. In the map layer a reference
point was placed, modeled as a magenta cone with a cross. The subjects’ task
was to identify the closest borehole to the reference point satisfying a specific
condition. The condition was that the borehole should intersect with patches
at least from the green and yellow layers. Of the fifteen boreholes in each task
at least three did match the intersection condition. To sustain an even level
of difficulty, none of the three closest boreholes of the reference point was the
correct answer. The assessment of relative distance between the reference point
and a possibly correct borehole is done on the surface of the screen on the 2D
map.
In this experiment we used two types of conditions:

– An integral visualization, where both users saw the entire visualization as
shown in figure 2(a) and 2(b) at all times projected towards their respective
point of view.

– A partitioned visualization as shown in figure 2(c) and 2(d), where each user
only saw a subset of the visualization comprising the map along with the
boreholes and only two out of the four layers. Each user either saw the green
or the yellow layer.

4.3 Apparatus and Viewing Conditions

The display environment used in this experiment (Figure 1) was the same one
as in our previously presented work [13,15]. It used four of eight possible si-
multaneous co-located views. The four views were used to provide independent
stereoscopic bird’s eye viewing metaphors to two observers. The display environ-
ment is rear projected with polarized filters on a square horizontal square screen
area of 0.8 by 0.8 meters. The visible pixel resolution of each projection image
on screen was 768 by 768 pixels. The software environment used to render the
visualization is based on OpenGL and described in [12]. The display system was
driven by a small cluster of four commercial off-the-shelf computers intercon-
nected with a Giga-Ethernet local area network. The computers were equipped



186 L.W. Pettersson et al.

with Nvidia QuadroFX graphics cards. Head tracking was accomplished with an
Ascension Flock of Birds system.

Two observers were standing on the opposite sides of the display environment
and facing each other. Each observer simultaneously saw an independently ren-
dered stereoscopic view provided by one pair of the four pairs of projectors. In
total four of the eight projectors were used. The observers wore polarizing glasses
with a Flock of Birds sensor attached, providing the head position. Movement
was only restricted such that each observer could not move past their side of
the edge of the display environment. Motion parallax not only enhanced the
stereoscopic spatial illusion it was essential to solve the task by avoiding visual
occlusion. Dim lighting was used in the room.

4.4 Experimental Design

The design of the study was a three-factor mixed design. The within factors were
viewing condition, integral versus partitioned, and blocks of trials. The between
factor was presentation order, if the dyad started with integral or partitioned
visualization. The presentation order was counterbalanced.

4.5 Procedure

When the observers arrived at the experiment they were first asked about some
background information, such as age, color vision, and if they had normal or
corrected to normal vision.

During the experiment only one of the two participants in each condition could
enter the answers using a keyboard and this participant was randomly chosen
before the experiment started. They were given written and oral instructions of
the experiment. The participants were told that accuracy was most important
but that time also was crucial.

The trials were self-paced, and the observers controlled the screen by pressing
the space bar when they wished a trial to begin. When a trial began the map and
the layers were shown. The participants had to discuss and point to the map to
come to an agreement on which borehole that was closest to the reference point
and satisfied the intersection condition (yellow and green layers). When they had
reached an answer, they pressed space bar again and the layers disappeared and
a letter appeared next to every grey sphere located on the top of the boreholes.
The answer was given by pressing the letter on the keyboard that coincided with
the letter on the borehole. After this the screen turned black and the trial was
over, the next trial began by pressing the space bar. Task time was measured
between the first and second push on the space bar. This was done to capture
only the time the participants were solving the task, not the time they spent on
finding the right button to press on the keyboard.

The dyads performed two blocks of 15 trials, a total of 30 trials in each
condition, integral and partitioned, resulting in a total sum of 60 trials for the
dyads. Prior to each session of the different conditions a learning session of five
pre-trials took place.
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4.6 Observers

20 observers were divided into ten dyads. The subjects were all male and between
20 and 49 years old. The observers were either students at the Royal Institute
of Technology (KTH) in Stockholm, Sweden, or students or staff of the Swedish
National Defense College (SNDC), Stockholm. During a pre-test interview all
participants stated that they had normal color vision and normal, or corrected
to normal, vision.

They received a small compensation for taking part in the experiment and
they had no prior knowledge of the purpose of the experiment of the specific
hypotheses employed. The subjects were assigned to the dyads; in some of the
resulting dyads the two subjects had a prior knowledge of each other.

5 Results

Errors were relatively scarce and approximately equal in number in the two main
conditions. In the integral condition the dyads made, on average, 1.5 errors over
the 30 trials and in the partitioned condition they made on average 1.3 errors
per 30 trials.

Effects of integral versus partitioned visualizations
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Fig. 3. To the left: Mean times and standard deviation to solve the task in integral
and partitioned visualizations. To the right: Interaction effect between condition and
presentation order.

As for the time data, the mean task time in the integral condition over the
30 trials was 13.1 seconds with a standard deviation of 6.6 seconds and in the
partitioned condition 10.1 seconds with a standard deviation of 4.5 seconds. See
figure 3(a). This means that the mean task time was 27 percent higher in the
integral condition.

The time data were analyzed by means of an ANOVA. Since reaction time
data typically are non-normally distributed, we employed a logarithmic transfor-
mation of these data before statistical testing. All calculations were conducted
with a decision criterion of 0.05. The results from the ANOVA shows that there
is a significant difference in favor of the partitioned visualization compared to
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the integral (F(1,8)= 14.30, p<0.0054). There is a significant effect of block,
(F(1,8)= 10.54, p<0.012). There is also a interaction effect between condition
and presentation order, depending on what condition the dyads started with,
(F(1,8)= 13.49, p<0.0063). See figure 3(b). No other significant results came
out of the ANOVA.

6 Discussion and Conclusion

The aim of this experimental study was to investigate effects of integral visual-
ization as compared to partitioned visualization in collaborative spatial tasks.
From the results of the ANOVA we find that the partitioned visualization led
to significantly lower task performance times. That is, in spite of an additional
overhead for communication between the subjects in the partitioned condition
they performed faster compared to when viewing the integral visualization. One
plausible explanation might be that, in the integral visualization, individuals
had to change their head positions more frequently in order to resolve the in-
tersections of the boreholes with the various layer patches. Obviously, in the
presence of four layers at the same time, the two observers in a dyad had to
resolve occlusions more often even though the visualization was perceived from
two opposing directions. Another reason might be that in a more complex vi-
sualization subjects have more aspects to discuss and agree upon, whereas in
a partitioned visualization each subject needs to accept the assessments of his
respective peer.

In the learning session of the five pre-trials the subjects had the chance to
develop a collaboration strategy. Finding this strategy in the trials after the pre-
trials can be considered as part of the learning effect that was observed between
successive blocks in both conditions. Since we were anticipating learning effects,
we designed block sequences for the visualization conditions in order to study
this effect.

A possible strategy, that probably most dyads used, was to solve the task in
two stages. The first stage was to identify those borehole candidates which satis-
fied the specific intersection condition. In the second stage, the dyads determined
the candidate with the shortest distance to the reference point. In the experi-
ment we could observe that all the dyads used direct interaction, by pointing
at the map in the display surface and discussing the visualization. It helped the
subjects to remember the possible candidates while assessing distances within
the map. This emphasizes the importance of view-dependent co-located visu-
alizations as a means to provide spatially correct collaborative interaction for
tasks similar to the one investigated in this experiment.

There was no difference in errors between the two conditions and error rate
was low and similar for both. The subjects had been instructed that accuracy
was most important but time was also crucial. This indicates that the subjects
had adhered to the instructions given to them. We have no deeper insight if
errors occurred due to incorrect intersection assessment or if they were due to
incorrect estimation of the relative distances in the map plane.
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The significant main effect of block (F(1,8)= 10.54, p<0.012) indicates that
the participants successively became better during the experiment. It means
that tasks in the experiment were not too difficult to learn. Another effect ob-
served is the interaction between visualization condition and order of presenta-
tion (F(1,8)= 13.49, p<0.0063). Figure 3(b) shows that for the dyads starting
with the partitioned visualization, task performance was the same as the inte-
gral visualization due to counteraction between learning effects and longer task
times in the integral visualization. In contrast, for the groups starting with the
integral visualization the performance was enhanced both by the learning effects
and shorter task times for the partitioned visualization.

The results we obtained in this study hold for layer partitioning of visualiza-
tions into two subsets viewed and analyzed by two collaborating individuals. In
this experiment the communication between the two peers was direct and they
had a clear role assignment since only one subject controlled the keyboard. We
assume that partitioning of visualizations for more than two users might lead
to increased communication overhead which at some point might cancel out the
gained effects of reducing visual clutter. Layer partitioning applies naturally to
tasks which can be subdivided between observers such that each part is repre-
sented in a layer. “The approach is less useful for a user that needs information
which is spread across many layers” [5].

In designing the task as we did, we did not aim at adapting it to some specific
application area. Instead, we chose a task that aggregated two generic types
of tasks, which are categorical assessment of qualitative features located in 3D
(color and intersection) and of spatial features in 2D (distance). In combining
these generic tasks to a more complex decision situation as tested in our study,
we approached visualization scenarios more typical for real-world applications.
Hence, we believe that the results in this paper are of relevance to a wider
audience who intends to employ advanced displays for co-located visualizations
in other fields of research such as geology, mining, infrastructure planning, and
games.
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Abstract. One fundamental step for image-related research is to obtain
an accurate segmentation. Among the available techniques, the active
contour algorithm has emerged as an efficient approach towards image
segmentation. By progressively adjusting a reference curve using combi-
nation of external and internal force computed from the image, feature
edges can be identified. The Gradient Vector Flow (GVF) is one efficient
external force calculation for the active contour and a GPU-centric imple-
mentation of the algorithm is presented in this paper. Since the internal
SIMD architecture of the GPU enables parallel computing, General Pur-
pose GPU (GPGPU) based processing can be applied to improve the
speed of the GVF active contour for large images. Results of our experi-
ments show the potential of GPGPU in the area of image segmentation
and the potential of the GPU as a powerful co-processor to traditional
CPU computational tasks.

1 Introduction

In the area of image based analysis and its related applications, segmentation
is, in many cases, the starting point for further processing. The segmentation
algorithm may provide the foundation for further processing, such as identify-
ing features or objects that subsequently are used for the reconstruction of 3D
models. Among many existing segmentation algorithms, the active contour tech-
nique or snake [1] is an algorithm that uses an external force and an internal
force to progressively fit a closed curve to edges, boundaries or other features of
interest specified via gradient. The snake has been widely used in areas such as
biomedical image analysis and further enhanced for specific problem domains.
For example, Xu and Prince [2] proposed a better way of calculating the external
force of the curve. This improved snake algorithm is called Gradient Vector Flow
(GVF) snake and has two advantages over the original snake algorithm: (1) it
is less sensitive to initialization and (2) it can move into boundary concavities.
This paper introduces a hardware accelerated technique for gradient vector flow
computation, utilizing the vertex and fragment units on today’s graphics pro-
cessing units. Most mid-range GPUs now have a SIMD architecture and deep
parallel processing capabilities on the vertex and fragment units [3], which can be
used as a very efficient co-processor that can take over some of the computation
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tasks otherwise handled by the CPU. These computation tasks are not limited
to graphics and visualization but may also include general purpose computation.
This paper is organized as follows: Section 2 introduces background and prior
work done in related areas. Section 3 gives an overview of GPGPU based pro-
cessing and how it is related to this research. Section 4 describes the GPU
implementation of the GVF snake algorithm. Section 5 provides a performance
and test results.

2 Related Work

The segmentation by active contour or snake algorithm can be found in com-
bination with many image related applications. Kass et al. [1], introduced the
snake algorithm, which uses an external force and an internal force to conform
the contour to certain features in the image. The external force is calculated
from the image and the internal force is derived from the contour itself. The
corresponding curve is defined by:

Xt(s, t) = αX ′′(s, t) − βX ′′′′(s, t) − ∇Eext (1)

where Xt(s, t) is the curve that represents the snake at time t and X(s) =
[x(s), y(s)] , s ∈ [0, 1] is the parametric curve, X ′′ and X ′′′′ are the second and
fourth order derivatives, α and β are constants that defines the internal forces.
∇Eext is the external force. The GVF snake introduced by Xu and Prince [2]
improves the above by introducing a new external force. The revised dynamic
snake function can then be formulated as:

Xt(s, t) = αX ′′(s, t) − βX ′′′′(s, t) + V (2)

where V stands for the new static external force field called gradient vector flow
(GVF). Zimmer et al. [4] applied the algorithm to video tracking for the quanti-
tative analysis of cell dynamics. Ding et al. [5] described a volumetric CT data
segmentation that is based on application of GVF snake to 2D CT slices. Vid-
holm et al. [6] introduced a virtual reality system for the visualization of volume
data combined with force-feedback. GVF snake segmentation of the data was
used for visual augmentation and control of the haptic device. Some of the GPU
processing and bandwidth characteristics can outpace that of CPUs, which make
it appealing to convert processing extensive algorithms to the GPGPU domain
if their nature is compatible. For example, Rumpf et al. [7] introduced a level-set
based segmentation that was leveraging GPU capabilities. Despite of the advan-
tages of the level-set segmentation, the implementation was still limited by the
graphics hardware available at that time and therefore is not completely GPU
centric. Kondratieva et al. [8] described a real-time computing and visualization
technique for diffusion tensor images, which achieves both visual and speed im-
provements over traditional CPU realization. Fan et al. [9] built a computing
cluster based on GPU to achieve greater parallel processing power. Kipfer et al.
[10] implemented a fluid dynamics simulation engine on the GPU, which lever-
ages the GPU to avoid I/O bottlenecks and improves performance. Fatahalian
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et al. [11] implemented an efficient matrix multiplication algorithm on the GPU.
GPU based computation is not limited to the above mentioned areas and can
be expand to many other areas compatible with the SIMD architecture.

3 GPU and GPGPU

Recent GPUs demonstrate enormous potential for scientific computing tasks in
the form of General Purpose GPU-based processing (GPGPU). In particular,
memory bandwidth and instructions per second highlight potential benefits. For
instance, the Nvidia Geforce 6800 graphics chip can process 600 Million ver-
tices/sec and has a fill rate of 6.4 billion pixels/sec, while the Geforce 7800 series
can almost double that performance. Galoppo et al. [14] reported that the 6800
could achieve 2.5 billion instructions per second for division, which compare to
6.7 billion for a Pentium4 3.2GHZ CPU. Kilgariff and Fernando [3] demonstrated
that the GPU Memory Interface of the Geforce 6800 series can reach 35 GB/sec,
which compares well against the 6.4 GB/sec of the CPU Memory Interface for a
800 MHz Front-Side Bus. Besides these, the GPU has a very different architec-
ture and processing stream than the CPU. The GPU processing model can be
decomposed into several stages ([15]). Data goes from the CPU to GPU through
system bus. On the GPU, it goes from vertex buffer, the vertex processor, ras-
terization and finally gets to the fragment processor. One important feature of
GPU is its SIMD architecture that naturally supports parallel processing. Most
computation tasks on GPU are parallelized as illustrated in Fig.1. For example,
the Geforce 6800 supports 6 vertex units and 16 fragment units. And each unit
can process 4 components (RGBA or xyzw) in parallel.

Fig. 1. The parallel nature of GPU

Fig. 2. The process of GVF Snake
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However, it is important to carefully consider strengths and weaknesses of
GPU-based techniques. First of all, although the GPU has excellent computa-
tional power, the majority of graphics cards are still limited to 16bit floating
point precisions. This means, in many cases, the traditional implementations of
algorithms will be subjected to a loss in precision when migrated directly onto
the GPU. One solution is to use 2 components of texture unit to store one 32bit
float number. With more graphics cards supporting the 32bit floating point tex-
tures, this problem will be reduced in the near future. However, it is still very
important to find a balance between the precision and speed because the 32bit
floating point data lead to nearly half the speed of the 16bit precision data as
reported in [16].

Secondly, while the bandwidth on the CPU or on the GPU alone can be
enormous, the bus I/O between CPU and GPU can sometimes become a bottle-
neck. On the Geforce 6800 card, the PCI Express×16 inteface provides 8 GB/sec
throughput while the on-board bandwidth for the GPU is 35 GB/sec. Therefore,
it is worthwhile to optimize the code for fewer I/O on the GPU.

Third, the data structure should fit to the platform architecture. When im-
plementing an algorithm on the GPU, it is important to consider its SIMD ar-
chitecture. The data should be independent from each other, and random access
of data such as a linked-list should be avoided if all possible.

Shader Model 3.0 and the OpenGL 2.0 standard provide a means to resolve
the problems mentioned this far. For example, multiple rendering target could
save rendering passes by using a single input texture to generate multiple output
textures. In addition, Frame Buffer Objects (FBOs) greatly improve the speed
by saving I/O between GPU and CPU. The vertex texturing functionality allows
the texture to be used as a data array. In support of hardware-based processing,
different high-level languages were created, such as CG [17] and [18], which sup-
ports most features for Shader Model 3.0. HLSL [19] and the OpenGL Shading
Language [20] are also such languages.

4 Gradient Vector Flow Snake Implementation on GPU

Equation (2) describes the GVF-based snake function, which introduced the V
term for the gradient vector flow. V can be defined as a vector field V (x, y) =
[u(x, y), v(x, y)] that minimizes the energy function:

ε = μ(u2
x + u2

y + v2
x + v2

y) + |∇f |2 |V −∇f |2 dxdy (3)

where f(x, y) is an edge map of the original image, ∇f is its gradient map and
μ is a constant that represents the level of noise. To solve Equation (3) for the
V (x, y), u and v need to be treated as functions of time by solving the following
equations:

ut(x, y, t) = μ∇2u(x, y, t) − b(x, y)u(x, y, t) + c1(x, y)

vt(x, y, t) = μ∇2v(x, y, t) − b(x, y)v(x, y, t) + c2(x, y)
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where:

b(x, y) = fx(x, y)2 + fy(x, y)2, c1(x, y) = b(x, y)fx(x, y), c2(x, y) = b(x, y)fy(x, y)

and ∇2 is the laplacian operator. This can be numerically expressed as:

ut =
1

Δt
(un+1

i,j − un
i,j), vt =

1

Δt
(vn+1

i,j − vn
i,j)

∇2u =
1

ΔxΔy
(ui+1,j + ui,j+1 + ui−1,j + ui,j−1 − 4ui,j)

∇2v =
1

ΔxΔy
(vi+1,j + vi,j+1 + vi−1,j + vi,j−1 − 4vi,j)

By substituting the above variables into the equations for ut(x, y, t) and vt(x, y, t),
an iterative solution to the GVF field can be obtained.

The GVF snake algorithm is composed of two parts: (1) the pre-computing of
the GVF field and (2) the iterative solution of the snake function. Both parts has
the temporal and spatial locality. At any single time step, the u(x, y) and v(x, y)
only involves 4 of its neighboring points and 1 previous time step. The general
flow for this algorithm is illustrated in Figure 2. First, the input image is con-
verted to greyscale and an edge detection filter is applied to obtain the edge map.
Subsequently, a second shader is used to obtain the gradient map and generates
three contants for every pixel, namely b(x, y),c1(x, y) and c2(x, y). The multiple
rendering target technique is then used to generate and store the results in two
seperate textures, one for the gradient and the other for the constants. Most
current GPUs only support 16bit floating point precision with values clamped
to the range of [0.0, 1.0]. Therefore, we store the data using a packing scheme.
The gradient dx and dy are stored in R and G components and the B and A
components save a flag number identifying how the dx and dy are stored. In
this particular case, the dx is stored as is if |dx| ≥ 0.01, otherwise, as −1/ln dx.
Similar packing is performed on the three constants.

After these preparation steps, the iterative GVF field calculation can start.
The iterative computation on GPU can be mapped to a so-called ping-pong
scheme using the FBO(frame buffer objects). Each FBO can be bound to four
framebuffers, namely, COLOR0 through COLOR3. This is illustrated in follow-
ing pseudo code:

Src_Buffer = COLOR0; Dst_Buffer = COLOR1;

while(counter<Number)

{Attach Dst_Buffer as DrawBuffer; Src_Buffer = input for fragment shader;

Draw the texture;

Swap the Src_Buffer and Dst_Buffer;

Increase counter;}

The resultant GVF field is stored in one framebuffer and is used as input param-
eter to the snake process fragment shader. The fragment shader for the snake
process involves solving a linear system:

A ∗Xt = γ ∗Xt−1 + κ ∗ V (4)
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where V is the GVF field and Xt is the snake contour at t time, γ and κ
are constants and A is a constant matrix. Note that solving the above linear
system not only requires an inverse of the matrix, but also brings in the violation
of the spatial locality. While the first problem can be addressed on the GPU
[14], the second problem will dramatically decrease the efficiency of the GPU
implementation because it results in extensive amount of I/O for texel fetch
operations. However,A is very similar to a symmetric band matrix and is positive
definite, with the exception that the upper right corner and lower left corner of
the matrix is not zero. It can be expressed as Equation (5a).

c b a 0 0 0 . . . . . . 0 a b
b c b a 0 0 0 . . . . . . 0 a
a b c b a 0 0 . . . . . . 0 0
0 a b c b a 0 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
a 0 0 0 . . . . . . 0 a b c b
b a 0 0 0 . . . . . . 0 a b c

[5a.]

C B A 0 0 0 . . . . . . 0 A B
B C B A 0 0 0 . . . . . . 0 A
A B C B A 0 0 . . . . . . 0 0
0 A B C B A 0 . . . . . . 0 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
A 0 0 0 . . . . . . 0 A B C B
B A 0 0 0 . . . . . . 0 A B C

[5b.] (5)

where a, b are positive constant values that are much smaller than 1 and c is
around 1. The major diagonal has the value of c, the second major diagonal has
the value of b and the next one is a. Furthermore, its inverse matrix is of similar
type. Because most of the numbers in Ã are far smaller than 10−6 after the third
diagonal, an approximation of Ã can be given as Equation (5b). where:

A = c(b2 − ac)/ [X] , B = −b[X]−bc(b2−ac)(a−c)

(c2−b2)[X]

C = c[X]−c(b2−ac)(a−b2)

(c2−b2)[X]
, [X] = (c2 − a2)(c2 − b2) − b2(c − a)2

(6)

By inserting the above equations to Equation (4), a discrete solution for the
snake contour can be obtained and implemented as a shader program: xt

i =∑i+2
k=i−2M

t−1
i,k vk , i ∈ [1, n] , where n is the number of points in the snake

contour and M t−1
i,k is the row i, column k element of the matrix multiplication

result of Ã and the column matrix of xt−1
i and vk = γxt−1

k + κfk.

5 Experiment Results

All tests were performed on a laptop PC with a 2.4GHZ Pentium processor,
1GB RAM and a Geforce Go6800 card with 128MB on-board graphics memory.
Fig.3(a) shows the edge map for the U-shape image, followed by the initial curve
in Fig.3(b), a partial result after 150 iterations in Fig.3(c) and the final result
in Fig.3(d). The result shows that the GVF snake algorithm can contract to
concave shapes where ordinary snake could not. Fig.4 shows a non-continuous
room model results. These two data sets were modeled after the ones by Xu and
Prince [2] to provide a better comparison. Fig.5 is an MRI brain scan which shows
the algorithm can be applied to real-world data with non-uniform background
and concave shape. A set of scans of human shoulder was studied at levels of
image ranging from 128×128 to 1024×1024 pixel resolution in order to evaluate
the scalability of the algorithm and pinpoint performance tradeoffs. The results
for computations on the above data are provided in Fig.6.

In Fig.6, the GVF field calculation was performed both on the GPU and CPU,
and it includes the edge detection stage for the GPU. For the snake algorithm,
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(a) Edge map (b) Initial circle (c) Partial result (d) Final result

Fig. 3. U-shape 256 × 256 pixel

(a) Edge map (b) Initial circle (c) Partial result (d) Final result

Fig. 4. Room 256 × 256 pixel

(a) Edge map (b) Initial circle (c) Partial result (d) Final result

Fig. 5. MRI 256 × 256 pixel

Fig. 6. Benchmark on test images
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Fig. 7. MRE comparison

(a) Edge map (b) Initial circle

(c) Partial result (d) Final result

Fig. 8. Shoulder 1024 × 1024 pixel

it can be observed that the speed performance complexity can be expressed as
O(n2k), where n2 is the size of the texture and k is the number of iterations.
This means that newer graphics cards with more texture memory will be able
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(a) Initial circle (b) Partial result (c) Final result

Fig. 9. Spine

(a) Initial circle (b) Partial result (c) Final result

Fig. 10. Spine with Gaussian noise

to efficiently process larger images. For images of 256 × 256, the CPU is about
20% faster than the GPU. But for 512 × 512 image, the GPU technique starts
to outperform the CPU by 4 times. Therefore, the parallel capability of GPU
computing shows its advantages on larger images. Each individual GPU fragment
or vertex processor is lower than the CPU. However, with the increase in data
size, the GPU parallel pipeline becomes more efficient and greatly outpaced the
CPU. Another observation is that texture I/O may become the bottleneck. For
example, the texture fetch for the snake shader is more than two times that of
the GVF shader and so the snake shader is 50% slower.

One test case is studied to analyze the accuracy of the GPU technique (Fig.9
and Fig.10). This test case uses simple harmonic curves given by: r = a +
b cosmθ + c , where a, b, c are constant values and by varying the m, a set of
curves can be obtained. Each image is 256×256 and we usedm = 0, 2, 4, 6, 8. The
measure of error is MRE(mean radial error), which is the mean distance in the
radial direction between the final active contour and the harmonic curve. Fig.7
shows the MRE result. The blue line shows the MRE, the red line shows the
maximum radial error as the worst case scenario and the yellow line shows the
maximum radial error from a CPU implementation of improved GVF algorithm
as stated in [21]. As we can see, the performance of CPU implementation gener-
ally has better accuracy. The reason for the performance gap is the difference in
the precision of floating point data. Nonetheless, the GPU implementation still
achieves a good overall accuracy and the mean errors are within sub-pixel level.
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Fig.10 shows the robustness of the GPU technique with the addition of gaussian
noise. The image with noise has an MRE of 0.5 while the clean image is 0.35.

6 Conclusion

A hardware accelerated gradient vector flow algorithm for image segmentation
was presented. The algorithm utilizes the fragment and texture units of the
GPU. A set of test cases was presented and evaluated comparing CPU and
GPU results. In addition, some new features of GPGPU are exploited and some
important issues involved in porting algorithms onto the GPU are specified,
which provides a foundation for further exploration in this algorithm.
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Abstract. This paper presents landmark based global self-localization
of autonomous mobile robots in a known but highly dynamic environ-
ment. The algorithm is based on range estimation to naturally occurring
distinct features as it is not possible to modify the environment with
special navigational aids. These features are sparse in our application
domain and are frequently occluded by other robots. To enable the robot
to estimate its absolute position with respect to a single landmark it is
equipped with dead-reckoning sensors in addition to the stereo vision sys-
tem mounted on a rotating head. The pivoted stereo vision system of the
robot enables it to measure range and use bi/trilateration based methods
as they require fewer landmarks compared to angle based triangulation.
Further reduction of landmarks is achieved when robot orientation is es-
timated independently. Simulation results are presented which illustrate
the performance of our algorithm.

1 Introduction

In an application where multiple robots are working on a common global task,
knowledge of position of individual robots turns out to be a very basic require-
ment for its execution. A successful global strategy can be devised if the robot
knows its own position and those of other robots with whom it has to interact.
A simple solution for robot position estimation would be to start from a known
location and track the robot position locally using methods such as odometry or
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inertial navigation [1,2]. These methods have proven to be very efficient and pro-
vide good short term position estimates but suffer from unbounded error growth
due to integration of minute measurements to obtain the final estimate [3]. The
failure of local methods to track the robot position over extended periods of
time and the requirement of an initial estimate makes global position estimation
a necessity. In global position estimation external sensors are used to sense the
environment and calculate position [4]. In this case a robot has no information
other than that it is somewhere on a map.

If it is not allowed to modify the robot environment with artificial landmarks
or active beacons, the robot has to extract naturally occurring distinctive fea-
tures in its environment and to estimate its position with respect to them. Such
features, scarce in our application domain, are frequently occluded by other
robots for longer durations. This makes simultaneous acquisition of multiple
landmarks troublesome and hence the localization algorithm should be based
on as few landmarks as possible. If the robot is only able to measure angles
between landmarks then a minimum of three distinct landmarks are required to
triangulate the robot position on a planar surface [5, 6]. Whereas when range
measurements are available this requirement drops to two if ordering of the
landmarks with respect to the robot is possible [7].

There have been approaches to maximize the chance of simultaneous acquisi-
tion of multiple landmarks using omni-directional cameras with viewing angle of
360 ◦ [8,9]. These approaches suffer from high cost of the mirror, low resolution
of the camera, and requirement of an additional space to fit the mirror and the
camera. With single frontal cameras one can have high resolution but the field
of view is limited [10, 11]. Additionally, range measurement using single image
is too erroneous and the approach cannot be used at all times [12].

To provide the missing range information to camera images, some researchers
fuse information from range and intensity sensors. There have been approaches
combining laser range finder with single frontal cameras [12, 13] and omni-
directional cameras [14]. In order to get advantages of range measurements, we
propose a stereo vision system. To overcome the problems with the limited field
of view of the directional cameras the stereo cameras are mounted on a pivoted
head. This is an aid in exploring the robot environment for features and can be
made small enough to fit within given dimensions.

However, even with the pivoted stereo head we experience difficulties with
simultaneous acquisition of two distinct landmarks. Therefore, we extend our
existing algorithm so that the absolute position of the robot may be calculated
with respect to one landmark where the robot orientation is estimated with
another independent source i.e. with a compass. To the best of our knowledge
no one has applied this method in a similar setup.

In this paper we focus on performance analysis of single landmark global self-
localization. Landmark extraction and range estimation is done with the stereo
vision system. The robot environment is simple but highly dynamic consist-
ing of visual landmarks i.e. lines, corners, junctions, line intersections and color
transitions [15]. The test bed for our algorithm is a soccer playing robot called
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Tinyphoon(www.tinyphoon.com) [16]. The balance of the paper is organized as
follows: Section 2 discusses position estimation using single landmark. Uncer-
tainty analysis of the method is carried out in Section 3. Experimental results
are presented in Section 4 and the paper is finally concluded in Section 5.

2 Landmark-Based Localization

Landmarks are distinct features that a robot can recognize from its sensory input.
In general, they have a fixed and known position, relative to which a robot can
estimate its position [17]. Input data may be of range or bearing type. This leads
to two different techniques, trilateration and triangulation, respectively. Trilater-
ation is the determination of a robot’s position based on distance measurements
to landmarks, whereas, in triangulation, bearing to different landmarks in the
environment is used [17].

The environment consist of color transitions, corners, junctions and line in-
tersections as landmarks. Corners, junctions and line intersection are detected
using semantic interpretation of line segments extracted using gradient based
Hough transform [15] (see Fig. 1). Whereas, color segmentation of the camera
images is used to detect specific color transitions in the environment [7]. In this
study we use only color transitions as landmarks.

(a) Left camera image (b) Detected features su-
perimposed over the edge
map

Fig. 1. Line based landmarks for self-localization

2.1 Position Estimation Using Single Landmark

We assume that the robot’s motion is two dimensional where pose of the robot
has 3 degrees of freedom i.e. p = [x y θ]T . The global coordinate system is
represented by x and y axis, whereas the robot coordinate system by X and Y .
As can be seen in Fig. 2, the robot position is constrained to a circle C′ when it
detects a distinct landmark point pl = [xl yl]T in the global coordinate system
and measures its range r =

√
X2 + Y 2. Assuming identical cameras, parallel

image planes and aligned epipolar lines the landmark point ([X Y Z]T ) in the
camera coordinate system can be related to its projection in the left and right
image using (1) [18].
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X = xc +
fb

ul − ur

Y =
−b
2
ul + ur − 2ou

ul − ur
(1)

Z =
−b(vl − ov)
ul − ur

where [ul vl]T and [ur vr]T are the coordinates of the landmark point in the left
and right image, [ou ov]T is the image center point, b is the baseline of the stereo
vision system, f focal length of both cameras and xc is the distance from the
center of the robot to the cameras.

Fig. 2. Single landmark based localization: robot position constrained to the intersec-
tion of line and circle

Now, as shown in Fig. 2, if in addition to measuring [X Y ]T the orientation
of the robot is known, its position is further constrained to the intersection of
circle C′ and line L′. The two intersection points are given by (2).

p =
[
x
y

]
=

[
xl ±

√
X2+Y 2√
1+m2

yl ± m
√

X2+Y 2

1+m2

]
(2)

where slope of the line m = tan(θ + α) and α = atan2( Y
X ).

In our case the line segment always originates at the robot location and termi-
nates at the landmark. This information may be used to resolve the ambiguity
between the two candidate positions. For the case shown in Fig. 2 the robot’s ori-
entation and location of the landmark in robot’s coordinate system is such that
it can only be on the lower left side of the landmark. The use of this information
reduces (2) to (3).

p =
[
x
y

]
=
[
xl −

√
X2 + Y 2 cos(atan2( Y

X ) + θ)
yl −

√
X2 + Y 2 cos(atan2( Y

X ) + θ)

]
(3)
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From this discussion it is clear that range measurement with respect to a dis-
tinct landmark and knowledge of the robot’s orientation is sufficient to calculate
its absolute location.The stereo vision system is used to extract description of land-
marks and calculate their range. This description is used to identify landmarks in
the global map of the environment. To measure the robot orientation it is equipped
with a yaw rate sensor. It is most accurate (< 3 ◦) when the robot is not moving
and there are no other robots or magnetic objects in its close proximity [16].

3 Uncertainty Analysis

Error free measurements will result in perfect localization. However, measure-
ments are never perfect and errors in distance and angle estimates can vary sig-
nificantly. In addition to measurement errors there could be error in landmark
identification and matching with the world map [19]. Due to error in measured
image coordinates and orientation estimate, the robot will be somewhere in the
shaded area shown in Fig. 3. The extent of this uncertainty area is dependent
on the amount of error.

Fig. 3. With error in range and angle the robot position is constrained to the shaded
area determined by the intersection of the thickened circle and the line

As errors make it impossible to estimate the exact position, it is required to
associate some sort of uncertainty measure with the robot position. We assume
perfect landmark location and its matching with the world map. We further
assume that ul and ur are corrupted by an additive Gaussian noise with zero
mean and variance σ2

uu, similarly, error in the orientation estimate is Gaussian
with zero mean and variance σ2

θθ.
Error in ul and ur is propagated to X and Y by (1), whereas error in X , Y

and θ is propagated to the estimated position by (3). As the transformations (1)
and (3) are non-linear the resulting error distribution is not Gaussian. We use
first order approximation of these equations for error propagation. According to
our experiments this captures the uncertainty adequately. The uncertainty in
[ul ur]T propagated into [X Y ]T by (1) is given by the following expression [20].

ΣIR = JIRΣIJT
IR (4)
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where ΣI = σ2
uu

[
1 0
0 1

]
is the covariance of [ul ur]T and JIR is the Jacobian of

(1) with respect to [ul ur]T . Simplification of (4) results in a 2× 2 matrix which
is updated to a 3 × 3 matrix to accommodate uncertainty in θ. The updated
covariance matrix is given by the following expression.

ΣIR =
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where d = ul − ur is the stereo disparity. θ is estimated independently, hence
error in θ is independent of error in X and Y .

Finally, error in [X Y θ]T is propagated to the robot position p = [x y]T

by (3). Again using first order approximation we derive the expressions for the
covariance matrix of p

ΣRW = JRWΣIRJT
RW (6)

where
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[
JxX JxY Jxθ

JyX JyY Jyθ

]
(7)

simplification of (6) results in the following
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in (9) JxX = − cX
r − sY

r , JxY = sX
r − CY

R , Jxθ = sr, JyX = cY
r − sX

r , JyY =
− sY

r − cX
r , Jyθ = −CR are elements of the Jacobian matrix of (3) with respect

to [X Y θ]T and s = sin(atan2( Y
X )+ θ), c = cos(atan2( Y

X )+ θ), r =
√
X2 + Y 2.

4 Experimental Results

We investigate the performance of our algorithm in simulation. The robot is cur-
rently under development and real world data shall be available in near future.
In all of these experiments image resolution and the stereo baseline was set at
320×240 pixels and 30mm respectively. We have conducted 28 trials where each
one has 100 steps. These trials are further grouped into six categories: motion
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Fig. 4. Actual locations from where position was calculated

(a) Motion along rectangu-
lar paths with no rotation

(b) 360 ◦ rotation with no
motion

(c) motion along rectangu-
lar paths with 360 ◦ rotation

(d) Only 90 ◦rotation with
no motion

(e) motion along linear
paths with 20 ◦ rotation

(f) motion along linear
paths with no rotation

Fig. 5. Normally distributed error with mean 0 and variance 5 ◦added to the robot
orientation

along rectangular paths with no rotation, 360 ◦rotation with no motion, motion
along rectangular paths with 360 ◦rotation, 90 ◦or 180 ◦rotation with no motion,
motion along linear paths with 20 ◦rotation and motion along linear paths with
no rotation. At every step the robot is taking images of its environment, searches
for color transitions and calculates its position if it finds one. In these experi-
ments only a single shot localization method is used. The algorithm does not
incorporate any kind of tracking of landmarks or of its position.

Fig. 4 shows the path followed by the robot. Locations where images were
taken and searched for color transitions are shown as dots (·). However, de-
pending on the instantaneous pose of the robot, it may not find any landmark
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Table 1. Error in x and y with perfect orientation estimate

μ1 σ1 μ2 σ2 μ3 σ3 μ4 σ4 μ5 σ5 μ6 σ6

δx 41.68 43.42 45.64 40.98 38.92 34.48 34.66 27.88 41.04 27.69 43.90 27,61
δy 9.48 11.17 20.48 16.78 20.33 17.01 12.90 10.15 7.12 24.69 4.31 5.4

Table 2. Error in x and y where error in robot orientation is normally distributed
with zero mean and 5 ◦ variance

μ1 σ1 μ2 σ2 μ3 σ3 μ4 σ4 μ5 σ5 μ6 σ6

δx 41.51 44.05 48.73 42.19 41.37 34.98 35.53 28.58 41.63 28 44.15 28.27
δy 22.30 25.05 29.07 24.44 27.97 23.35 23.94 21.49 24.04 30.25 24.13 19.78

(a) Line motion: The un-
certainty decreases as the
robot gets closer to the
landmark

(b) Motion only: Follow-
ing a rectangular path with
fixed orientation

(c) Motion and rotation:
Following a rectangular
path with 360 ◦of rotation
in 100 steps

Fig. 6. Uncertainty analysis

therefore its pose is estimated only at limited locations shown as plus (+) su-
perimposed on the dots(·).

The first category consisting of four trials is shown in Fig. 5(a). The robot
follows a rectangular paths of different dimension around the field with its ori-
entation fixed at 0 ◦ or 180 ◦. Fig. 5(b) illustrates a 360 ◦rotation-only category
consisting of 5 trials. Here the robot is placed at five locations: near the four
corners and at the center of the field. Motion along rectangular paths of different
dimension and rotation of 360 ◦in each trial is shown in Fig. 5(c). This category
consists of 5 trials. Fig. 5(d) shows the fourth category that consist of 4 trials.
In this case the robot’s position is fixed at one point and it completes a rotation
of 90 ◦or 180 ◦in a trial. Similarly, motion along linear paths and 20 ◦rotation in
small steps is shown in Fig. 5(e). Fig. 5(f) illustrate the last category consisting
of 5 trials. Here the robot is following linear paths but its orientation is fixed
along the x-axis.

Statistical results for error in position are shown in Table 1 and Table 2 for
all the six categories as discussed above. The subscripts 1 to 6 represents the
category. For each category mean (μ) and standard deviation (σ) for the absolute
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error in x and y is shown in both the tables. Table 1 shows the results where
perfect orientation of the robot is used, whereas, Table 2 shows the case where
the robot orientation estimation is in error. Errors δx and δy in Table 1 and
Table 2 are expressed in millimeters.

Fig. 6 shows 50% uncertainty ellipses for each estimate of the robot position
based on the discussion presented in Section 3. For this experiment the σ2

uu and
σ2

θθ values were chosen to be 0.5 and 3 ◦ respectively. Error in robot orientation
was set to a maximum of ±8 ◦ with a variance of 5 ◦. There is a substantial
increase in the uncertainty as the robot gets further from the landmark point.
Analysis of error in landmark location and the effect of dropping the higher order
terms in the Taylor series expansion is the subject of our current research.

5 Conclusion

In this paper we have presented our investigation of self-localization using range
measurement to a single landmark. Simulation results show that this method can
successfully localize robots in an environment with scarce landmarks. For this
study only color transitions are used as landmarks. Extraction of color patches
is very efficient as only N/16 pixels are tested to determine the rectangular
boundaries around them (if any), N being the total number of pixels [7]. We
have used just a single shot localization and have not incorporated any kind
of temporal redundancy. The robot pose could be refined once an estimate is
available. Currently we are working on methods for efficient interpretation of
landmarks other than color transitions, tracking of landmarks, tracking robot
position with local sensors and information fusion.
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Iterative Estimation of 3D Transformations for Object 
Alignment 
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Abstract. An Iterative Estimation Algorithm (IEA) of 3D transformations be-
tween two objects is presented in this paper. Skeletons of the 3D objects are  
extracted using a fully parallel thinning technique, feature point pairs (land 
markers) are extracted from skeletons automatically with a heuristic rule, and a 
least squares method and an iterative approach are applied to estimate the 3D 
transformation matrix. The algorithm has three advantages. First of all, no ini-
tial transformation matrix is needed. Secondly, user interaction is not required 
for identifying the land markers. Thirdly, the time complexity of this algorithm 
is polynomial.  Experiments show that this method works quite well with high 
accuracy when the translations and rotation angles are small, even when noise 
exists in the data. 

1   Introduction 

3D alignment or registration algorithms have many applications in medical image 
processing. Consider two objects O1 and O2, such that O2=M*O1, where M is the 3D 
transformation matrix.  In this context, the objective of 3D alignment or registration is 
to estimate the 3D transformation matrix M. 

Surveys [1-2] of 3D alignment methods are available in the literature. Since the 
previous decades, a lot of 3D alignment algorithms, including land marker based 
algorithm [3], have been proposed. This paper focuses on land marker based algo-
rithms. The mean square distance (MSD) [3] is used as the metric. Point correspon-
dence [4], which relates a land marker with its counterpart, is a crucial step for 
algorithms in this category. The advantage of this technique is that the set of land 
markers is relatively sparse compared to the original 3D object, so that the optimi-
zation process is relatively fast. However, this technique has some disadvantages. 
First of all, some algorithms, for instance, the ICP [3] algorithm, needs to know the 
initial transformation matrix. Secondly, user interaction is usually required for  
identifying the land markers. Last but not the least, the complexity of point  
correspondence [4] is non-polynomial since it is a combinatorial optimization  
problem.  

In this paper, an automatic Iterative Estimation Algorithm (IEA) is proposed. It has 
three advantages: (i) no initial transformation matrix is needed; (ii) user interaction is 
not required for identifying the land markers; (iii) the complexity of this algorithm is 
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polynomial. The disadvantage of this algorithm is that it does not guarantee achieving 
global optimization.  

We applied IEA in 3D medical image processing. We are interested in defining and 
tracking volume changes of airways caused by surgery, which increases volume. 
Doctors need to track the changes of airways for administering effective treatments. 
In our application, doctors take MRI scans of patients and save them in the DICOM 
[5] format. A commercial software ScanIP/FE [6] is used to segment the airways and 
remove noise semi-automatically. The skeletons are created to depict the segmented 
airway using a fully parallel 3D thinning algorithm developed by us. Then, we applied 
a heuristic algorithm to automatically extract feature point pairs (land markers) from 
skeletons. Since false point correspondence is inevitable, we use IEA to remove some 
point pairs and use the remainder point pairs to achieve smaller MSD. The whole 
procedure has 5 main steps: segmentation, noise removal, thinning, finding feature 
point pairs and iterative transformation estimation. 

In the following sections, the algorithm is described in detail. In Section 2, we 
introduce the data collection and segmentation procedures. Section 3 will briefly 
discuss how to artificially create data for comparison. The fully parallel 3D thinning 
algorithm and the skeletonization process is summarized in Section 4. Section 5 
focuses on the acquisition of feature point pairs (land markers), and the IEA. Re-
sults of experiments are presented in Section 6, before the work is concluded in 
Section 7. 

2   Data Collection, Segmentation and Noise Removal 

A small portion of the upper airway is scanned for a child as an MRI image and 
saved in the DICOM format, which is the industry standard for MRI. ScanIP/FE is 
used to segment airways, remove noise, and semi-automatically create an airway 
model of 3D images. A 3D image is a mapping that assigns the value of 0 or 1 to 
each point in the 3D space. Points having the value of 1 are called black (object) 
points, while 0’s are called white (background) ones. Black points form objects of 
the image. Our test data has about 37,000 object points. Fig. 1 shows some image 
slices and the segmented airway (in red). The 3D models from different viewpoints 
are displayed in Fig. 2. 

 

Fig. 1. Some image slices and segmented airway (in red). (Left) The first image slice.  
(Middle) A center slice. (Right) The last slice. 
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Fig. 2. 3D airway model from 3 different points of view 

3   Data Creation for Estimation 

To verify our method, we artificially created some airway models for estimation. We 
applied 3D homogeneous transformations [7] to the 3D image. We use (alpha, beta, 
gama, dx, dy, dz) to represent the rotation angles and translations for x-, y- and z-axis 
of the Homogeneous Matrices. We also added some random noise to the data to create 
models for comparison. 

4   Fully Parallel 3D Thinning Algorithm and Skeletonization 

3D thinning for medial lines or surface approximation is a useful approach for many 
potential applications. The approach has been extensively researched in the last dec-
ade [8]. In the experiments, we applied our fully parallel 3D thinning algorithm to 
extract the skeletons from 3D images after a noise removal step. Our method is an 
improvement on Ma and Sonka’s algorithm [8]. The algorithm in [8] has a number of 
advantages; however, we found that it cannot preserve connectivity of 3D objects. 
Chaturvedi et al. [9] also found this problem. We improved [8] by changing some 
masks in Class D to preserve connectivity. The skeletons are used to represent the 
airway models. The skeletons have about 500 object points, a large reduction from the 
37,000 object points. 

Fig. 3 (Left) and (Middle) show the skeletons of the original model and the artifi-
cially created model with (alpha, beta, gama, dx, dy, dz) = (1, 1, 1, 0, 0, 0). We notice 
that: 

    1. The thinning algorithm is sensitive to rotations. Even when the rotation angles 
are very small, the two skeletons look quite different. 

    2. The thinning algorithm cannot provide unit-width structures. We can see that 
some regions on the skeletons are quite dense. 

However, we will show that these two drawbacks do little harm to the estimation 
of 3D transformations. Thus, we can still estimate the transformations precisely based 
on the thinning algorithm. 
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Fig. 3. (Left) The skeleton of the original model. (Middle) The skeleton of the transformed 
model with (alpha, beta, gama, dx, dy, dz) = (1, 1, 1, 0, 0, 0).  (Right) Line points (in red).    

5   Feature Point Pair Acquisition and the IEA 

Land marker based estimation algorithms have three main disadvantages as we dis-
cuss before. In this section, an Iterative Estimation Algorithm (IEA) is proposed to 
solve these problems. The disadvantage of this algorithm is that it does not guarantee 
global optimization. 

Definition 1. Connectivity number 
If P is an object point in a 3D image the connectivity number of P is the number of 
object points except itself in P’s (3*3*3) neighborhood. 

In Fig. 4 (Left), the connectivity number of P is 4. 

Definition 2. Line point 
A line point is an object point with connectivity number equal to 2. 

In Fig. 3 (Right), the line points are displayed in red. 

                

Fig. 4. (Left) Connectivity number of point P is 4. A “• ” is an object point, A “ ” is a back-
ground point. (Right) Point P and its 8 sub-neighborhood. 

Definition 3. Feature point (land marker) candidate 
A feature point (land marker) candidate is a line point with at least one non- line 
point in its (3 * 3 * 3) neighborhood. 

Definition 4. Feature point pair (land marker) 
I1 and I2 are two 3D images of the same object. I2=M*I1, where M is a 3D transfor-
mation matrix. A feature point pair (land marker) contains two object points P1 and 
P2, where P1 is on the skeleton of 3D image I1 and P2 is on the skeleton of 3D image 
I2, and P2=M*P1. 
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5.1   The Overdetermined Linear System  

In general, M is a 4 * 4 Homogeneous Transformation Matrix. For point P1= (x1 y1 
z1 1)T in 3D space, P2 = M * P1= (x2 y2 z2 1)T. The goal of our work is to estimate 
the 16 variables of matrix M in certain conditions. Since we need to calculate 16 vari-
ables, mathematically, we need 16 equations for this linear system. For each feature 
point pair, we can have 4 equations. So we need 4 feature point pairs in total to solve 
this problem. However, in most cases in our experiment, we can find more than 4 
feature point pairs. This is a typical case of an over-determined linear system. An 
over-determined linear system can be solved following well-established methods [10]. 

5.2   The Heuristic Rule 

In our experiments, a heuristic rule is used to identify the feature point pairs. It re-
quires two points in a feature point pair to have same "configurations" in its 8 sub-
neighborhood. That is, the local topologies of two points in a feature point pair should 
be same. We used an adaptive method to search for the best neighborhood scale. Fig. 
4 (Right) shows a point p and its 8 sub-neighborhood. 

Heuristic Rule 
If two feature point candidates on different skeletons have the same number of object 
points and the same number of background points in all 8 sub-neighborhoods, these 
two points form a feature point pair. 

5.3   The Iterative Estimation Method 

Feature point correspondences is an open problem in Computer Vision. No general 
method can solve it in polynomial time. There are mainly two difficulties. Firstly, it is 
a combinatorial optimization problem. The time complexity is very high because of 
the large search space. Secondly, point correspondence is not one-one mapping. Some 
points, which are called “outliers” [4, 11], may not have counterparts because of oc-
clusions, out of image transformations and errors in feature selection.   

A brief survey of previous work is available in the literature [4]. For several dec-
ades, researchers have proposed a number of point correspondence algorithms [4, 11]. 
Point correspondence algorithms have many applications [4, 12-13] including image 
alignment. The point correspondence algorithms are classified into two categories, 
globally optimal and non-globally optimal. A globally optimal algorithm [4] guaran-
tees global optimality. However, the time complexity is non-polynomial. A non-
globally optimal algorithm [11] is faster than a globally optimal algorithm. However, 
it does not guarantee global optimality. Another restriction is that some unwanted 
assumptions and constrains [11] are often required to detect the outliers.  

The IEA is a non-globally optimal algorithm. The complexity of this algorithm is 
polynomial. No user interaction, initial transformation knowledge and outlier detec-
tion are required. The motivation behind our work is that we realized that the charac-
teristics of our application, as well as many other medical imaging applications, are: 
the number of feature point pairs is large, user interaction is unwanted, initial trans-
formation knowledge is not easy to know and the outlier detection, which requires 
some unwanted assumptions, constrains, and is not very reliable, should be avoided. 
In these cases, we need a polynomial algorithm that requires no user interaction, no 
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initial transformation information, implicitly removes outliers without any unwanted 
assumptions and constrains.  

We notice that incorrect point correspondences and incorrect outlier detection 
negatively affect the estimation accuracy. However, we also notice that incorrect 
point correspondences and incorrect outlier detection are unavoidable. Therefore, in 
our algorithm, we use a very simple Heuristic Rule to do the point correspondences. 
There are some incorrect point correspondences and some outliers exist in the feature 
point pairs set. We do not know which point pair is correctly related and which point 
pair is incorrectly related. Since the incorrect point correspondences and incorrect 
outlier detection negatively affect the estimation, i.e., the MSD is large, we iteratively 
remove one point pair from the whole set and test if the new MSD is smaller. If the 
new MSD is smaller than the old MSD, we accept this removal. Otherwise, we undo 
the removal. The iteration stops when a preset MSD threshold is achieved or only 4 
point-pairs remain. This approach is very simple and easy to implement. It removes 
the incorrect point correspondences and removes outliers implicitly. The pseudo code 
of the Iterative Estimation Algorithm (IEA) is as follows: 

INPUT: 3D image I1 and 3D image I2, feature point candi-
date sets C1 and C2, and the MSD threshold MSDTHRESHOLD 

OUTPUT: 3D transformation matrix M and the MSD 

1. Read I1, I2, C1 and C2 

2. Select feature point pairs P = (P1, P2) with the Heu-
ristic Rule, where P1 ⊆  C1 and P2 ⊆  C2. Denote by NFP the 
number of feature point pairs.  

3. Initialize the mean square distance MSD and the 
transformation matrix M with a predefined value. If NFP 
< 4, then go to Step 10. 

4. Use least square method to solve the over-determined 
linear system with P, and get the 3D transformation ma-
trix M. Create a new 3D image I3, where I3=M *I1 

5. Calculate the MSD between I2 and I3. 

6. If MSD < MSDTHRESHOLD, then go to Step 10. 

FOR (INDEX = 0; INDEX < NFP; INDEX ++) 

7. Remove a feature point pair with index = INDEX from 
P to create feature point pairs P’, calculate the 3D 
transformation matrix M’, create a new 3D image I3’, 
where I3’ = M’ * I1 and calculate mean square distance 
MSD’ between I2 and I3’. 

8. If MSD<MSDTHRESHOLD or NFP<4, then M=M’ and go to Step 10. 

9. If MSD’ < MSD, then MSD = MSD’, P = P’. Otherwise, 
undo the remove operation in Step 6. 

END FOR 

10. Output the M and MSD. 
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The time complexity of the IEA is polynomial. Step 1, 3, 6 and 10 of the IEA has 
constant complexity. Step 4 and 5 has polynomial complexity. The complexity of 
Step 2 is O(NC1 * NC2), where NC1  and NC2 are the number of feature point candi-
dates in C1 and C2. The complexity of Step 7-9 is O(NFP) * (TLS+TMSD), where TLS is 
the complexity of least square method and TMSD is the complexity of calculating 
MSD. Both of TLS and TMSD are polynomial. So the total time complexity of IEA is 
polynomial. 

To test our approach, we integrate it into our previous framework of 3D transfor-
mation estimation. Experiments in Section 6 show that this approach with IEA can 
estimate 3D transformation with higher accuracy. The new framework is described as 
follows: 

INPUT: 3D image I1 and I2, the MSD threshold MSDTHRESHOLD, 
and the range of neighborhood searching NBMIN and NBMAX. 

OUTPUT: 3D transformation matrix between I1 and I2 

Read I1 and I2, create their skeletons S1 and S2, Init MEST 
and MSDEST with a predefined value 

FOR (NB = NBMIN; NB <= NBMAX; NB += 2) 

1. Calculate the feature point candidate sets C1 from 
S1, C2 from S2, within current neighborhood scale NB 

2. Call the IEA to get M and MSD 

3. If MSD < MSDTHRESHOLD, then MEST = M and go to Step 5. 

4. If MSDEST > MSD, then MSDEST = MSD and MEST = M. 

END FOR 

5. Output the estimated 3D transformation matrix MEST 

In our experiments, NBMIN = 3, NBMAX = 21 and MSDTHRESHOLD =1.0. The experi-
ments and the results are described in Section 6. 

6   Experimental Results 

We first applied our new method with IEA to estimate the 3D translations along the  
x-, y- and z-axes. All the translations are positive integers in [0, 5]. Fig. 5 shows the 
MSD for 3D translations. Result shows the MSD is always 0 in both of the previous 
method and the new method. Both method can locate feature point pairs precisely and 
estimate the translations without error. 

Next, we use our new method with IEA to estimate the 3D rotations in x-, y- and  
z-axis. All the rotation angles are positive integers in [0, 5]. Fig. 6 shows the MSD for 
3D rotations. Result shows that the new method with the IEA has smaller MSD. 

We also applied our new method with IEA to estimate the combinations of transla-
tions and rotations with some random noises (Figs. 7-10). All the translations and 
rotation angles are positive integers in [0, 5]. The random noise is in the range of [0%, 
5%]. Results show that the new method with IEA has smaller MSD. 
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Fig. 5. MSD for 3D translations 

Rotations

0.000000

5.000000

10.000000

15.000000

20.000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

alpha + beta + gama

M
SD

Estimation without IEA Estimation with IEA
 

Fig. 6. MSD for 3D rotations 

Trans. and Rots. in x, y and z axis without noise
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Fig. 7. MSD for 3D translations and rotations without noise 
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Trans. and Rots. in x, y and z axis with 1% random noise
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Fig. 8. MSD for 3D translations and rotations with 1% random noise 
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Fig. 9. MSD for 3D translations and rotations with 2% random noise 
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Fig. 10. MSD for 3D translations and rotations with 5% random noise 
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7   Conclusions and Future Work 

In this paper, we demonstrated how to use an iterative algorithm to improve the esti-
mation accuracy of 3D transformations. Result shows that this method works quite 
well when the differences in orientation are small. This work is a preliminary ap-
proach for defining and tracking the volume changes of airways with surgery. Be-
cause of constraints on time, we do not have airway model after surgery. Therefore, 
we had to create some models artificially to test our algorithm. In the near future, we 
will obtain real models after surgery and then compare our results using data from 
before and after surgery. 
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Abstract. Four-dimensional (4D) visualization of medical data, which entails 
the addition of time as the fourth dimension to 3D data, is fast gaining ground 
as a tool for diagnosis and surgical planning by medical practitioners. However, 
current medical image acquisition techniques do not support high-resolution 4D 
capture.  Instead, multiple 3D datasets are acquired and a temporal relation is 
computed between these datasets in order to align them in time. In past work 
we presented a method of temporal alignment of MRI datasets to generate high-
resolution medical data, which can be extended to 4D visualization. In this 
work, we present the details of our temporal alignment algorithm and also pre-
sent comparative analysis in order to highlight the advantages of our method.  

1 Introduction 

The ability to create 4D data from MRI offers many advantages for visualization for 
medical practitioners, including (1) not subjecting patients to harmful radiation from 
X-rays, (2) short inter-exam time interval and most importantly (3) being able to view 
soft tissue structure in motion as the body functions to sustain life. Current technology 
allows users to view 3D data. However, the temporal changes in the 3D volumes are 
lost as no technique has 4D acquisition capability. In order to obtain high temporal 
resolution, accuracy in the spatial domain has to be sacrificed, as there is a trade-off 
between spatial and temporal resolution in MRI. Acquiring high spatial resolution 
data takes time, and within that period of acquisition, the anatomical structures in the 
body have already undergone motion, which leads to poor temporal resolution. 

Our approach to addressing the 4D visualization problem is to use event dynam-
ics to combine multiple datasets. So, while we can only capture a few representative 
images of the event because of limitations on acquisition speed, we can capture 
multiple repetitions of the event and thus more information about the event. Then, 
using the event dynamics as a guide, we can align these multiple datasets, which 
were acquired independently. The proposed method can find application in other 
areas such as spatio-temporal interpolation of video sequences, video frame rate up-
conversion, multi-view visualization, super-resolution video generation and time 
series analysis of genomic/proteomic data. We define temporal alignment (or tem-
poral registration) as the establishment of a correspondence or a temporal relation 
between two (or more) sequences or motion patterns, with a monotonic alignment, 
but without the necessity that the image pairs or sequences occur at the same point 

ISVC



 Temporal Alignment of Time Varying MRI Datasets 223 

in time. Fig.1 shows two continuous trajectories, which are discretely sampled at 
time instances marked by the solid markers (dots and stars on the curves). Fig.1 (a) 
shows an integer alignment where a strict correspondence is found between each 
time sample. Fig.1 (b) shows a sub-frame alignment, where a non-integer corre-
spondence is found between each time sample. 

time (t)

f(
t)

time (t)

f(
t)

 time (t)

f(
t)

time (t)

f(
t)

 
           (a)              (b) 

Fig. 1. Temporal registration/alignment of two trajectories. (a) Integer frame alignment, (b) 
Sub-frame alignment. 

Currently, most temporal registration algorithms in medical imaging require the 
use of an external timestamp, such as an ECG signal from the heart (cardiac imag-
ing)[8] or speech patterns recorded as audio data (tongue movement) [3] for comput-
ing the correspondence between datasets. Others, such as Perperidis [4][5], use 
changes in volume of the heart as timestamp information. Cardiac imaging has the 
advantage of possessing a periodic, repeating temporal scale. Other physiological 
functions, such as swallowing, do not possess a periodic, repeatable nature. Thus, 
multiple swallows can differ from each other in terms of the time duration of each of 
the three stages of a swallow. In our previous work [1], we presented preliminary re-
sults of fitted curve matching to generate high temporal resolution MRI video of swal-
lowing. In [1], we showed that the dynamic properties of the water being ingested 
during a swallow could be used as a suitable timestamp to align multiple swallow 
datasets together. In this paper, we provide a comparative study of temporal align-
ment using fitted event dynamics [1] and a standard algorithm proposed by Caspi [6], 
which has been used by many researchers in the past. 

This rest of this paper is organized as follows. In Section 2 we discuss some con-
temporary works related to temporal registration and alignment of sequences. In Sec-
tion 3 we discuss in detail the temporal alignment algorithm proposed by Caspi [6] 
and present a case study where the Caspi algorithm will give erroneous results; we 
then present our fitted curve-matching algorithm. In Section 4 we present our experi-
mental setup and results. In Section 5 we put forward the conclusion of our study and 
present some ideas for future work. 

2 Review 

In this section, we will review some past work in temporal alignment and registration 
of sequences. The reviewed papers deal with both space and time alignment, and 
model the registration as a two part transformation comprising of separable temporal 
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and spatial transformations. Since our interest is in temporal alignment we only re-
view the temporal alignment strategies of contemporary work.  

Listgarten et al. [9] use a Hidden Markov Model (HMM) based approach for align-
ment of continuous time series data from speech and mass spectrometry. They present 
a continuous profile model (CPM) (much like Profile HMMs) which assumes that 
each acquired or observed time series is a noisy sub-sampled representation of a sin-
gle true time series, which they call latent trace. The noisy time series are generated 
by moving through a sequence of Hidden Markov states. The CPM is trained using 
expectation maximization (Baum-Welch algorithm), and subsequently the latent trace 
of the model which represents a higher resolution series is obtained. However, the 
CPM algorithm only performs global alignments and a large number of replicated 
experimental data is required to train the HMM. Other constraints are that the nature 
of emission probabilities (Gaussian, in the case of [9]) and penalty term are dependent 
on the experimental data.  

Giese and Poggio [7] model biological motion patterns using linear combinations 
of prototypical sequences with the objective being to recognize and synthesize images 
of objects. They concede that the computation of space-time correspondences be-
tween image sequences is a central problem and they use a dynamic time warping 
approach to account for the differences in time duration of activities. Other such as 
[10] have also used DTW for alignment of curves. [7] model the temporal deforma-

tion as a non-parametric transformation as shown in Eq. 1 below. 

( )t+t=t'  (1) 

However, the underlying problem of correspondence and warping is ill-posed. As, 
even in the absence of ambiguity in the features being compared, there are infinitely 
many possible solutions that can bring the two trajectories into correspondence. The 
correspondence algorithm Giese et al. have developed has two stages. In the first 
stage they use dynamic time warping to solve a discrete optimization problem; in the 
second stage they solve for quasi-continuous spatial and temporal shifts by solving an 
optimization problem derived from linear interpolation between keyframes. They test 
their algorithm on human gait sequences, where the features are manually selected, 
and on synthetic motion patterns generated from an animated stick figure. However, 
in medical images it is often difficult to choose features manually (or via computer 
vision) and error in feature selection will propagate through the algorithm to give er-
roneous alignment. 

Caspi et al. [6][2], approach the subject of spatio-temporal alignment of sequences 
by modeling the temporal offset between two image sequences as a 1D affine trans-
form, which is computed as a translation that minimizes an error function. We discuss 
their approach in more detail in Section 3, and from hereon we will refer to their work 
as the Caspi model.  Their 1D affine transform can be expressed by the following 
equation: 

t+ts=t' Δ.  (2) 

Where ‘s’ is the ratio between the frame rates of the two cameras and tΔ  is a sub-
frame displacement, which is to be computed. They deal with sequences of events that 
are captured at the same time with a spatial and/or temporal misalignment. Thus the 
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multiple sequences are of a single event. So while the temporal patterns can be offset 
from each other with a subframe displacement, they are subsampled patterns from the 
same real-life trajectory. On the other hand, the problem we address is to align tempo-
ral sequences, which were taken from two different repetitions of the same event, 
hence, we have two trajectories from two separate instances of an event. 

Perperidis et al. [4], use the Caspi model [6] for temporal registration of cardiac 
images and enhance it by incorporating local deformable transformations using 1D 
cubic B-splines. Their temporal transform is represented as follows: 

( ) ( ) ( )tT+tT=tT local
temporal

global
temporaltemporal  (3) 

The global transform has been modeled like Caspi’s temporal transformation model, 
as shown in Eq 4, where α  accounts for scaling differences and β accounts for 

translation differences.  

( ) +t=tT global
temporal  (4) 

The local transform has been modeled as splines using the following equation (for 
more details refer to [5]): 

( ) ( )
1

3

0
+it

=l
l

local
temporal uB=tT ϕ  (5) 

The optimal temporal transform is found by maximizing the normalized mutual  
information between the cardiac datasets. The local temporal transform is also  
computed separately by finding transitional landmarks and then searching through all 
possible local deformations of the splines while optimizing the normalized mutual 
information. They report that computing the optimal deformation by their approach is 
computationally expensive and sometimes takes over 24 hours to resolve. Their spline 
model is based on computing transitional landmarks such as start of the cardiac cycle, 
maximum contraction, end diastole etc., and depends greatly on the accuracy of this 
landmark recovery stage. For trajectories where such local landmarks are not as easily 
distinguishable, the temporal transformation will reduce to a global transformation, 
and thus to Caspi's model.  

It is for this reason that in this paper we will compare our work with Caspi's model 
and highlight cases where their model will fail and a global fitted curve matching 
method will give optimal results. Sub-frame alignment is greatly improved in cases 
where a good parametric fit can be found for fitted curve matching, rather than linear 
interpolation.   

3 Comparative Analysis 

In this section, we discuss the Caspi model in detail and present an intuitive case 
study where the model will fail. We then present our curve-fitted matching algorithm 
for comparison. 
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3.1  Caspi Model for Temporal Alignment 

Caspi et al. [6] define temporal misalignment to occur when two input sequences 
have a time-shift or offset between them, which could have been caused by different 
frame rates of the cameras or delay in activating the cameras. They model this by a 
1D affine transform as shown in Eq. 2. The optimum temporal alignment is computed 
by minimizing the following error function (Note that the equations from [6] have 
been adapted to reflect only a temporal misalignment). 

( ) ( )−Δ=
∈Δ esTrajectori Trajectorytt

tpt+tsp'P
2

.minarg  (6) 

( ) ( ) ( )[ ]t,ty,tx=tp  is the spatial position of the feature point along the trajectory at 

point ‘t’ in time. ( )t+tsp' Δ.  is the location of the corresponding feature point in the 

second sequence at time t+ts=t' Δ.  . Since t' is modeled as a subframe displace-
ment, they linearly interpolate coordinate values at t' from the corresponding integer 

location '1 t=t  and '2 t=t . Error minimization is performed by computing tΔ  

for the best linear interpolation value. The minimization is stopped when the residual 
error stops changing or when a given number of iterations are exceeded. They search 
for 1tt'= −  that minimizes the following equation (see Fig. 2 for a pictorial  

representation): 

( ) ( ) ( ) ( ) [ ]0...1.1. 21
nim ∈− :tptp'+tp'

t

 (7) 
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Fig. 2. Pictorial representation of linear interpolation in Eq.7 for sub-frame temporal alignment 

Let us now consider a case of two trajectories ( )tp  and ( )tp'   as shown in Fig. 3, 

where ( )tp'  is the same as trajectory ( )tp , but offset by a subframe displacement 

‘ ttrue Δ .’ These continuous trajectories are discretely sampled by an acquisition 

source at different points in time. We represent this by the circles on the trajectory. 
Using Caspi’s algorithm, ( )tp' will be interpolated for all subframe values from its 

value at the integer points, say ( )1' tp  and ( )2' tp  according to Eq 7. Subsequent to 

linear interpolation, at some temporal displacement tΔ , ( )ttp Δ+'  will become 

equal to ( )tp  and the algorithm will find a best match and stop (we have simplified 

the trajectory to that of a single coordinate, and only display two points on the trajec-
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tory). However, the true temporal displacement was ‘ ttrue Δ ’, which was not com-

puted as the linear interpolation ignored the curvature of the trajectory.  In cases 
where the sampling rate of the trajectory is high, linear interpolation will provide ac-
ceptable results. This is because, as the time been two samples begins to decrease, the 
trajectory becomes more linear. However, for poor temporal sampling rates, as is the 
case with MRI, linear interpolation will often result in erroneous temporal offsets, as 
we prove in our experiments with synthetic data in Section 4.2. 

 

Fig. 3. Case study of failure of linear interpolation for temporal alignment 

3.2  Curve Fitted Temporal Alignment 

In our method, we do not consider individual trajectory points, but rather look at the 
entire dynamics that those points represent for alignment. We find an optimum least 
squares parametric fit which can be polynomial, exponential or linear. The fit that 
results in the least residual and best goodness of fit statistics is chosen to represent the 
trajectory. We have chosen a weighted (bi-square weights) least squares algorithm for 
our parametric fitting. The weighted least squares regression minimizes the error  
estimate in Eq. 8, where 

ic are the trajectory points available, 
ic are the trajectory 

points computed based on the least squares fit and iw are the weights assigned to each 

trajectory point. 

( )2
1

ˆii

n

i
i ccwSSE −=

=

 (8) 

In the bi-square weighted method, the weight given to each data point depends on 
how far the point is from the fitted line. Points near the line get full weight while 
points farther from the line get a reduced weight. This approach minimizes the effect 
of outliers on the results of the curve fitting. The degree of the polynomial fit is de-
cided by computing three goodness of fit statistics: sum of squared error (SSE), R-
square and root mean square error (RMSE).  

The SSE measure is defined in Eq. 8; a value closer to 0 indicates a better fit. The 
R-square statistic measures how successful the fit is in explaining the variation in the 
data and it is the square of the correlation between the trajectory point and the pre-
dicted trajectory point. For SST, sum of squares about the mean c , is defined as: 
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1

ccwSST i

n

i
i −=

=

 
(9) 

Then, the R-square statistic can be defined as: 

SST

SSE
squareR −=1_  (10) 

An R-square value closer to 1 indicates that a greater proportion of the variation in 
the data has been accounted for. The RMSE statistic estimates the standard deviation 
of the randomness or error in the data. An RMSE value closer to zero indicates a bet-
ter fit. If ‘n’ is the number of trajectory points acquired and ‘m’ is the number of fitted 
coefficients estimated from n, then the residual degrees of freedom are defined as 

mn −=υ . The root mean square error is then defined as:  

υ
SSERMSE =  (11) 

We did not use non-parametric fitting with interpolants and splines as they depend 
greatly on the accuracy of the control points. Since our trajectories are from multiple 
swallows, we want to reduce the dependency of the algorithm on local points or fea-
tures, which may or may not have been accurately obtained from the multiple trajec-
tories. We believe that the overall trend of the event will be a better global representa-
tion of the trajectory. 

Let the discrete points sampled on the two trajectories be represented as ( )nyxc ,,  

and ( )',','' nyxc . Since we are dealing with temporal alignment only, we assume that 

the trajectories are spatially aligned and can therefore be represented as ( )nyxc ,,  and 

( )',,' nyxc . Subsequent to curve fitting by minimizing the residual error and optimiz-

ing the goodness of fit statistics, the trajectories can be represented as continuous 

curves c x,y,t and c' x,y,t' , where t+t=t' Δ . Temporal registration of the two 

paths involves finding a sub-frame displacement tΔ that minimizes the distance be-
tween the coordinate positions in the two continuous paths as follows:   

−−Δ
paths

'
yy

'
xx

argmin
t ))c(c+)c((c=C 22  

(12) 

4   Experimental Analysis and Results 

We divide our experimental analysis into two sections: Real MRI data and synthetic 
trajectories. Synthetic trajectory information allows us to compare the two techniques 
discussed above with respect to the actual truth; this truth information is unavailable 
for the real data.  

4.1  Real Data 

Our real data consists of two mid-saggital image sequences of a person drinking small 
amounts of water when lying inside an MRI scanner. For details on the acquisition 
and preprocessing please refer to [1]. An overview of the method is presented in Fig. 
4 for the sake of completeness. The progression of water down the oral-pharyngeal 
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tract is segmented and centroid coordinates are computed. The motion of the centroid 
is the trajectory path in the real data case. A polynomial of degree 6 was fitted on the 
coordinates of centroids with a residual error of 6.747, an R-square value of 0.9982 
and a RMSE value of 1.29. 
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Temporal 
Registration
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MRI
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MRI
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Fig. 4. (a) Overview of curve fitted temporal alignment method. (b) Bolus path segmented from 
the MRI images and centroidal trajectories of two sequences. 
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Fig. 5. Two MRI datasets of swallowing aligned using offset determined by fitted curve match-
ing. Legend: d <sequence number>-f <frame number>. Based on centroidal paths of the bolus 
of water, frames from sequence 2 were placed approximately midway between frames from 
sequence 1, but offset from the beginning of sequence 1 by 3 frames for Caspi algorithm (not 
shown here) and offset=4 frames for curve fitted alignment model. 

The results of temporal alignment with the Caspi model and the curve fitted align-
ment model were comparable. Caspi model found the alignment to be offset by 3.55 
frames, while our method determined the offset to be 4.45.  The temporal offsets were 
compared to each other by means of visual inspection (see Fig. 5) and since the 
ground truth information is unavailable, we cannot conclusively say that one method 
outperformed the other. However, the difference in performance is highlighted in the 
synthetic trajectory cases, where the ground truth information is available. We plan to 
conduct perceptual studies in order to evaluate the performance of the two algorithms 
for the MRI data. 

4.2  Synthetic Data 

Synthetic data was created by downsampling eight high temporal resolution trajecto-
ries into two subsampled trajectories each. One of these two downsampled trajectories 



230 M. Singh, A. Basu, and M. Mandal 

was also offset by a known temporal difference in order to create temporal misalign-
ments. Hence, for these cases the true temporal alignment was known a priori. Entire 
trajectories as well as sub-segments of trajectories were matched using both the mod-
els. Samples of the trajectories as well as the results of the temporal alignment are 
shown in Table 1. It can be seen from Table 1, that the curve fitted method has an 
average error of 0.86 frames, compared to 4.7 frames for the Caspi model. The maxi-
mum error for the Caspi model was 9.25 frames, while the error in our model was 
0.75 frames for the same trajectory. The maximum error in our model was 4 frames, 
while the corresponding error for the Caspi model was twice as high at 8 frames. 

Table 1. Results of temporal alignment with synthetic data 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Temporal 
alignment 
by linear 
interpolat-
ion 

Temporal 
alignment by 
fitted curve 
matching 

True 
temporal 
alignment  

Error 
with 
linear 
Interpol
-ation 

Error 
with fitted 
curve 
matching 

6 12.25 13 7 0.75

4.75 12.25 13 8.25 0.75

22.25 12.25 13 9.25 0.75

Traj 1 

7.25 13.5 13 5.75 0.5

6 13.5 13 7 0.5

6 13.5 13 7 0.5

 

Traj 2 

7.25 13.5 13 5.75 0.5

6 16 13 7 3

6 14.75 13 7 1.75

 

Traj 3 

12 11 10 2 1

6 11 10 4 1

12 10 10 2 0

6 10 10 4 0

Traj 4 

12 11 10 2 1

12 11 10 2 1

6 10 10 4 0

Traj 5 

6 10 10 4 0

6 10 10 4 0

6 10 10 4 0

6 9 10 4 1

Traj 6 

6 10 10 4 0

6 11 10 4 1

6 11 10 4 1

6 11 10 4 1

 

13 12 10 3 2

12 10 10 2 0

13 11 10 3 1

 

Traj 8 

18 14 10 8 4

 Average error in 
frames 

  4.7142 0.8571 

Traj 7
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5   Conclusion and Future Work 

In this paper we presented a comparative analysis of fitted curve matching and linear 
interpolation for sub-frame temporal alignment of MRI sequences and synthetic tra-
jectories. The merit of the proposed method is that for fast occurring events with low 
acquisition rates, a fitted curve matching will compute temporal offsets to a higher 
accuracy than matching linearly interpolated values. It is to be noted that for such 
fitted curve matching, no landmark points need to be calculated on the trajectory and 
the computation time while larger than linear interpolation is still acceptably small: 
0.091 seconds to compute an optimal polynomial fit and sequence matching for an 11 
point trajectory using Matlab on an AMD Opteron270 2.0 GHz. Computation time for 
linear interpolation with the same input and settings was 0.012 seconds. In the future, 
we plan to analyze the effect of noise on the accuracy of the curve-fitted temporal 
alignment algorithm. Also, more experiments with medical data will be conducted in 
order to strengthen our claim. 
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Abstract. We exploit the combination of a virtual world containing physically-
interacting 4D objects with a multimodal haptics-driven user-interface model; the
goal is to facilitate the development of accurate cognitive models enabling the
visualization of 4D space. Our primary test domain supports tactile interaction
with physically colliding and deformable curves and surfaces embedded in 4D,
an important and challenging subject area of classical topology. We implement
intricate interactions involving 4D curves and surfaces by haptically manipulating
3D projections of these objects.

1 Introduction

In the seventh book of the Republic, Plato introduces the allegory of the Cave, whose
residents can only perceive the outside world via shadows thrown upon the walls, and
who thus have only limited knowledge of the objects in the world. Interactive computer
systems in fact work almost exclusively with shadows, i.e., representations of our 3D
world cast upon 2D graphics screens by mathematical projection and rendering algo-
rithms. Graphics methods allow us to add features to these shadows such as shading and
occlusion that create perceptions far richer than the bleak shadows of Plato’s vision, and
which we interpret in our mental models as being truly 3D, despite the fact that in truth
their dimension is reduced. Interactive control systems familiar to us all, such as the 1D
steering wheel controlling the 2D motion of a car, or a 2D joystick controlling the 3D
motion of an aircraft, provide further examples of physically-reactive controls that have
lower dimensions than the domain of the object motion being manipulated.

Our task in this paper is to show how one can fully exploit the concept of projections
to lower dimensions and physically reactive projection-based controllers to transform
the task of interacting with 4D objects to a new level of physical reality. We like to think
of this method intuitively as working in a “shadow world,” a term widely used in the
4D visualization literature, with clear interactive implications and an ancient context
in Plato’s philosophy, though we will avoid the term for the most part due to implicit
confusion with conventional computer graphics terminology. We start from the fairly
familiar idea that a 2D mouse can control 3D objects represented as rendered images
projected on a 2D screen, and extend that idea to a haptic interface that is restricted to a
plane, but still empowered to sketch, touch, and take control of 3D objects projected to
the controller plane. We then extend this concept upward by one dimension, creating 3D
projections of 4D objects, rendering them with shading and occlusions, and providing
3D haptic controls and force-feedback in the resulting 3D world to sketch and control a
4D world. In this way we are able to create a realistic interactive interface that embodies
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the physical realities of a simulated 4D mathematical world of curves and surfaces just
as standard 3D physical modeling embodies the properties of such objects in the human
world. Thus we can make a non-trivial computer interface that correctly implements the
intuitive physical properties of classes of 4D geometric problems whose comprehension
is extremely challenging for the unaided human intellect.

2 Previous Work

The idea of cross-dimensional understanding has developed in many directions since
Plato described his Cave. Abbott’s Flatland asked how two-dimensional creatures might
attempt to understand three-dimensional space [1,2]. Banchoff’s pioneering work sug-
gested how 3D computer-based projections could be used to study 4D objects [3,4]. Other
representative efforts include a variety of ways to render 4D objects (see, e.g., Noll [5],
Hollasch [6], Banks [7], Roseman [8], and Egli, Petit, and Stewart [9]), and to extend
lighting model techniques to 4D (see, e.g., [10,11,12]).

Our own previous efforts have suggested how haptic exploration of 4D objects can
exploit topological continuity by ignoring illusory 3D surface intersections and focus-
ing on the intrinsic 4D geometry [13]. Typically, visual methods for understanding
higher dimensions employ a projection to 3D as a fundamental step; this helps the
viewer to identify salient global features of the whole object, and provides structural
continuity when rotating either the object’s (rigid) 3D projection, or performing higher-
dimensional rotations to change the 3D projection. Haptic exploration, being intrin-
sically limited to the physical world, also must project higher dimensional objects to
lower dimensions for exploration; within this context, surfaces embedded in 4D can
be projected to 3D and explored topologically without regard to 3D artifacts to reveal
complex topological relationships and structure. What is needed now to go beyond this
framework is an enhancement of the environment that allows 4D intuition-building con-
struction, interaction, weight, and deformation, as well as exploration of the 4D shapes
themselves. The problem addressed here is therefore: “How can we physically interact
with the fourth dimension?”

3 Motivation

People learn about the everyday world by combining sensory modalities, and knowl-
edge of shape comes from a combination of sight, touch, and exploration. With a 3D
touch-based computer interface, a 3D projection of, e.g., a 4D surface or curve can be
used to explore intrinsic 4D geometry. We therefore use extensions of 3D methods to
help us manipulate and comprehend the complicated case of shapes with collisions and
weights in a 4D simulated world using a touch-based multimodal paradigm.

2D Example. To explain the basic features of our approach, we begin with a family of
images corresponding to a 2D projection of the neighborhoods of the crossing points
of two 3D curve segments. This could in principle be a pair of 2D curve segments,
as though drawn with a pen on 2D paper. If all we can see is the pen strokes or the
projected shadow of the 3D crossing, we find the result in Figure 1(a), which is devoid
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of 3D information. This problem is typically overcome by employing the “crossing
diagram” method illustrated in Figure 1(b); this corresponds essentially to a depth-
buffered rendering with some embellishments to emphasize discontinuities in depth.
By thickening the curve to give it geometric structure and shading, we can get the
additional improvement shown in Figure 1(c). Now we can begin to see how to exploit
a haptic probe: if the probe is constrained to a 2D plane, the user can still edit the planar
projections of curves and use modifier keys to specify over and under crossings to create
intertwined 3D objects back in the “real” 3D space. Hence, the 2D projection supports
3D interaction.

(a) (b) (c)

Fig. 1. (a) 2D projection diagram of crossing curves for two 3D rings. (b) Knot diagram represen-
tation of the linked rings provides 3D depth information. (c) Rendering with light and material
adds apparent 3D geometry and shape to the 2D image.

3D Example. The technique we just used for projecting surfaces from 3D to 2D has
an exact analog that applies to projection from 4D to 3D. We find that the metric prop-
erties are easier to understand if we use an orthogonal projection, but in selected cir-
cumstances, perspective 4D projection from the focal point of a 4D pinhole camera can
also serve to reveal essential structures. The typical side-effect is that the resulting sur-
faces intersect in the 3D projection, even when in 4D space there are no intersections
or singularities of any kind.

Figure 2 shows the 3D projection of a 4D ribbon linked with a 4D spherical surface,
giving precise analogs to Figure 1, with the “bare shadow” in Figure 2(a), the crossing
diagram in 2(b), and 4D depth pseudocoloring in 2(c,d).

Projection Editing. The key ideas of the overall scenario can now be summarized as
follows:

– Create a projection (“shadow”) space in one lower dimension.
– Edit projected images of objects embedded in the higher dimension. We must ac-

count for the lost depth information from the extra dimension, and cope with pos-
sibly having the haptic probe’s status confused when one segment collides with
another in the projection.

– Adding an extra 1
2 dimension. Sketching in the reduced-dimension space can be

supported by explicitly defining over and under crossings displaced slightly in the
extra dimension when apparent collisions occur in the projected (shadow) image.

– Create a crossing-diagram object. This is basically the schematic equivalent of a
4D volume depth buffer.
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(a) (b) (c) (d)

Fig. 2. (a) Two intersecting surfaces in 3D, typically resulting from the projection of a 4D scene
to 3D. (b) Crossing diagram of the surfaces; the front portion of the ribbon surface is closer to
the 4D projection point than the spherical surface. (c) Above-below crossing markings using 4D
depth coding. (d) Color depth coding of ribbon modified by smoothing its 4D depth; just the top
of ribbon is now at same 4D distance from the projection point as the entire sphere.

– Enhance the geometry and depth information in the higher dimension. Exploit com-
puter graphics and visualization methods to enhance the perception of the geometry
by color depth coding and exaggerated occlusion or crossing diagrams.

– Physically interact with the higher dimensions. By mapping the projected lower-
dimensional (shadow) user input to the full-dimensional object along the projection
rays, we can sense physical artifacts such as collision and gravity in the higher
dimensional simulation.

4 Projection Editing Using Haptic Methods

We now describe the critical haptic portion of our interface. There have been a number
of interesting attempts to exploit intuitive haptic interfaces to improve the sense of real-
ism and to enhance the manipulation of virtual objects (see, e.g., [14], [15], and [16]).
Another direction of research has focused on the haptic exploration of unknown objects
by virtual fingers (see, e.g., [17] and [18]).

4.1 Design and Implementation

Procedure. The basic design of the system relies on the construction of a projection
from 4D to 3D that can optionally annotate the under-over crossings in the projection,
as well as supporting 6-degree-of-freedom 4D rotations to reposition the 3D projection
arbitrarily to support the particular visualization requirements.

Constrained Haptic Space. Our basic force model simulates a “sticky” stylus in the
projection space using a damped spring configuration model[19].

Collision Avoidance in Projected Space. When editing 2D projections of 3D curves or
3D images of surfaces embedded in 4D, collision detection and state management are
essential issues. During editing, collision detection is continuously enabled to detect
whether the object collides with itself or with other scene objects. The OpenHaptics
HDAPI has been exploited in our implementation.

Making Over and Under Choices. When a collision occurs between a piece of an edited
object and an existing object in projected space, users must make explicit over and under
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(a) (b) (c)

Fig. 3. (a) Recovering 3D depth from the 2D diagram.(b) Recovering 4D depth from the 3D
diagram. (c) Projected image in YZW space with smoothed 4D depth.

choices before they can pass through the intersection. Thus the interface has a kind of
interactive collision avoidance protocol.

4.2 Results

Editing Projections of 3D Curves. Traditional methods used by mathematicians for
sketching knots and links make heavy use of crossing diagrams, and interactive graphics
methods can assist this process (see, e.g., [20] and [21]). Using haptics-based projection-
space editing can extend this paradigm still further. Figure 3(a) illustrates a simple ex-
ample of the link-construction process; the resulting 3D curves in Figure 1(c) have been
smoothed using the Minimum Distance Energy method [22] to fill out the 2 1

2 D sketches
to make a more natural shape.

Editing Projections of 4D Surfaces. We can analogously create 4D links working with
the projected images of the 4D surfaces. We depend on the 3D collision mechanisms to
locate possible crossings, and rotate or vary the 3D projection axes to help us see the 4D
over and under crossings analogous to Figure 3(a), as shown in Figure 3(b). Applying a
smoothing algorithm to the 4D depth of the sketched ribbon results in the more natural
shapes of Figure 3(c).

5 Collision in Four Dimensions

Applying general rotations to objects projected from higher dimensions smoothly alters
the projected images. For example, if projections of 3D rings falsely appear to be linked,
a properly chosen 3D rotation will detach the two projected images from each other. The
analogous observation holds when we apply 4D rotations to 4D objects represented by
their 3D projections, as shown in Figure 4(a)-(c).

In this section, we introduce a set of methods for physically detecting, manipulating,
and sensing collisions and physical forces in four dimensions to go beyond what can be
done with crossing diagram methods or by applying general rotations alone.

5.1 4D Collision Detection

To understand the nonintuitive mechanisms of 4D collision, let us start with a pair
of two-dimensional planes through the origin in four-dimensional space (see Figure
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(a) (b) (c) (d)
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Fig. 4. (a) The projection of two unlinked 4D embedded objects can appear linked. (b) 4D rotation
changes the projected images. (c) A particular 4D rotation detaches the 3D projected images.(d)
4D Collision: surfaces are color-coded to indicate their height in four-space relative to the pro-
jection point, so we observe that there is just one pair of points with the same fourth coordinate
as well as the same first three coordinates. (e) Closest Points between 4D Lines.

4(d)(e)). The two squares intersect in a single 4D point at the origin. In the three-
dimensional projection, although the planes appear to intersect along an entire line,
when the surfaces are 4D depth color-coded, we can see that there is just one pair of
points with the same fourth coordinates as well as the same coordinates in the 3D pro-
jection. Note that 4D collisions take place only if there is also a 3D collision in the
projection, but that 3D collisions in the projection may not imply 4D collisions.

4D Collision Detection Based on Projection. Figure 4(e) illustrates the basic case for
4D Collision Detection; a 4D depth collision test must be performed along the inter-
secting lines of the projected images of 4D surfaces. 4D collision occurs if, and only if,
one or more pairs of points have the same fourth coordinate along the intersecting line.

Now let 4D surfaces SA and SB intersect in the 3D projected image along the line
segment Lse, from point Ps = (xs,ys,zs) to point Pe = (xe,ye,ze). Suppose the pair of
4D points sharing Ps as projected points are P0 on SA, and Q0 on SB; likewise, we have
P1 on SA, and Q1 on SB sharing Pe. Obviously, P0, P1, Q0, and Q1 can be represented
as:

P0 = (xs,ys,zs,wsA)
Q0 = (xs,ys,zs,wsB)
P1 = (xe,ye,ze,weA)
Q1 = (xe,ye,ze,weB)

(1)

Now we can detect the closest approach of the intersection lines contained in each
plane, and prevent actual 4D collisions from occurring before they happen based on
keeping the closest approach greater than some suitable small number τ .

Closest Points between 4D Line Segments. We first consider two infinite lines L1:
P(s) = P0 + s(P1 − P0) = P0 + su and L2: Q(t) = Q0 + t(Q1 − Q0) = Q0 + tv. Let
w(s,t) = P(s)− Q(t) be a vector between points on the two lines. We want to find
the w(s, t) that has a minimum length for all s and t. In any N-dimensional space, the
two lines L1 and L2 are closest at unique points P(sc) and Q(tc) for which w(sc,tc)
attains its minimum length. Also, if L1 and L2 are not parallel, then the line segment
P(sc) ↔ Q(tc) joining the closest points is uniquely perpendicular to both lines at the



238 H. Zhang and A.J. Hanson

same time. No other segment between L1 and L2 has this property(see Figure 4(e)).
That is, the vector wc = w(sc,tc) is uniquely perpendicular to the line direction vectors
u and v, and thus it satisfies the equations:

u ·wc = 0

v ·wc = 0 .
(2)

We can solve these two equations by substituting wc = P(sc)−Q(tc) = w0 + scu−
tcv, where w0 = P0 −Q0, into each one to get two simultaneous linear equations. Then,
letting a = u ·u, b = u ·v, d = u ·w0, and e = v ·w0, we solve for sc and tc as:

sc =
be− cd
ac−b2 , tc =

ae−bd
ac−b2 . (3)

Having solved for sc and tc, we have the points P(sc) and Q(tc) where the two lines
L1 and L2 are closest. Then the distance between them is given by:

d(L1,L2) =
∣∣∣∣(P0 −Q0)+

(be− cd)u− (ae−bd)v
ac−b2

∣∣∣∣ . (4)

Now we represent a segment S1 (between endpoints P0 and P1) as the points on
L1 : P(s) = P0 + s(P1 − P0) = P0 + su with 0 ≤ s ≤ 1. Similarly, the segment S2 on
L2 from Q0 to Q1 is given by the points Q(t) with 0 ≤ t ≤ 1. The distance between
segment S1 and S2 may not be the same as the distance between their extended lines L1

and L2. The first step in computing a distance involving segments is to get the closest
points for the lines they lie on. So, we first compute sc and tc for L1 and L2, and if these
are in the range of the involved segment, then they are also the closest points for them.
But if they lie outside the range, then they are not and we have to determine new points
that minimize W(s, t) = P(s)−Q(t) over the ranges of interest.

To do this, we first note that minimizing the length of w is the same as minimizing
|w|2 = w ·w = (w0 + su − tv) · (w0 + su− tv) which is a quadratic function of s and
t. In fact, this expression defines a paraboloid over the (s, t)-plane with a minimum at
C = (sc, tc), and which is strictly increasing along rays in the (s, t)-plane that start from
C and go in any direction. However, when segments are involved, we need the minimum
over a subregion G of the (s,t)-plane, and the global minimum at C may lie outside of
G. An approach is given by [23], suggesting that the minimum always occurs on the
boundary of G, and in particular, on the part of G’s boundary that is visible to C. Thus
by testing all candidate boundaries, we can compute the closest points between 4D line
segments.

Pair Reduction. In practice, interesting 4D surface models may consist of thousands of
polygons, and manipulating these objects may require very costly searches to perform
collision detection. A typical complexity-reduction strategy is to use a four-dimensional
bounding box to eliminate pairs that have no 4D depth overlap at all. In addition, as
noted earlier, although nearest approaches of 4D objects may not coincide in the 3D
projection, any actual 4D collision must occur also in the 3D projection. This fact ac-
tually helps to reduce the collision detection problem to one lower dimension, and to
accelerate the identification of starting points for nearest-approach computation.
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5.2 4D Collision Management

Physics-based simulation of the 4D world involves challenging problems in 4D colli-
sion management. Self-collisions of flexible objects must be treated as well as collisions
between distinct 4D objects, both rigid and flexible.

4D self-collision management methods follow exact parallels to 3D collision man-
agement (see, e.g., [20], [24]). The most basic form of self-collision treatment is as
follows: When two 4D facets are detected to be at a distance d < τ from each other
(i.e., the two corresponding facets are defined to be colliding if they are closer than a
minimum distance τ), the pair of closest points in the facets is identified and Δ is de-
fined as the 4D line passing through them. Then an equal (but opposite) displacement is
applied to each facet along Δ . This displacement is just large enough to take the facets
out of collision range, with a slight “safety margin” ε to allow for a sliding motion.
Standard 3D self-collision mechanisms must also be extended to apply Newton’s laws
to four dimensions in a natural way. By stretching, compressing, bending, and twisting
the 4D object while keeping its topological structure, we can convert the mathematical
abstraction of any 4D object into an interactive reality.

4D collisions between distinct 4D rigid objects are handled in a similar way to self-
collisions.

6 Physically Interacting with Four Dimensions Using Haptic
Methods

Physics-based simulations of 4D collision detection and management are the key to cre-
ating a bridge to four-dimensional reality. 3D physics-based simulation has had broad
success in many modeling domains, and the work closest to ours involves chains (see,
e.g., [25]) and deformable objects (see, e.g., [26], [27],[20], and [28]). Haptic inter-
faces have also been used to implement realistic 3D physics-based simulations (see [14]
and [16]). By extending these approaches to 4D physics-based haptic simulation, we
can establish intuitive interactions exposing the true nature of higher dimensions, even
though our controls are restricted to the physical world, which is the 3D domain of 4D
projections.

Example 1: Lifting a Chain in Four Dimensions. A classic 4D structure is a “chain”
consisting of linked spheres and circular ribbons. The forces to be considered include:

– Forces applied to a body by the haptic probe. The force is constrained to the projec-
tion domain in which it is applied, with the unseen projection-direction coordinate
held fixed. Just as one can lift 2D projected images of 3D rings with control con-
strained to the 2D projection plane, we can lift 3D projected images of 4D object
configurations in the same way.

– Force of gravity and damping. Allow objects to hang from one another realistically
as they are lifted against the force of gravity by contact with one another.

The mechanism of 4D lifting of the chain can be implemented via the following
cycles (see Figure 5):
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Fig. 5. The haptic interface for lifting a chain element in four dimensions, sensing collisions and
weight

Fig. 6. Left: Tightening a 3D curve. Right: Tightening a 4D knotted sphere by pulling in 3D.

↪→ Move the haptic proxy, attached to a ribbon at a user-specified location, in projection
space.
↪→ Continue until a potential collision is detected between the ribbon and an adjacent
sphere.
↪→ Locate closest points, prepare forces for application to 4D objects.
↪→ Activate contact forces and gravity to adjust positions of objects.
↪→ The haptic proxy is free again to move the ribbon with constrained motions.

Example 2: Tightening the Spun Trefoil Knot. Just as there are many ways to represent
and alter the same 3D knot using equivalent crossing diagram representations, there are
also many ways to represent the same knotted sphere as a projection from 4D to 3D. Ma-
nipulating these deformations via a 4D touch-sensitive interface in the projection to 3D
allows one to verify the validity of the transformations among the various projected forms
(corresponding typically to what a knot-theorist would call “Reidemeister moves.”).

In our version of the standard “spun-knot” construction [29] of a 4D knotted sphere,
the user interactively sketches a 3D knot K using the 3D editing interface, then selects
a “spin plane” to spin K into a 4-dimensional knot.

Tightening a 4D spun knot is similar to a 3D knot-tightening simulation. The FTL
(Follow the Leader) algorithm described in [20] can be extended to the fourth dimen-
sion to compute the 4D knotted sphere tightening process (see Figure 6). The overall
algorithm for tightening the spun trefoil knot is the following:

↪→ Read the new position of the location grasped by the haptic proxy (typically, the
north pole of the knotted sphere).
↪→ Prepare and apply forces on the connected physical mesh components.
↪→ Apply forces and compute the new knotted sphere configuration (global motion).
↪→ Compute tentative (self-)collisions.
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↪→ If a potential collision is detected between two 4D segments or facets, apply collision
forces with friction and gravity.
↪→ The haptic proxy is free again to move the grasped location.

7 Conclusion and Future Work

Our implementation is based on a standard OpenGL graphics system with a high-
performance graphics card, combined with SensAble Technology’s Omni PHANToM
force-feedback haptic device. Our user interface is based on OpenGL, SensAble’s
OpenHaptics toolkit, and a locally customized GLUI API.

We have created a multimodal computer interface to interact physically with the
fourth dimension via its 3D projection. Our approach fluidly integrates visual infor-
mation with haptic feedback and interaction. We have exploited these capabilities to
build and interact with components of a 4D simulated world, a world that we can work
with physically and that is no less real than a 3D computer simulation; we have thus
presented a practical way to connect the mathematical abstraction of 4D objects to a
visible, touchable interactive reality.

Among our objectives for future work are to extend the range of scene objects that
we can support to include more complex knots, links, and Riemann surfaces, as well
as three-manifolds in addition to curves and surfaces. In a more practical direction, one
might imagine exploring high-dimensional information data sets by exploiting analogs
of our interface acting along projection rays from the higher dimensional information
space into a 3D control space.
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Abstract. In this paper, an intelligent and automatic moving object edge 
detection algorithm is proposed, based on heat flow analogy. This algorithm 
starts with anisotropic heat diffusion in the spatial domain to remove noise and 
sharpen region boundaries for the purpose of obtaining high quality edge data. 
Then, isotropic heat diffusion is applied in the temporal domain to calculate the 
total amount of heat flow. The moving edges are represented as the total 
amount of heat flow out from the reference frame. The overall process is 
completed by non-maxima suppression and hysteresis thresholding to obtain 
binary moving edges. Evaluation results indicate that this approach has 
advantages in handling noise in the temporal domain because of the averaging 
inherent of isotropic heat flow. Results also show that this technique can detect 
moving edges in image sequences.  

1 Introduction 

The heat flow analogy has been deployed in various ways in image processing and 
computer vision. Five applications are briefly surveyed here: image smoothing 
and enhancement; region based image segmentation; thinning; active contours; and 
motion analysis.  

Image smoothing and enhancement: Heat flow has first been used for image 
smoothing. Witkin [1] introduced scale-space theory which involves generating 
coarser resolution images by convolving the original image with a Gaussian kernel. 
Then Koenderink [2] and Hummel [3] pointed out that the family of derived images 
may be equivalently viewed as the solution of heat conduction or diffusion equation 
based on several criteria: causality, homogeneity and isotropy. According to 
homogeneity and isotropy, blurring is required to be spatially invariant which makes 
it difficult to obtain accurately the location of edges at coarse scales. Then, Perona 
and Malik [4] introduced anisotropic heat flow for selective image smoothing that 
avoids blurring and localization problems of the edges. In this process, the diffusion 
coefficient is allowed to vary according to the magnitude of the local image gradient. 
In this way, high quality edge detection is observed. After that, many approaches and 
models have been developed alternative to Perona and Malik’s work. Some of them 
are: geometry driven heat flow [5], graph spectral model [6], probabilistic view [7], 
regularization method [8] and discrete image flux conduction model [9]. 
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Region based image segmentation: In [10], the anisotropic diffusion pyramid (ADP) 
was introduced for region based segmentation. The pyramid is constructed using the 
scale space representation of anisotropic diffusion. Since anisotropic diffusion 
preserves edge locations as the scale increases, region boundaries in the coarse to fine 
ADP segmentation are accurately delineated. Recently, Manay and Yezzi [11] have 
proposed the anti-geometric heat flow model for adaptive thresholding and 
segmentation of regions. Here, anti-geometric heat flow is represented as diffusion 
through the normal direction of edges that smears rather than preserves them. As a 
result of this, regions on the opposite sides of prominent edges are captured in 
greyscale images.  

Thinning: In [12], a new thinning algorithm was introduced based on time-reversed 
isotropic heat flow. Given an image, which is viewed as a thermal conductor, first the 
heat flow direction map is computed, then time-reversed heat conduction is simulated 
to get thinned a pattern. This algorithm can be applied to gray-scale or binary images.  

Snake or Active Contours: Active contours can be classified as Parametric Active 
Contours and Geometric Active Contours (Level Sets). Parametric active contour 
(PAC) is the first snake model introduced by Kass et al. [13]. Problems associated 
with PAC are initialization and poor convergence to concave regions. These problems 
are largely solved with the development of new external force model which is called 
Gradient Vector Field (GVF) [14]. It is computed as diffusion of the gradient vectors 
of the grey level or binary edge map. This diffusion process arises from the heat 
conduction model. A geometric active contour [15, 16] is based on a curve moving in 
normal direction with its curvature dependent speed. This phenomenon is tackled with 
a level set method in higher dimension viewing the curve as the level set of zero. The 
curve movement on the level set is achieved with the geometric heat flow [5].  

Motion analysis: Horn and Schunk [17] developed a method for optical flow 
(velocity vectors) computation from sequence of images. The concept includes two 
constraints which are change of brightness and smoothness of the velocity flow. An 
equation was developed whose progress is similar to the propagation effects in the 
solution of heat conduction equation. However, this method does not preserve optical 
flow discontinuities on the motion boundary because of the isotropy property of the 
smoothness constraint. Then some extensions have modified the smoothness 
constraint and observe anisotropic behaviour to preserve motion boundaries [18, 19]. 
Makrogiannis and Bourbakis [20] are the first who proposed spatio-temporal 
anisotropic heat diffusion for motion activity measurement. The motion activity 
measure is derived from the total amount of diffusion in the spatio-temporal domain. 
Then, this process is completed by kernel based density estimation and watershed-
based segmentation of regions.   

In this paper, a moving object edge detection algorithm is proposed based on heat 
flow analogy. This algorithm starts with anisotropic heat diffusion in the spatial 
domain to remove noise and sharpen region boundaries for the purpose of obtaining 
high quality edge maps. Once the enhanced edge maps are observed in consecutive 
frames, isotropic heat diffusion is applied in the temporal domain to calculate the total 
amount of heat flow. The moving edge map is represented as the total amount of heat 
flow out (-) from the reference frame. The overall process is completed by non-
maxima suppression for thinning and then hysteresis thresholding to obtain binary 
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moving edges. Evaluation results indicate that this approach has advantages in 
handling noise in the temporal domain because of the averaging inherent of isotropic 
heat flow. Results also show that this technique can detect moving edges in image 
sequences. The proposed algorithm is also shown in Fig. 1. 

 

 

Fig. 1. Proposed algorithm for moving edge detection 

This paper is organized as follows: Section 2 introduces the basic concepts of heat 
flow. Section 3 discusses the anisotropic heat flow for edge map enhancement. 
Section 4 introduces novel moving edge detection method. Section 5 concerns 
evaluation and experimental results, prior to conclusions. 

2 Basic Concept of Heat Flow 

Conduction, convection and radiation are three different modes of heat flow. Here, we 
chose to investigate use of a conduction model which operates well in our algorithm. 
Conduction is the flow of heat from the high temperature regions to the low 
temperature regions as time passes [21]. According to Fourier’s law of heat 
conduction, the flow of heat per unit area and per unit time is,  

( )tyxTkF ,,∇−=  (1) 

Where, F  represents the heat-flow rate, k  is a positive constant that is called the 

thermal conductivity of a material, ( )tyxT ,,∇  is the temperature gradient and the 

minus sign indicates that heat flows in the opposite direction of temperature gradient. 
If we consider a heat balance on a two dimension material as shown in Fig. 2,  
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Fig. 2. 2D material for heat balance analysis 

The change of temperature over time at each point of material is described using 
the general heat conduction or diffusion equation,  

( ) ( ) QtyxT
dt

tyxdT +Δ= ,,
,, κ    

(2) 

Where, ( ) dttyxdT ,,  is the rate of change of temperature, [ ]25.0,0∈κ  is the 

thermal diffusivity, Δ  is Laplacian operator, ( )tyxT ,,Δκ  is total amount of heat flow 

in/out, and Q  is a heat source. Note that in our application, the heat source is actually 

ignored because it only adds bias to the result. 

3 Anisotropic Heat Diffusion and Edge Enhancement 

Perona and Malik [4], proposed anisotropic diffusion for selective image smoothing 
that avoids blurring and localization problems of the edges. The anisotropic heat 
diffusion equation is given below,  

( )( )),,(),,( tyxItyxIgdiv
dt

dI ∇∇=    
(3) 

Where, div  represents divergence operator, ∇  is gradient operator, ),,( tyxI  is the 

pixel value of grey level image at location ),( yx  and time t , ( ) [ ]1,0),,( ∈∇ tyxIg  is 

the diffusivity function that is allowed to vary according to the magnitude of the local 

image gradient I∇ . Different functions are used for ( ).g  depending on the chosen 

aim. In our application, an exponential type is used (see Eq. (4)), which prefers high-
contrast edges to low-contrast ones.  

( ) ( )2/ KIeIg ∇−=∇    
(4) 

K  determines the rate of decay of the exponential function, and thus the rate of 

smoothing. Note that, if ( )),,( tyxIg ∇  is constant at all image locations, this leads to 

isotropic heat diffusion. In Fig. 3, we illustrate the difference between isotropic and 
anisotropic diffusion operations: Fig. 3(a) is a grey-scale image; and Fig. 3(b) is its 
Sobel edge map without any diffusion. Fig. 3(c) is the Sobel edge map after isotropic 
diffusion which causes loss of edge information. On the other hand, Fig. 3(d) is the 
Sobel edge map of the anisotropic diffused image with diffusivity function given by 
Eq. (4) and it can easily be observed that high contrast edges are enhanced while 
removing edges due to noise, and thus important detail is preserved. 

 

 Heat flow in ( )+     Heat flow out ( )−  ( ) QtyxT +,,  
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                     (a) Grey-scale image                            (b) Original Sobel edge map 

              
         (c) Sobel edge map after isotropic diff.  (d) Sobel edge map after anisotropic diff. 

Fig. 3. Difference between isotropic and anisotropic diffusion 

4 Isotropic Heat Flow in Temporal Domain 

Here, we introduce a novel moving edge detection technique. Once the enhanced 
Sobel edge maps are obtained in consecutive frames, as shown in Figs. 4(d-f), the 
isotropic or linear heat equation is applied in the temporal domain to calculate the 
total amount of heat flow. The discrete form of the isotropic heat equation is given as 
an iterative process below,   
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Where, 1−n
tE , 1

1
−
−
n
tE and 1

1
−
+
n
tE  are Sobel edge mapped images, after anisotropic 

diffusion in space, respectively for the reference frame, previous frame and next 
frame at iteration n . The total amount of heat flow is calculated as follows. Assume 
that the initial scale is 0 (zero) and final scale is n , then Eq. (5) can be described 
as,  
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Then, the total amount of heat flow from the initial state to final state is   
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However this gives us total heat in (+) and heat out (-) together during diffusion, 

that is shown in Fig. 4 (g). We are interested in total heat flow out ( )HFO  from the 

reference frame tE  , which gives us the moving edge map. This is obtained as,  

−

=

Δ=
1

0

n

i

i
tEHFO κ ,   0<Δ∀ i

tE                                 
  

(8) 

The moving edge map is shown in Fig. 4 (h). Only the moving edges of the human 
subject and some slight shadow remain, while largely removing the edges introduced 
by the static background.  

 

     
(a) 

1tFrame +                               (b) 
tFrame                            (c) 

1tFrame −  

     
(d) 

1tE +
                                    (e) 

tE                                 (f) 
1tE −
 

            
(g) Total heat flow                                      (h) Heat flow out (-) 

Fig. 4. Moving edge map extraction 

The overall process is completed by non-maxima suppression (thinning) and 
hysteresis thresholding to observe binary moving edges. The non-maxima suppressed 
and hysteresis thresholded images are shown respectively in Figs. 5 (a) and (b). 
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          (a) Non-maxima suppressed image              (b) Hysteresis thresholded image 

Fig. 5. Binary moving edge observation 

5 Evaluation and Experimental Results 

Performance evaluation is employed by comparing moving edge detection with 2D 
Sobel edge detection. However, anisotropic heat diffusion in the spatial domain is 
omitted in our algorithm to balance the 2D Sobel and moving edge detection 
algorithms. Evaluation is done on a white circle moving on a black background with 

varying normal distributed noise ),( 2σμN . The Hough Transform (HT) is applied to 

the binary edge images to extract circle centre parameters. A root mean square error 
(RMSE) is then employed to quantify the performance of each algorithm.  

( ) ( )( ) 222
yyxx ceceRMSE −+−=  (9) 

 

Where, ),( yx ee are extracted parameters and ),( yx cc  are actual circle parameters. 

The quantity of noise is considered in terms of standard deviation σ  with zero 
mean. The threshold for the 2D Sobel, to obtain the binary image, is determined by 
a root mean square (RMS) estimate of the noise. In this process, the gradient 
magnitude squared image is thresholded by its scaled mean value that is 
proportional to signal to noise ratio (SNR). The threshold for 2D Sobel in each 
noise trial is calculated as,  
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Where, tF  is the reference frame of size NM × , T is the threshold and s  is a 

positive constant, which is 4 in this evaluation. On the other hand, the moving edge 
detection algorithm has two thresholds (hysteresis thresholding), and their values are 

based on mean of heat flow out ( )HFO  image from the reference frame,  
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Where, c  is a positive constant with value 7 and the ratio between high, hT , and low, 

LT , thresholds is 4.  Fig. 6 shows performance of moving edges and 2D Sobel 

algorithms. It is observed that, until 110≅σ  the moving edge detection technique has 
better performance than 2D Sobel, which appears due to the averaging inherent in the 
new operator and actually after high noise, input images have very poor quality. Fig. 7 
shows some of the results for moving edges (second row) and 2D Sobel (third row). To 
visual inspection, the input images in Figs. 7(c) and (d), are very noisy indeed. 

 

Fig. 6. Performances of moving edges and 2D Sobel with respect to normal distributed noise 
trials  

 
                           (a) 0=σ    (b) 40=σ    (c) 80=σ    (d) 120=σ  

Fig. 7. Results for moving edges (second row) and 2D Sobel (third row) with respect to 
increasing Gaussian noise 

Simulation results also show that our algorithm can detect moving edges in image 
sequences, as shown in Fig. 8. Fig. 8(a) shows the reference frame from table tennis 
(indoor) sequence and moving edges were detected. We should be careful that upper 
side of the arm and table are stable and this is why they were not detected. Fig. 8(b) is 
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a reference frame from the flower garden (outdoor) sequence, where a camera is in 
motion. It is seen that moving edges were detected.  

 

           
(a) Table tennis (indoor) image 

            
(b) Flower garden (outdoor) image, where the camera is in motion 

Fig. 8. Some of the simulation results for new operator on indoor and outdoor images 

6 Conclusions 

We have presented a novel low level moving-feature extraction technique based on 
heat flow analogy. Firstly, high quality Sobel edge maps are obtained based on 
anisotropic heat diffusion, in space. The diffusivity function is the key point in this 
stage; we have chosen an exponential function which enhances high contrast edges 
and remove edges due to noise. In the next stage, the isotropic heat diffusion is 
applied in the temporal domain to determine moving edge map in the reference frame. 
To do this, the total amount of heat flow is calculated and then separated into the heat 
in (+) and heat out (-) parts, where the heat out (-) is the moving edge map. Finally, 
non-maxima suppression and hysteresis thresholding is applied to obtain binary 
moving edges. Evaluation indicates that this technique is better than 2D Sobel until 
high noise, without anisotropic heat diffusion in space. This result appears due to the 
averaging inherent in the new operator. Results also show that this technique can 
detect moving edges in image sequences.  
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Abstract. We describe our preliminary research on integrating MRI video with a 
3D surface scan of a face. Our approach first extracts contours of a video by us-
ing snakes [4, 5]; then the outline structure of the video is matched with a close 
matching contour on the 3D face structure. The matching and alignment of the 
two representations uses curvature representations along with some simple heu-
ristics about the relative locations of the facial features, such as nose and chin. 

Even though techniques like video fluoroscopy [8] can create high quality 
images, it subjects patients to high volumes of radiation, and cannot be used to 
monitor patients over short time intervals. Our alternative combines MRI video 
with 3D facial structure to improve visualization for medical professionals. The 
MRI video was created in our related research [7] by registering multiple MRI 
sequences of swallowing.  

1   Introduction 

MRI capture does not subject patients to harmful radiation and is thus preferable over 
CT and video fluoroscopy. However, a limitation in MRI is the relatively low resolu-
tion and the inability to view this information in conjunction with 3D structure in or-
der to visualize internal images with a reference to the external structure.   

Here we attempt to integrate MRI video with 3D facial structure to obtain a 4D 
visualization environment. The steps needed to achieve this include MRI video inter-
polation described in our related research, face contour tracking in MRI video, feature 
detection in the face contour, and finally, alignment of the video plane with the 3D 
face structure. The 3D facial texture (Figure 1a), structure (Figure 1b), and after tex-
ture mapping (Figure 1c) was captured using a 3D scanner.  Figure 1d shows a frame 
from an MRI video sequence. Our challenge is to be able to view the MRI video reg-
istered and properly aligned on a planar surface inside the 3D face structure.  

The remainder of this report is organized as follows: Section 2 describes a strategy 
for MRI video contour tracking using active contours and feature detection using cur-
vature; in Section 3 we discuss how the MRI contour can be matched with a 3D struc-
ture contour for integrated MRI video and 3D structure visualization; finally, Section 4 
provides concluding remarks and an outline of future. 

G. Bebis et al. (Eds.):  2006, LNCS 4291, pp. 253 – 262, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

,

ISVC



 

                (a)                                     (b)                                  (c)                                (d) 

Fig. 1. (a) Scanned texture; (b) & (c) Mesh and Texture-mapped structure, respectively, with 
support on back of head; and (d) A frame of the MRI video 

2   Video Contour Tracking 

We used an active contour model [4, 5] to detect the boundary of MRI face slices, fol-
lowed by automatic detection of some face features: e.g., nose tip and chin using cur-
vature on the MRI contour. We decided to use snake for the video contour tracking 
method in the current implementation because of a number of attractive properties 
which make snake more efficient for contour detection than other boundary extraction 
methods. For example, many contour extraction techniques, e.g. edge detection and 
linking, region growing, and relaxation labeling, use local edge information and they 
must find suitable constraints for continuity when edges are broken. Unless special 
constraints are predefined, incorrect boundaries can be extracted. Furthermore, these 
algorithms are generally constrained by the resolution of the images and often gener-
ate inaccurate results. Snake or the active contour model overcomes this problem  
because the contour connectivity is a part of the model and the global content of the 
image is taken into consideration when detecting boundaries. Snake is rotation invari-
ant, and can also effectively track contours in a sequences of images when the sam-
pling interval is small. 

The basic snake model proposed by Kass et al. [4] has two major limitations. First 
the initial contour must be sufficiently close to the true boundary; otherwise it will 
converge to a wrong result. Second, snakes have difficulties progressing into concave 
boundary regions. A new type of snake, called the gradient vector flow (GVF) snake 
proposed by Xu et al. [9], effectively addresses both difficulties. The advantage of us-
ing GVF snake is that it has large capture range and is able to move into concave 
boundaries. 

2.1   Gradient Vector Flow (GVF) Snake:  

The two major limitations of the basic snake model were related to the contour ini-
tialization and poor convergence to the concave boundary. In the enhanced model [9, 
10], a new static external force field was introduced, which replaced the standard ex-
ternal force field in the traditional snake.  

The new static external force is called gradient vector flow force and is defined 

by ),()( yxVF g
ext = , which does not change with time, nor depend on the position of 

the snake itself.  Replacing the original external potential force with V we obtain the 
following equation: 
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Vsxsxtsxt +′′′−′′= )()(),( βα  

The parametric curve solving the above dynamic equation is called a GVF snake. 
Standard numerical methods can be used to solve this equation. 

The gradient vector flow field is defined as the vector field =),( yxV  

)),(),,(( yxvyxu  that minimizes the following energy functional: 

dxdyfvfvvuuE yxyx

222222 )( ∇−∇++++= μ  

Where f(x,y) is the edge map of the image. The parameter μ  is a regularization pa-

rameter that adjusts the tradeoff between the first and second terms of the integrand, 
and is set according to the level of noise present in the image. In addition, where the 
value of the edge gradient is small, energy is dominated by the sum of the partial de-
rivatives of the gradient field. When the gradient is large, the second term dominates.  

2.2   Curvature Calculation 

The degree of curvature can be determined by computing the rate of change of the sur-
face tangents. A line should have zero curvature, a curve with very shallow concavity 
should have a small number to represent its curvature, and a sharp corner should have a 
relatively larger number to represent its curvature [7, 11]. In our implementation we 
wanted to find the tip of a nose and chin by calculating the local maximum curvature 
around the nose and chin location using the following curvature formula. 

Let γ (t) be the position vector in the area under examination. Curvature at γ (t) 

can be characterized by the unit tangent vector T(t), unit normal vector N(t), or the ra-
dius of the osculating circle.  The position vector >=< )(),()( tytxtγ  generates a 

path on the plane over time t.  To capture the velocity vector, we take the derivative of 
the position vector with respect to time t.  

dt

d
v

γ= >′′=<′= )(),()( tytxtγ . The unit tangent vector is given by: 
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If a curve is parameterized in terms of arc length s, then the curvature can be com-
puted as:  

dt

dT

vdt
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dt

dT
.

1
. ==κ  

2.3   Outline of the Algorithm  

The following steps were performed to extract the head contour in a MRI slice: 
 

1) Read the MRI sequence in “DICOM” format (using dicomread function in 
Matlab).  

2) Enhanced the images using histogram equalization and contrast stretching.  
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3) Output the data in JPEG format (using imwrite function in Matlab). 
4) Compute the edge map of the MRI slices and then normalized the intensities 

of the edge map to the range [0, 1].  
5) Used the normalized edge intensities as the input to the GVF solver to pro-

duce the GVF field.  
6) Initialized the 2-D snake manually on the user interface. 
7) Repeated the following steps for a number of iterations until a statistical 

equilibrium is reached: 
(a) Deformed snake in the given external force field. 
(b)  Interpolated the snake adaptively. 

8) Applied the contour detected in the first slice as the initial contour or seed 
contour in the next slide and so on, to find the face boundary for the remain-
ing MRI face slices. 

9) Finally, detected the nose tip and chin by using the following steps: 
(a) Found the nose and chin location by windowing; 
(b) Fitted polynomial curves for the nose and chin regions; 
(c) Calculated the maximum curvature in the nose and chin areas. 

2.4   Experimental Results 

The original image sequence contains 32 MRI slices in dicom format, which had very 
low contrast.  A significant amount of preprocessing was required to enhance the contrast 
before applying the contour detection method.  Figure 2 shows an example of (a) the face 
image after applying histogram equalization, (b) the face image after contrast stretching, 
(c) the final convergence of the GVF snake, and (d)  the detected face contour. 

 

                 (a)                               (b)                             (c)                           (d)  

Fig. 2. (a) image after histogram equalization; (b) after further contrast enhancement; (c) Con-
vergence of GVF snake; and (d) final result 

Snake generation was implemented in Matlab. The basic Matlab program of GVF 
snake was downloaded from the author’s website http://iacl.ece.jhu.edu/projects/gvf/. 
Several parameters of the GVF active contour model such as elasticity, rigidity, vis-
cosity and external force weight were modified in order to achieve better results for 
our application. The convergence time of the snake depends on the number of itera-
tions. 125 iterations were required in our experiment, taking about 80 seconds. 
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Contour detection in successive MRI slices 
In order to track the face contours in a sequence of 32 MRI slices, the snake was initial-
ized to track the contour on the first MRI slice. The contour detected in the previous 
slice was then used as the seed to detect the contour of the subsequent slice, and so on. 
The result showed that the GVF snake was able to conform to the correct object 
boundaries in the MRI sequence using the contour of the previous slice. Figure 3 (left) 
shows how the snake converged when we used the contour detected in the previous slice 
as the seed.  Since there is only a slight difference in the contours between two consecu-
tive slices, it is difficult to view the convergence process and to differentiate the bound-
ary of the two slices. Figure 3 (right) shows the final contour for the second MRI slice. 

            

Fig. 3. (Left) shows the convergence of GVF snake in two successive slice; (Right) the detected 
contour in the second MRI slice. 

Detection of nose tip and chin 
The implementation of the curvature calculation algorithm was applied to the detected 
contour in order to find the local extrema, e.g. nose tip and chin tip.  Before calculating 
the curvature we tried to fit a polynomial to the detected nose and chin boundary. The 
best results were obtained by using 11 points for the chin region and fitting a polyno-
mial of degree 3, and selecting 4 points in the nose area and fitting a polynomial of de-
gree 3. Figures 4 (left) and 4 (right) show the original contour points (marked by stars) 
and fitted curves (represented by dotted line) for nose and chin, respectively. 
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Fig. 4. Fitted curves for (left) nose and (right) chin areas 
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Figure 5 (a) shows the result obtained from the curvature calculation to find the 
nose tip and chin automatically. To show that the method is invariant to rotations, we 
detected the nose and chin after rotating the face at different angles as shown in Fig-
ures 5 (b) to 5 (f). 

 

          (a)                 (b)                  (c)                 (d)                     (e)                    (f)  

Fig. 5. (a) shows automatic detection of nose tip and chin by calculating maximum curvature; 
(b)-(f ) show the detection results at different orientations of the face 

Performance comparison with traditional snakes 
Figure 6 (left) shows the convergence of a traditional snake. Figures 6 (middle and 
right) show the convergence results after 500 and 1000 iterations (compared to only 
125 iteration using GVF). We can also notice the poor convergence result of the tradi-
tional snake on boundary concavities, e.g. in the throat area. 

 

Fig. 6. (Left) Convergence of traditional snake. (Middle) and (right) show the detected contours 
with traditional snake after 500 and 1000 iterations 

3   Matching Video Contour with 3D Contour for Integrated 
Visualization 

So far, we have implemented a preliminary approach for matching MRI video contour 
to the 3D contour of a face. To the extracted video contour we fit local 4th degree poly-
nomials and calculate curvatures along the contour. When matching curvature over 
time, it is important to choose features that are invariant to time. Since our focus is on 
the human face, the best or most prominent feature selection is along the contours from 
the forehead to the noise tip, and to the chin (Figure 7). We use the Cyberware laser 

258 I. Cheng et al. 

.



scanner to capture the head geometry, but hair and 
ear are difficult or impossible to capture using laser 
scanning, and should not be used for matching. 

From the face contours, using simple heuristics 
such as sharpness of the nose and chin and their 
relative locations, we extract reliable features (Fig-
ure 5) that are invariant to the orientation changes 
of the contour. 

Alignment of the MRI video with the 3D struc-
ture is achieved by detecting and aligning corre-
sponding features, like nose and chin tips, on the 
MRI video contour and the contour generated by a 
vertical slice of scanned 3D surface points. 

The traditional approach to analyzing medical 
images relies on two-dimensional images, e.g.  
X-ray mammography. In the last ten years, analysis on three-dimensional models in 
medical applications has received significant attention (Figure  8 (a) and (b)). Al-
though 3D models are more visually appealing, there are two limitations: First, they 
often do not capture the photorealistic texture with high resolution. Per-vertex color is 
often used but not every vertex is associated with a real color; most of the algorithms 
assign colors interpolated from neighboring vertices. In addition, gray-scale is used as 
the color space.  Second, 3D static models are not time-varying data. They do not 
trace the flow of an activity, e.g. swallowing.  

In our four-dimensional (4D) approach, we incorporate the time varying data, in 
the form of video, into the 3D model, so that a sequence of soft-tissue or muscle 
movements can be analyzed by the physician. The surface data can be shown as a 
mesh or a transparent skin, allowing the physician to visualize the inside structure, 
without losing the facial expression of the patient (Figure 8 (c)).  The CT scan is bet-
ter for capturing bone structures and the MRI scan is better for capturing soft-tissue. 
In the traditional 3D modeling approach, MRI data (Figure 8 (a)) cannot be visualized 
together with the skin complexion. Although both soft-tissue (brain) and bone struc-
ture are shown in Figure 8 (b), half of the skull has to be removed in order to expose 
the brain. In our 4D approach (Figure 8 (c)), the skin complexion and soft-tissue can 
be visualized at the same time, displaying the movement of the brain tissue using a 
video sequence.  A layered 4D model can also be used with skin as the outer layer, 
bone structure as the second layer, and soft-tissue as the inner layer.  However, there 
is a data format problem to be considered: 3D data format for medical applications 
follows the Digital Imaging and Communications in Medicine (DICOM) standard for 
distributing and viewing. The basic structure of DICOM is composed of blocks (vox-
els) filling the interior of a volume. The smaller the blocks, the better is the represen-
tation of the silhouettes of the 3D structure and the higher the precision.  In order to 
maintain precision, the amount of DICOM data generated from CT and MRI scans are 
therefore very large. 

In order to adopt the 4D visualization model, or layered 4D model, volume data 
has to be converted to surface data.  A set of 3D points can be extracted by taking  
the centers of the blocks.  If we extract the centers of the blocks lying only on the  
 

 

Fig. 7. Example of prominent 
contours on a human face 
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                     (a)                                      (b)                                           (c) 

Fig. 8. (a) MRI of a human head with skull removed, and (b) CT scan of a head, both from 
UNC data set, displayed using Sun Microsystems Java 3DVolume demo program; and (c) 
Transparent skin presenting facial expression of the patient as well as the required images in-
side the surface structure 

boundary, the surface of the point set can be generated.  The surface points can then 
be triangulated to form a surface mesh.  There are far fewer modeling algorithms on 
volume data than compared with those developed for mesh data.  By converting a 
volume space into a mesh space, more processing techniques can be considered to 
 

achieve desired results. Another advantage of using the mesh space is to generate a 
hierarchy of 3D models (Figure 9) [1, 2, 3]. Depending on the precision and applica-
tion requirements, the appropriate level-of-detail  (LOD) can be selected for analysis.  

 

Fig. 9. Different level-of-details of the head structure. From left to right: 50,000 faces, 10,000 
faces, and 1,000 faces. 

A sequence of slices can be extracted from a mesh structure by intersecting the 
mesh with a set of parallel planes horizontally, vertically, diagonally, or in other ori-
entations. We divide the head structure into slices consistent with the viewpoint of the 
video. Each video sequence is then mapped onto the corresponding slice (Figure 10). 

Figure 11 shows screen captures at various time points of the integrated 3D surface 
along with the MRI video plane. Figure 11 (a) shows the scanned 3D structure with 
support on back of the head; Figure 11 (b) with support frame part of mesh removed; 
and Figure 11 (c) shows a close up.  
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Fig. 10. A block diagram showing the different stages of video sequence mapping for 4D visu-
alization 

     

                      (a)                                                (b)                                  (c) 

Fig. 11. Snapshots of integrated MRI video inside 3D face model 

 

Fig. 12. A spherical tumor is partitioned into half in each of the x-, y- and z- directions (in 1 it-
eration). From left to right: the results after 1, 3, 5 and 6 iterations are shown. 

If necessary, mesh data can also be converted back to the volume space, by filling 
the interior of the mesh with blocks. For example, Figure 12 illustrates how the mesh 
of a spherical tumor can be converted to a volume space.  Our algorithm works as fol-
lows: 
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1. The mesh is enclosed in a minimum cube (block). 
2. The block is divided into eight sub-blocks using three orthogonal planes (in 1 

iteration). 
3. Any empty block outside the mesh is thrown away. 
4. Steps (2) and (3) are repeated until the desired number of iterations is reached.  

The flexibility of interchanging between volume and surface space enables medical 
data to be modeled and analyzed taking advantage of the techniques developed for 
different data spaces. 

4   Conclusion and Future Work 

Active contour models play a vital role in determining any abnormalities found in 
biomedical imaging modalities, because these models are able to detect the complex 
shapes of anatomical structures successfully. In this work we used the gradient vector 
flow based active contour generation algorithm to detect the contour from MRI image 
slice. Following this step, we outlined procedures for feature detection on a plane of a 
3D structure and integrated 4D visualization of structure and MRI video. 

The MRI video planes are assumed to be vertical and saggital planes with respect 
to the 3D surface scan in Figure 1. This assumption may not produce good results 
when the actual plane could be slightly tilted from the vertical, because of the diffi-
culty in having accurate head positioning and alignment during MRI or 3D scans. In 
future work we will look into the more difficult registration problem that addresses 
the variability of the orientation of the video plane.  
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Abstract. High-level structural information about macromolecules is
now being organized into databases. One of the common ways of storing
information in such databases is in the form of three-dimensional (3D)
electron microscopic (EM) maps, which are 3D arrays of real numbers
obtained by a reconstruction algorithm from EM projection data. We
propose and demonstrate a method of automatically constructing, from
any 3D EM map, a topological descriptor (which we call a history tree)
that is amenable to automatic comparison.

Keywords: Discrete shape representation, digital topology, macromole-
cular structures, volume images.

1 Introduction

High-level structural information about macromolecules is now being organized
into databases such as the Quaternary Protein Structure (QPS) and the Electron
Microscopy Data Base (EMDB), both at the European Bioinformatics Institute
(EBI). Initiatives in the EM field are also starting in the US, nucleated around
the Research Collaboratory for Structural Bioinformatics (RCSB) that is respon-
sible for the database called the Protein Data Bank (PDB).

These databases include reconstructions from EM data, i.e., 3D arrays of real
numbers that are voxelizations of macromolecular structures. Suppose that a
biology researcher has obtained from EM projections a new reconstruction of
the structure of a macromolecule, and would like to see if a database contains
a similar object. The very large size of these 3D arrays, the arbitrary position
and orientation of the molecule in the array and the possibility of non-linear
stretching of the range make standard methods of comparison infeasible. Hence,
there is a need for exploring and analyzing topological and geometrical features of
the contents of such large aggregates in a systematic, quantitative and automatic
manner to mine the information contained in these databases. In the following we
propose a method of automatically producing topological descriptors of 3D EM
arrays, and demonstrate it on arrays that we acquired from EBI. We believe that
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comparison of these descriptors using appropriately defined similarity measures
will be useful in the identification and classification of macromolecules.

2 Mathematical Preliminaries

2.1 Foreground Components in 3D Images; f-Ancestors

An EM reconstruction is typically represented as a 3D image — i.e., a real-valued
mapping f defined on the voxel setX of a box-shaped region. For every real num-
ber t, we define the foreground voxel set of f at t as: Ff (t) = {x ∈ X | f(x) ≥ t}.
Note that Ff shrinks monotonically: if t1 < t2, then Ff(t1) ⊇ Ff (t2). We par-
tition each foreground voxel set Ff (t) into connected components based on 6-
connectivity [1]. [Two voxels are 6-adjacent if they share a face. A 6-path in U is
a sequence of voxels in U in which every consecutive pair of voxels are 6-adjacent.
A set U of voxels is 6-connected if for every pair of voxels in U there is a 6-path
in U that begins at one voxel of the pair and ends at the other. A 6-component
of U is a maximal non-empty 6-connected subset of U .]

LetCf (t)denote the collectionof 6-components ofFf (t) and letCf=
⋃

t∈IRCf (t).
IfD1, D2 ∈ Cf , then we sayD1 is an f-ancestor ofD2 if there exist t1 ≤ t2 such that
D1 ∈ Cf (t1),D2 ∈ Cf (t2) andD1 ⊇ D2.

2.2 Foreground History Trees

We define the ancestor and descendant relations on the vertices of a rooted tree
recursively, as follows (cf. [2, p. 93]): If v1 and v2 are vertices of a rooted tree,
then v1 is an ancestor of v2 (and v2 is a descendant of v1) if v1 = v2 or v1 is an
ancestor of the parent of v2.

A foreground history tree (FHT) for an image f is a rooted tree T in which
each vertex v is associated with a real number LT (v), called its level, and a set
DT (v) ∈ Cf (LT (v)), and in which the following conditions are satisfied:

1. If LT (v1) = LT (v2) and DT (v1) = DT (v2), then v1 = v2.
2. A vertex v1 is an ancestor in T of a vertex v2 if, and only if, LT (v1) ≤ LT (v2)

and DT (v1) is an f -ancestor of DT (v2).

We will usually omit the subscript T from LT and DT unless it is needed to
distinguish the L and D functions of different FHTs.

Note that if a vertex v1 is the parent of a vertex v2 in an FHT, then we have
that L(v1) < L(v2). Indeed, v1 is an ancestor of v2, and so L(v1) ≤ L(v2) and
D(v1) is an f -ancestor of D(v2). Suppose L(v1) = L(v2). Then D(v1) and D(v2)
would both be 6-components of Ff(L(v1)) = Ff (L(v2)), and sinceD(v1) ⊇ D(v2)
(because D(v1) is an f -ancestor of D(v2)) this would imply D(v1) = D(v2). But
then v1 = v2 (as L(v1) = L(v2)) contrary to the fact that v1 is the parent of v2.

FHTs are related to contour trees [3]; but contour trees are not necessarily
rooted, whereas FHTs are. It is our hypothesis that FHTs can be made to reflect
certain essential properties of macromolecules, and so provide a suitable basis
for assessing the similarity of macromolecules.
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3 Methods and Results

3.1 Obtaining a Foreground History Tree

Let f : X → IR be a 3D image, and let τ1 > τ2 > . . . > τk be a strictly decreasing
finite sequence of real numbers such that fmax ≥ τ1 and fmin ≥ τk, where fmax

and fmin are the maximum and the minimum values attained by f on the set of
voxels X . [Thus ∅ � Ff (τ1) ⊆ Ff (τ2) ⊆ . . . ⊆ Ff (τk) = X , and |Cf (τk)| = 1.]

We now describe an algorithm that constructs an FHT T for f which satisfies
the condition {L(v) | v ∈ Vertices(T )} = {τi | 1 ≤ i ≤ k}, and which has as
many vertices as is possible for such an FHT. For convenience in describing the
algorithm, we define τ0 to be an arbitrary but fixed number that exceeds fmax,
so that Ff(τ0) = ∅ and hence Cf (τ0) = ∅.

The algorithm is based on a data structure which represents a collection
of pairwise disjoint nonempty sets of voxels. Operations MAKE SET(x) and
UNITE SETS(x1, x2) are used to change the represented collection of sets. These
are defined below the next paragraph, whose aim is to provide the reader with
an initial understanding of how the algorithm alters the data structure and, at
the same time, builds up the FHT.

The algorithm has a main loop whose body is executed k times. At the end of
the ith iteration of the loop, the data structure represents the collection of sets
Cf (τi) and the FHT has been built (from its leaves towards its root) up to the
level τi; i.e., all vertices v in the eventual FHT for which L(v) ≥ τi have been
created, and both L(v) and D(v) ∈ Cf (L(v)) have been determined for these
vertices, as well as the parent-child relationships among them. Clearly, at the
end of the kth iteration, we have produced the whole FHT.

When the data structure represents a collection S (of disjoint sets of voxels),
and x is any voxel such that x �∈

⋃
S, a call of MAKE SET(x) adds the singleton

set {x} to the represented collection of sets: It changes the data structure from
a representation of S to a representation of S ∪ {{x}}.

The algorithm calls UNITE SETS either to replace two existing sets of voxels
in the represented collection of sets with the union of those two sets, or to insert a
new voxel, which does not yet belong to any set in the represented collection, into
one of the sets in the collection. The effect of calling UNITE SETS can be more
precisely described as follows. Let x1 and x2 be voxels, and let S be the collection
of sets that is represented by the data structure when UNITE SETS(x1, x2) is
called. For i = 1, 2, let Si = {xi} if xi /∈

⋃
S, and let Si be the member of S

that contains xi if xi ∈
⋃

S. Then the call UNITE SETS(x1, x2) changes the
data structure from a representation of S to a representation of the collection
(S \ {S1, S2}) ∪ {S1 ∪ S2}.

The data structure is in fact a forest of rooted trees of nodes, together with
a list of the root nodes of all the trees in the forest. Our data structure is an
example of a disjoint-set forest (DSF) [2, pp. 446–450]. Trees and nodes of our
DSF will be called DSFtrees and DSFnodes. The list of root nodes is given by
the variable CURRENT DSF ROOTS, which is updated by UNITE SETS and
MAKE SET.
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There is a 1-to-1 correspondence between the collection of all DSFtrees of the
DSF and the collection of disjoint sets of voxels that is represented by the DSF.
Each voxel x has a field x.DSFnode that can either be a DSFnode or be NIL. A
voxel x belongs to the set of voxels that corresponds to a DSFtree T if, and only
if, x.DSFnode is a DSFnode in T . Thus x.DSFnode is NIL if, and only if, x does
not belong to any set in the collection of sets that is represented by the DSF. If
x.DSFnode is NIL, then a call of MAKE SET(x) will create a new DSFtree that
consists of one new DSFnode and will set x.DSFnode to be that new DSFnode.
This is the only way in which the algorithm creates DSFnodes.

The role of a DSFnode in our algorithm is analogous to the role of a label in
standard connected component labeling algorithms for binary images (see, e.g.,
[4, pages 347–349]). DSFnodes that belong to the same DSFtree correspond to
“equivalent” labels (i.e., labels that represent the same component).

The algorithm uses a function DSF ROOT(), which is such that if ν is any
DSFnode then DSF ROOT(ν) returns the root of the DSFtree which contains ν.
Thus two voxels x and y belong to the same member of the collection of sets that
is represented by the DSF if, and only if, x.DSFnode �= NIL, y.DSFnode �= NIL
and DSF ROOT(x.DSFnode) = DSF ROOT(y.DSFnode).

The algorithm starts by scanning the voxels in X and assigning each of them
to one of k voxel “bins” B[1], B[2], . . . , B[k] as follows: A voxel x ∈ X is placed
in the bin B[j], where j is the integer such that τj−1 > f(x) ≥ τj . [Thus the
set of voxels that are placed in each bin B[i] is just Ff(τi) \Ff(τi−1).] The DSF
is initialized to be empty, so x.DSFnode is NIL for every voxel x in X , and
CURRENT DSF ROOTS is an empty list. [It follows that, for all voxels x at all
times during the execution of the algorithm, x.DSFnode is NIL if, and only if,
x has never been an argument of a call of MAKE SET() or UNITE SETS().]

After this initialization, the rest of the algorithm is stated by the pseu-
docode below. The loop on lines 4–7 transforms the DSF from a representa-
tion of Cf (τi−1) to a representation of Cf (τi). [Note that x.DSFnode must be
NIL on entry to the inner loop on lines 5–6, because the voxel x will not have
been an argument of any earlier call of MAKE SET() or UNITE SETS(). So
MAKE SET(x) will be called on line 7 if, and only if, y.DSFnode = NIL for
every 6-neighbor y of x.] Lines 8–11 create the vertices of the FHT that have
level τi, and assign the children to the newly created vertices.

1. for i← 1 to k do
2. foreach ν ∈ CURRENT DSF ROOTS do ν.oldVertex ← ν.vertex;
3. previousDSFroots ← a copy of the list CURRENT DSF ROOTS;
4. foreach x ∈ B[i] do
5. foreach 6-neighbor y of x in X do
6. if y.DSFnode �= NIL then UNITE SETS(x, y);
7. if x.DSFnode = NIL then MAKE SET(x);
8. foreach ν ∈ CURRENT DSF ROOTS do
9. ν.vertex ← a new FHT vertex v with L(v) = τi and D(v) = ν;
10. foreach ν ∈ previousDSFroots do
11. Make (DSF ROOT(ν)).vertex the parent of ν.oldVertex;
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The UNITE SETS(x, y) operation and the DSF ROOT(ν) function are im-
plemented using union-by-rank with path-compression [2, p. 447]. The running
time of a sequence of m calls of MAKE SET, UNITE SETS and DSF ROOT
is O(mβ(m)), where β(m) is an extremely slowly growing function of m [2,
p. 449]. [β(m) = α(m,m), where α is an inverse of Ackermann’s function.] In
fact β(m) = 3 or 4 for all values ofm ≥ 8 that might occur in any conceivable ap-
plication. In our applications the number k of levels or bins is very much smaller
than the number |X | of voxels in the domainX of the image f , and

∑k
i=1 |Cf (τi)|

is also smaller than |X |. In this context the time complexity of the algorithm
is O(|X | log k + |X |β(|X |)), where the term |X | log k corresponds to the time
complexity of initializing the k bins, and the factor log k assumes the use of
binary search to find the appropriate bin for each voxel. As β(|X |) = 3 or 4 for
all images of practical interest, the time-complexity is “essentially” O(|X | log k).
If the levels τi are regularly spaced, then the bin for each voxel can be found in
O(1) time and the time-complexity of the algorithm is essentially O(|X |).

3.2 Preliminary Results and the Need for Simplification

We applied our method to severalmacromolecules, and here we present its applica-
tion to a reconstruction of the e. coli 70s ribosome [5], and a helical reconstruction
of drosophila kinesin dimer AMP-PNP state [6]. Figs. 1 and 2 show surface visual-
izations and cross-sections of these specimens. Figs. 3(a) and 4(a) show associated
FHTs. We used the drawgram program in the package PHYLIP [7] to generate
these tree images. Each vertex that has more than one child is represented by a
horizontal segment. The presence of a downward segment from a horizontal seg-
ment a to a horizontal segment or endpoint d indicates that the vertex represented
by d is a descendant of the vertex represented by a, and the length of the down-
ward segment is proportional to the difference between the levels of those vertices.
In each case, we eliminated the vertical segment from the root of the tree.

These FHTs are given by the algorithm of Sect. 3.1 with k = 128 and, for
1 ≤ i ≤ 128, τi = fmax − iΔ, where Δ = (fmax − fmin)/128.

While they appear to be different, the trees of Figs. 3(a) and 4(a) are so clut-
tered that one cannot be sure whether or not the difference is just an artifact of
the display. We need to construct simpler FHTs that better reveal the structural
essence of the molecules.

3.3 Pruning FHTs by Component Size

Pruning an FHT by component size removes all vertices that correspond to
components containing fewer than a certain number of voxels. This transforms
an FHT T for an image f to an FHT T ′ for f such that Vertices(T ′) =
{v ∈ Vertices(T ) | |DT (v)| ≥ δ}, in which the functions LT ′ and DT ′ are the
restrictions to Vertices(T ′) of LT and DT . Here δ is a positive integer parameter
that represents the minimum allowed component size. [This operation cannot
disconnect the tree, for if a vertex u of an FHT is the parent of a vertex v, then
|D(v)| ≥ δ implies |D(u)| ≥ δ.]
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Fig. 1. EMD-1006: E.coli 70s ribosome / ribosome-bound termination factor RF2,
surface visualization and cross-sections (51 and 80 of 130)

Fig. 2. EMD-1032: Drosophila kinesin dimer AMP-PNP state, surface visualization
and cross-sections (47 and 63 of 100)

(a) (b)

Fig. 3. FHTs based on EMD-1006: (a) unpruned, (b) pruned by minimum component
size of 25

It is easy to incorporate pruning by component size into the algorithm of
Sect. 3.1 for producing an FHT. The pseudocode need not be changed. It suffices
to store the size of the set of voxels that is represented by each DSFtree in a field
of its root DSFnode, and include in the list CURRENT DSF ROOTS just those
root DSFnodes whose size fields are greater than or equal to δ. The algorithm
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(a) (b)

Fig. 4. FHTs based on EMD-1032: (a) unpruned, (b) pruned by minimum component
size of 20

will then construct the tree that would be obtained if we pruned the FHT that
is produced by the original version of the algorithm.

Figs. 3(b) and 4(b) show pruned FHTs of the images of Figs. 1 and 2.

3.4 Pruning FHTs by Subtree Height

The FHTs that are constructed as described above tend to have “comb-like”
structures: There are many leaves near the root. [See the right side of each tree
in Figs. 3 and 4.] These leaves correspond to components of the foreground voxel
set at very low gray values, and seem mostly to represent components of the ice
in which the specimen under study is embedded.

Pruning by subtree height is a second method of pruning that can be applied
to FHTs. It eliminates the above-mentioned leaves and some other artifacts that
are likely to be due to noise.

Pruning by subtree height h transforms an FHT T for an image f to an FHT
T ′ for f such that Vertices(T ′) = {v ∈ Vertices(T ) | subtree-heightT (v) ≥ h}, in
which the functions LT ′ and DT ′ are the restrictions to Vertices(T ′) of LT and
DT . Here subtree-heightT (v) = max{L(w)−L(v) | w is a descendant of v in T}.
Figs. 5 and 6 show the effects of this operation on the FHTs of Figs. 3(b) and
4(b), for two different values of h.

3.5 Elimination of Short Edges from FHTs

Pruning by subtree height only helps near the leaves. Other parts of the tree
will not be simplified unless one chooses a very high value of h to prune by, in
which case one could lose much valuable information.

We have developed another method of simplifying FHTs that can be applied
after pruning by subtree height, and which does not have this shortcoming. We
call this method elimination of short edges, because it essentially eliminates edges
anywhere in the tree that are not longer than a positive parameter ε. Figs. 7 and
8 show its effect on the FHTs of Figs. 5(a) and 6(a), for two different values of
the parameter ε.

Simplification of an FHT T by elimination of short edges can be accomplished
by calling SIMPLIFY(root(T ), root(T ), ε), where root(T ) is the root of T and
SIMPLIFY() is defined as follows:



270 D. Sarioz, T.Y. Kong, and G.T. Herman

(a) (b)

Fig. 5. FHTs based on EMD-1006: minimum component size of 25, pruned by subtree
height parameter (a) h = 4Δ, (b) h = 20Δ, where Δ = (fmax − fmin)/128

(a) (b)

Fig. 6. FHTs based on EMD-1032: minimum component size of 20, pruned by subtree
height parameter (a) h = 4Δ, (b) h = 20Δ, where Δ = (fmax − fmin)/128

SIMPLIFY(Vertex v, Vertex r, float ε):
foreach child c of v do

if L(c) > L(r) + ε then
if r �= v then make r the parent of c;
SIMPLIFY(c, c, ε);

else
SIMPLIFY(c, r, ε);
Remove the vertex c;

We can give a non-recursive characterization of the effect of this simplification
method. Let T be any FHT for an image f . We define an ε-acceptable simplifi-
cation of T to be an FHT T ′ for f that satisfies the following conditions:

1. Vertices(T ′) ⊆ Vertices(T ), and the functions LT ′ and DT ′ are the restric-
tions to Vertices(T ′) of the functions LT and DT .

2. For all p, c ∈ Vertices(T ′) such that p is the parent of c in T ′, L(c) > L(p)+ε.

Let ≤ denote the partial order, on the set of all ε-acceptable simplifications of T ,
such that T1 ≤ T2 if, and only if, each vertex in Vertices(T1) \ Vertices(T2) has
an ancestor in T that lies in Vertices(T2) \ Vertices(T1). Then the FHT that is
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(a) (b)

Fig. 7. FHTs based on EMD-1006: minimum component size of 25, pruned by subtree
height parameter h = 4Δ and short edges eliminated by parameter (a) ε = 2Δ, (b)
ε = 9Δ, where Δ = (fmax − fmin)/128

(a) (b)

Fig. 8. FHTs based on EMD-1032: minimum component size of 20, pruned by subtree
height parameter h = 4Δ and short edges eliminated by parameter (a) ε = 2Δ, (b)
ε = 9Δ, where Δ = (fmax − fmin)/128

produced from the FHT T by SIMPLIFY(root(T ), root(T ), ε) is the ε-acceptable
simplification of T that is maximal with respect to ≤.

A consequence of the fact that elimination of short edges affects all parts of
the tree is that, for similar values of the parameters ε and h, elimination of short
edges will typically remove many more vertices than pruning by subtree height.

4 Discussion

EM reconstruction need not preserve the geometry of the specimens under study.
The foreground history tree (FHT) of a 3D gray-valued voxel-based image is a
useful descriptor that is insensitive to topology-preserving transformations.

We have presented parametric methods of simplifying FHTs that remove arti-
facts due to noise, while preserving what seem to be essential spatial properties
of the specimens. The simplified FHTs of different specimens obtained from a
molecular database capture some of the structure in those specimens. For exam-
ple, the FHTs in Fig. 8 of the helical structure shown in Fig. 2 contain a vertex
from which many similar-looking subtrees are descended.
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FHTs provide a potentially useful way of discretely representing essential
aspects of the shape of a complicated object. Thus we believe that they can be
used in methods of querying macromolecular databases.

Acknowledgments

This work was supported by the National Institutes of Health Grant HL070472.
Our interactions with P. L. Combettes, J.-M. Carazo, R. Marabini, E. Garduño,
S. H. W. Scheres, and I. Montealegre were helpful in preparing this manuscript.

References

1. Rosenfeld, A.: Three-dimensional digital topology. Information and Control 50
(1981) 119–127

2. Cormen, T.H., Leiserson, C.E., Rivest, R.L.: Introduction to Algorithms. MIT
Press, Cambridge, MA, USA (1990)

3. Carr, H., Snoeyink, J., Axen, U.: Computing contour trees in all dimensions. Com-
putational Geometry: Theory and Applications 24 (2003) 75–94

4. Rosenfeld, A., Kak, A.C.: Digital Picture Processing. Academic Press, New York,
NY, USA (1976)

5. Rawat, U., Zavialov, A.V., Sengupta, J., Valle, M., Grassucci, R.A., Linde, J.,
Vestergaard, B., Ehrenberg, M., Frank, J.: A cryo-electron microscopic study of
ribosome-bound termination factor RF2. Nature 421 (2003) 87–90

6. Hoenger, A.: A new look at the microtubule binding patterns of dimeric kinesins.
Journal of Molecular Biology 297 (2000) 1087–1103

7. Felsenstein, J.: PHYLIP - phylogeny inference package (version 3.2). Cladistics 5
(1989) 164–166



Fusing Features in Direct Volume Rendered Images

Yingcai Wu, Huamin Qu, Hong Zhou, and Ming-Yuen Chan

Department of Computer Science and Engineering
Hong Kong University of Science and Technology

{wuyc, huamin, zhouhong, pazuchan}@cs.ust.hk

Abstract. In this paper, we propose a novel framework which can fuse mul-
tiple user selected features in different direct volume rendered images into a
comprehensive image according to users’ preference. The framework relies on
three techniques, i.e., user voting, genetic algorithm, and image similarity. In this
framework, we transform the fusing problem to an optimization problem with a
novel energy function which is based on user voting and image similarity. The
optimization problem can then be solved by the genetic algorithm. Experimental
results on some real volume data demonstrate the effectiveness of our framework.

1 Introduction

Direct volume rendering (DVR) is a powerful and flexible volume visualization tool
and has been widely used in many fields. However, to effectively and intuitively ex-
plore volumetric data through DVR still remains a challenging issue. Due to the data
occlusion and human perception, one of the difficulties is to develop effective visualiza-
tion techniques capable of revealing multiple features simultaneously. To address this
issue, many approaches like illustrative visualization and importance-based techniques
have been proposed. However, most techniques have more or less limitations. On the
other hand, as it is easier for users to reveal a specific feature than to highlight multiple
features simultaneously in a direct volume rendered image (DVRI), a feasible solution
to the problem may allow users to select multiple features in distinct DVRIs, and then
automatically fuse those features into a comprehensive DVRI. Therefore, users can fo-
cus on one feature each time and the task for exploring multiple features is simplified.

We assume that a series of DVRIs have been generated and cached along with the
transfer functions (TFs) used. To fuse multiple features in different DVRIs, there are
two straightforward solutions, i.e., to blend those images, or to generate a new DVRI
with a new TF created by linearly combining the previous TFs. However, they both
fail to achieve our goal in most cases. Image blending does not work for our purpose
due to its limitations like losing depth cues and introducing misleading information [1].
Linear combination of the TFs does not work either. This can be mainly attributed
to the nonlinear operations of the integration used in DVR. For example, given two
DVRIs and their corresponding TFs (see Figure 2(a) and 2(b)), if users want to reveal
features appearing in both 2(a) and 2(b) by linear combination of the TFs, they can only
obtain something like 2(c) no matter what α and β are, which is far from what they
expect such as 2(d). Because there are other features, such as the intestines and muscles
between intensity d1 and d2 , linear combination in this example does not work.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 273–282, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b) (c)

Fig. 1. Experiment on an MRI human head dataset: (a)-(b) Parent images with user selected fea-
tures; (c) Child image generated by fusing the user selected features shown in (a) and (b)
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Fig. 2. (a)-(b) Parent images 1 and 2, and their TFs T F1 and T F2; (c) Child image rendered with
linearly combined TF : T F3 = α×TF1+β ×TF2, where α = 0.3 and β = 1; (d) Child image
rendered with our method by fusing (a) and (b)

To solve the general feature fusing problem, we propose a novel fusing framework,
which relies on three techniques, i.e., user voting, genetic algorithm (GA), and im-
age similarity. In this framework, we transform the fusing problem to an optimiza-
tion problem with a novel energy function based on user voting and image similarity,
which can then be solved by the GA. User votes includes the user selected features
in DVRIs and the corresponding user given scores representing how much the users
like the features. A selected feature could be either a region of interest (with high
scores) or the context (with low scores). Our approach contains some advanced char-
acteristics. First, as it is easier for users to select features in DVRIs than in volume
slices [2], our approach allows users to select multiple features directly in DVRIs in-
stead of in volume slices. The features can be then automatically fused together. Second,
we develop a general framework for fusing multiple user-selected features in DVRIs.
Compared with previous methods such as image blending and TF interpolation, our
method is more robust and general. Third, as a semi-automatic method, our approach
integrates user knowledge into the fusing process. Since the visualization goal highly
depends on the tasks and users, our system can gain valuable input from users by user
voting.

This paper is organized as follows: After reviewing previous work in Section 2, we
give an overview of our system in Section 3. The solution encoder/decoder is explained
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in Section 4. A genetic algorithm used to solve the optimization problem is described
in Section 5. In Section 6, we provide the details of the image similarity metric. Ex-
perimental results and discussions are presented in Section 7. We conclude and suggest
some future work in Section 8.

2 Related Work

Feature-based Visualization. Weiskopf et al. [3] proposed several interactive clipping
methods by exploiting the powerful capability of GPU. Viola et al. [4] developed a
novel importance-based approach capable of enhancing important features while re-
taining necessary context by generating cut-away and ghosted images from volumet-
ric data. Volume illustration techniques, first introduced by Ebert et al. [5], provide
an alternative way for focus + context visualization with abstraction techniques (non-
photorealistic rendering). Wang et al. [6] presented an interactive GPU-assisted volume
lens to magnify the regions of interest while preserving the context by compressing the
other volume regions.

Transfer Function (TF) Design. An excellent survey on TF design can be found in [7].
Marks et al. [8] developed an image-centric system which automatically generates many
perceptually different images and organizes them efficiently for users to select. Kindle-
mann and Durkin [9] presented a histogram data structure used to semi-automatically
obtain a good TF with users’ guidance. The images generated by the both approaches
can be used as inputs to our system. Ma [10] proposed a novel approach based on im-
age graphs to facilitate visual data exploration. König and Gröller [11] developed a TF
design interface paradigm which provides several specification tools for each search do-
main. Although Ma’s and König et al.’s methods used linear combination of TFs, they
cannot always get the expected results (see Figure 2).

Genetic Algorithms. Genetic algorithms are widely used in many fields like computer
graphics [12]. He et al. [13] first employed GAs to generate TFs. Our approach is in-
spired by their work, but aims at fusing different features rather than TF design from
scratch. In addition, compared with He et al.’s approach, our approach is based on image
similarity and user knowledge (or user voting). Users are allowed to control which fea-
tures will be retained or enhanced in the child images by user voting. House et al. [14]
used a GA to choose visualization parameters to optimize visualization quality.

3 System Overview

To simplify the presentation, we first introduce the following terms: Parent image for
the image with user selected features for fusing; Child image for the fused image from
parent images; Parent TF for the TF corresponding to the parent image; Child TF for
the TF corresponding to the child image. All the images are rendered by DVR.

Our system consists of four components as shown in Figure 3, i.e., solution en-
coder/decoder, genetic algorithm solver, direct volume renderer, and image similarity
evaluator. The encoder/decoder component specifies the genome representation by an-
alyzing the parent transfer functions (TFs) (denoted as T F1 · · ·T Fn in Fig. 3), and then
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Fig. 3. System Architecture

sends the genome representation to the genetic algorithm (GA) solver (see Figure 3 (a)).
The genetic algorithm solver generates new genomes (the encoded TFs) by imitating
the process of natural evolution. The expected similarity values denoted as V1 · · ·Vn in
Fig. 3 and the calculated similarity values received from the image similarity evaluator
for each parent image are used to form an energy function which measures the differ-
ences between the real calculated similarity values and the expected similarity values.
The smaller the energy value, the fitter the corresponding genome. Each intermediate
genome created in the course of the GA evolution is then sent back to the solution en-
coder/decoder (see Figure 3(b)). The decoder converts the genome to a candidate TF
which is then passed to the direct volume renderer (see Figure 3(c)). The direct vol-
ume renderer generates a child image using DVR techniques for the candidate TF. The
generated image is then passed to the image similarity evaluator (see Figure 3(d)). It
measures the similarity between the child image and each of the parent images. The
image similarity values are then sent back to the genetic algorithm solver (see Figure
3(e)) to begin the next cycle of refinement.

4 Solution Encoder/Decoder

The solution encoder/decoder specifies the genome representation by analyzing the
parent TFs. To define the optimal genome representations [15], our approach repre-
sents a TF as a one dimensional (1D) array of floating numbers. The component first
smoothens the parent TFs using a gaussian function to filter out the high frequencies
to obtain bandlimited signals. After that, it samples TFs adaptively above the Nyquist
frequency. The samples are then used to specify the genome representation. In addi-
tion, they can be used to restrict the search space to improve the GA performance. For
example, in Figure 4 there are two parent TFs denoted by different line patterns to be
fused. The points on the axis of the scalar value are the union of the sampling positions
of the parent TFs. The vertical dashed lines start with 0 and end with the maximum
opacity value of the parent TFs. They act as the range of the opacity values of the
corresponding points on the axis of the scalar value. All the opacity values on the fore-
mentioned points (on the axis of the scalar value) of each candidate child TF constitute a
genome.
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Fig. 4. The genome representation (the points on the axis of the scalar value) obtained by analyz-
ing parent transfer functions T F1 and T F2

5 Genetic Algorithm

A Genetic Algorithm (GA) is a search algorithm imitating the process of natural evo-
lution [15]. It is particularly useful for searching solutions to optimization problems,
especially when the search space is huge and unknown. The pseudo-code for the simple
genetic algorithm used in our system is shown as follows:

1: Randomly create an initial population of n genomes (encoded TFs)
2: repeat
3: repeat
4: Select a pair of genomes from the current population using roulette wheel scheme as

parent genomes such that fitter (or better) genomes are more likely to be chosen
5: Crossover (two-point crossover) the selected pair with probability pr or exactly copy

(or clone) the pair with probability 1− pr to form two new genomes
6: Mutate the two newly created genomes with mutation probability pm

7: until n new genomes (offsprings) have been created
8: Replace the current population with the n new genomes
9: until Terminating conditions such as the converging of the GA are met

Energy functions are used to measure the fitness of genomes, and return the measure-
ment to the GA where the energy values are used to determine which genomes in the
current population are more likely to be selected to survive. Thus, the energy function
has a great impact on the performance of GAs. For our system, we exploit an energy
function based on image similarity and user voting to objectively evaluate the fitness of
genomes as follows:

F =
n

∑
k=1

Vk ∗ |Vk −Sk| (1)

Where n is the number of parent images, and Vk represents the vote (or the scores) given
by users for the features in parent image k, and Sk denotes the computed image similar-
ity value between the child image and parent image k. The more detailed definition of
Sk can be found in Equations (2) in Section 6.

The Vk, from another point of view, can be also considered as the similarity value
expected by users between the child image and parent image k. It ranges from 0 to 1. It
penalizes the difference between the computed similarity Sk and the user-voted (or user-
expected similarity) value Vk. It can guarantee that the child image will get proportional
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contributions from all the parent images and will not be overwhelmed by any single one.
The GA used in our system views the genomes with smaller energy values as the fitter
ones for the problem. Using the energy function, we are able to transform the feature
fusing problem to an optimization problem, i.e., minimizing the energy function.

6 Image Similarity

In our system, we employ a contour-based similarity metric to compare two DVRIs.
The contour is one of the most important perception clues to 3D structures and can be
used to compute the similarity of objects. Thus, our system first converts the DVRIs to
grey-scale images, and detects the edge images from the grey-scale images using the
Canny edge detector. Because most contours appearing in the DVRIs also appear in
the grey-scale images, our contour-based metric still works well. After that, a Gaussian
filter is applied to smooth the edge images so that the pixels without an edge covering
can also obtain contributions from the nearby edges. We set the size of the filter to be
5×5 for 512×512 images, and 3×3 for 256×256 images. The image similarity can
then be computed pixel by pixel.

The image similarity value Sk between the edge image of the child image and the
edge image of each parent image k is computed as follows:

Sk =
∑height

y=1 ∑width
x=1 Q(x,y)

Nparent
(2)

Q(x,y) =
{

1 if P(x,y)< threshold
0 Otherwise

(3)

P(x,y) = |K(x,y) −K′
(x,y)| (4)

where Nparent in Equation (2) is the number of all pixels on the edges of the parent k’s
edge image. threshold in Equation (3) is a parameter set by the system, and P(x,y) in
Equation (4) represents the difference between two corresponding pixels and K and K′

are the Gaussian filtered child and parent edge images with resolution (width, height).
Notice that we consider only the pixels on the parent edge image k for Sk, i.e., Equa-

tion (2) is only computed if K′
(x,y) �= 0. If there are user-selected features in the DVRIs

which are to be compared, our system considers only the pixels within these features.
Thus, the Nparent in Equation (2) becomes the number of pixels within the features on
the edges of the parent edge image.

To determine the default threshold in Equation (3), we conducted extensive exper-
iments on real volume data. All the edge images to be compared are 8-bit grey-scale
images. After extensive experiments, we observed that the similarity values returned
by the similarity evaluator was very similar to what users perceived when the threshold
ranged from 60 to 90. Based on this, the threshold was fixed to be 80 for all experiments
in this paper. An example of computed tomography (CT) human head volume data is
shown in Figure 5. Figure 5(a) and 5(c) are two parent images. Figure 5(e) was gener-
ated by fusing features appearing in Figure 5(a) and 5(c). Figure 5(b), 5(d), and 5(f) are
their corresponding edge images. Figure 5(g) shows the similarity value distribution in
terms of different threshold. From the figure, we can observe that when the threshold
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Fig. 5. Experiments for image similarity on CT human head volume data with different threshold
in Equation 3: (a) Parent image 1; (b) Parent edge image 1; (c) Parent image 2; (d) Parent edge
image 2; (e) Child image; (f) Child edge image; (g) Similarity value distribution in terms of
different threshold

ranges from 60 to 90, the similarity value S1 for Figure 5(e) and 5(a) will vary from
0.53 to 0.7, while S2 for Figure 5(e) and 5(c) will vary from 0.3 to 0.38. This is similar
to what users perceive. We also carried out the experiments on other volumetric data,
such as CT engine data, CT human tooth data, and Magnetic resonance imaging (MRI)
head data and found similar results. The image resolution was 512× 512 and the size
of the gaussian filter we applied was 5× 5. Finally, we did the above experiments on
images with 256× 256 image resolution and with a 3× 3 gaussian filter and obtained
similar findings as well. Thus, to improve the system’s performance, we can use the
256×256 image resolution and 3×3 gaussian filter in the fusing process for DVR and
image similarity computing.

7 Experiment Results and Discussions

Our system was implemented in C++ based on the VTK 5.0 library [16]. We tested the
system on a Pentium(R) 4 3.2GHz PC with 1GB RAM and an Nvidia Geforce 6800
Ultra GPU with 256MB RAM. The sampling rate of DVR was two samples per voxel
along each ray. For the sake of performance, the rendered image resolution was 256×
256 in the fusing process and was then switched to 512× 512 after fusing. Following
Jong’s suggestion [17], we set the population size to be 10, the crossover rate to be 0.6,
the mutation rate to be 0.05, n to be 20, and k to be 1.005 for the GA. In the following
experiments, we obtained sufficiently good results within acceptable time frames.

We carried out the first experiment on a CT engine dataset (256×256×128) to verify
the effectiveness of the fusing while taking user-selected features into account. We gave
0.4 scores to all the features shown in Figure 6(a) and 0.6 scores to the feature selected
by a rectangle in Figure 6(b). The result is shown in Figure 6(c). From the result, we can
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(a) (b) (c)

Fig. 6. Experiment on a CT engine dataset: (a) Parent image 1; (b) Parent image 2 with a feature
selected with a rectangle; (c) Child image generated with V1 = 0.4 and V2 = 0.6

(a) (b) (c)

(d)

Fig. 7. Experiment on a CT carp dataset: (a) Parent image 1; (b) Parent image 2; (c) Parent image 3
with a user-selected feature indicated by a rectangle; (d) Child image obtained by fusing features
in (a) with 0.3 scores, features in (b) with 0.4 scores, and the user-selected feature in (c) with 0.3
scores

see that the user-selected feature is emphasized in the child image according to users’
preference. The result was generated within 48 seconds.

Our approach was not limited to fusing only two DVRIs. In the second experiment,
we fused the features in multiple DVRIs into a comprehensive one based on users’
preference. We carried out the experiment on a CT carp dataset (256× 256× 512). In
this experiment, we fused all the features shown in Figure 7(a) with 0.3 scores and
7(b) with 0.4 scores, and a feature (the swimming bladder) selected by a rectangle in
Figure 7(c) with 0.3 scores together into a comprehensive image. Figure 7(d) shows the
resulting image generated within 40 seconds.

We did the last experiment on an MRI head dataset (256×256×256) to demonstrate
that our approach is able to generate a fused image containing the user selected features
with clearer contours. The image shown in Figure 1(b) was created by a semi-automatic
TF design method [9]. However, the semi-automatic method could not easily obtain an
image revealing the inner structures of the head. Thus, we manually created an image
(see Figure 1(a)) with a simple TF capable of revealing the inner structures of the data.
But this image was not as good as what we expected, because the ear disappeared and
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the inner structures like the brain were not clear enough. To solve these problems, we
specified the features with curves in Figure 1(a) and with rectangles in 1(b). After that,
we fused these features with V1 = 0.6 and V2 = 0.4. In the fusing process, our approach
favored only those candidate images with clear contours within the specified regions.
Figure 1(c) shows the result generated within 47 seconds.

8 Conclusion and Future Work

In this paper, we present a novel visualization technique which fuses multiple user se-
lected features in distinct DVRIs into a comprehensive DVRI. We develop a general
framework for the fusing problem. We view the fusing problem as a parameter opti-
mization problem, which can then be solved using a genetic algorithm. To measure the
fitness of a candidate image, we propose an energy function based on image similarity
and user voting. Our approach is easy to use, especially for non-experts like physicians,
because it is much easier for them to extract one feature in the volume data than to
reveal multiple features simultaneously. In addition, our system allows users to directly
select and identify features in DVRIs, which is more convenient and accurate than in
volume slices. To fuse multiple features from several DVRIs, users usually do not need
to set any parameters other than the scores voted for the features.

There are many possible venues for future work. Our implementation was not highly
optimized for performance. The running time for each fusing on the tested volumetric
datasets was about 50 seconds. We plan to exploit GPU-accelerated GAs [18] and DVR
to greatly reduce the running time of our algorithm. We also plan to develop more
sophisticated image similarity metrics for complex transparent DVRIs and test them
with more real volume datasets. We assume that the viewpoint stays unchanged in the
fusing process. We will extend our system to fuse features in DVRIs rendered from
different viewpoints.
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Abstract. In Uncalibrated Photometric Stereo (UPS), the surface nor-
mals and light sources are determined up to a group of ambiguous Gen-
eralized Bas-Relief (GBR) transformations. However, it has been shown
by previous works to be rather troublesome to solve these ambiguities. In
this paper, a framework of Binocular Uncalibrated Photometric Stereo
(B-UPS) is given for accurate stereo matching for lambertian and non-
lambertian objects. It is also shown that the problem of 3D reconstruc-
tion with UPS is converted into that of stereo matching with B-UPS. By
this conversion, the intractable GBR transformations can be bypassed.
In B-UPS, the Orientation-Consistency cue (OC) [1] for distant-lighting
condition and Local-Orientation-Consistency (LOC) cue for non-distant
lighting condition are used together for stereo matching, where the com-
bination of both cues is made possible by a planar-area detection method
based on a pseudo-normal-map segmentation scheme. Excellent matching
and reconstruction results for objects with constant and spatial-varying
BRDF demonstrate the superiority of B-UPS.

1 Introduction

In Uncalibrated Photometric Stereo (UPS), the illumination condition is un-
known, where addressing the bilinear problem is inevitable. This involves how
to remove the inherent ambiguity existing in UPS. The ambiguity problem can be
described briefly as follows: Given the input data I = [I1I2...IM ], i.e., M images
under different illumination conditions, its factorization into the psudonormals
B∗ and the psudolights S∗ gives the true normals B and the true lights S up
to an arbitrary unknown invertible transformation matrix A, A ∈ GL(3) : B =
B∗A,S = A−1S∗ because I = BS = B∗AA−1S∗ = B∗S∗.

The ambiguity can be removed or reduced by knowing additional information
about lights or normals. Hayakawa [2] assumes that at least six light sources
are of equal (or known relatively) intensity, or that albedo is uniform (or known
up to a global scalar) for at least six normals at a curved surface, this reduce
the original ambiguity from the GL(3) group into the group of scaled orthog-
onal transformation A = λO(O ∈ O(3), λ �= 0). Integrability is another con-
straint that requires the normals recovered by photometric stereo to correspond
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to a continuous surface [3,4]. As shown by Belhumeur et al. [4], integrability
constraint can determine the shape and albedo up to a Generalized Bas-Relief
ambiguity (GBR). Importantly, the integrability and equal intensity constraints
combined reduce the ambiguity to binary convex/concave ambiguity. Recently,
the specular reflection component has also been utilized to reduce the original
ambiguities in UPS. Drbohlav [5] employs the constraint that all lights reflected
around corresponding specular normals must give the same vector (the viewing
direction). This assumption reduces the original ambiguity into a 2dof group
of transformations. The similar case appears in [6] where the same assumption
is taken and it is identified that two specular pixels can resolve the GBR am-
biguity. Georghiades [7] incorporates the Torrance-Sparrow reflectance model
to resolve the GBR ambiguity by solving an optimization problem. More re-
cently, the example-based photometric stereo approach [1] was proposed. In this
method, it is assumed that one or more example objects with similar materials
and known geometry are imaged under the same illumination conditions. This
approach is based on the orientation-consistency cue which states that, under
orthographic projection and distant lighting, two surface points with the same
surface normal and material exhibit the same radiance.

Fig. 1. Two sets of images of a static object taken by a parallel binocular stereo camera
with arbitrary lighting: IL and IR

In this paper, a framework of Binocular Uncalibrated Photometric Stereo is
given for accurate 3D object reconstruction. In this framework, a binocular stereo
camera is used in place of the single camera in the conventional UPS. Therefore,
two sets of images are obtained by capturing a stationary object with the fixed
stereo camera under arbitrary lighting conditions. One is from the left camera
and the other is from the right camera. Although either of them can be handled
with a specific UPS algorithm, how to utilize the information extracted from
the two sets of images, however, has not been investigated so far. The scheme
proposed in this paper is different from any of the previous UPS algorithms
because of the following merits: (1) Without the need of exemplar objects, B-UPS
can also utilized the orientation-consistency cue [1] by the introduction of the
stereo camera and the problem of 3D reconstruction with UPS is converted into
that of stereo matching with the orientation-consistency cue. By this conversion,
the intractable ambiguity transformations in conventional UPS can be bypassed.

(2) However, if there exist at least two surface points whose normals and
albedo are the same (e.g., a plane with uniform texture), the reconstruction
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will fail if solely utilizing the orientation-consistency cue. To overcome this
problem, a local-orientation-consistency cue is introduced. The local-orientation-
consistency cue is based on the non-distant lighting constraint which states that
when the light source is close to the target object, the orientation-consistency
cue is not valid for the whole target object surface but still works for the small
local areas of the object surface. Based on the orientation-consistency and local-
orientation-consistency cues, we can capture two groups of images, one is taken
under the distant lighting and the other corresponds to the non-distant lighting.
These two groups of images are called distant-light and non-distant-light images.

(3) A small planar-area detection algorithm is given based on the pseudo-
normal map segmentation. For those non-planar areas, all the images (distant-
lighting and non-distant-lighting images) are utilized based on the orientation-
consistency and local-orientation-consistency cues. For those planar areas, the
non-distant-lighting images are used based on local-orientation-consistency cue.

(4) For non-Lambertian reflectance, e.g., Torrance-Sparrow model, we will
show that when the camera is located far enough from the target object, the
orientation-consistency and local-orientation-consistency cues can also be well
approximated.

2 Binocular Uncalibrated Photometric Stereo

Let IL = {I1L, I2L, ..., IM
L } and IR = {I1R, I2R, ..., IM

R } be two sets of images of a
static object taken by a fixed binocular stereo cameras when the light source
(distant or non-distant light) changes arbitrarily M positions, see Fig.1. The
following two parts give a detailed description on how to utilize the orientation-
consistency cue in B-UPS for reconstruction and the problems in using this cue.

Refer to Fig.1, the red line L1 crosses the [I1L, I
2
L, ..., I

M
L ] at the same image lo-

cation, pL. Denote the values of these pixels at pL as [p1L, p
2
L, ..., p

M
L ]. Correspond-

ingly, the blue lineL2 intersects [I1R, I
2
R, ..., I

M
R ] at another location, pR. Denote the

values of these pixels at pR as [p1R, p
2
R, ..., p

M
R ]. With the assumption of lambertian

reflectance and distant lighting (point light source), if pL and pR correspond to the
same surface point of the target object, and there exists no noise in the two sets of
images, [p1L, p

2
L, ..., p

M
L ] is equal to [p1R, p

2
R, ..., p

M
R ]. Therefore, it is not difficult to

find the correspondence between the two views if the normals of any two surface
points of the target object are different. However, the orientation-consistency cue
is valid enough for 3D reconstruction with B-UPS only when the light is assumed
to be distant and the target object is lambertian and convex. However, it is un-
realistic to reconstruct the real-world object with only such a cue. Whether this
cue is enough if the lighting is distant and meantime the object is lambertian and
non-convex (e.g., part of the target object surface is a plane with uniform albedo)?
Whether this cue is enough if the lighting is non-distant and the object is lamber-
tian and convex? Whether this cue is enough if the lighting is non-distant and the
object is lambertian and non-convex? etc. The answers to these questions consti-
tute the majormotivation of this paper. We assume the stereo camera to be located
far enough from the target object.
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In this part, we give a thorough analysis on the orientation-consistency cue.
Specifically, we will analyze the situations where the orientation-consistency cue
will fail in reconstruction with B-UPS and where the orientation-consistency cue
can be used with the other cue for complete reconstruction.

Case 1: Lambertian Reflectance and Convex Object. In this case, when
the lighting is far enough that it can be regarded as a point light source, it
has been shown by previous analysis that the orientation-consistency cue is
enough for reconstruction with B-UPS. When the lighting is non-distant, two
circumstances need further consideration, i.e., whether the light can or cannot be
regarded as point light source. With reference to Fig.2, the light source s changes
arbitrarily M positions closely to the target object from s1 to sM . Under this
circumstance that the light source is small enough to be regarded as a point, as
in Fig.2.(a), no matter whether the albedo is uniform or not, it can shown that
the orientation-consistency is generally enough for reconstruction with B-UPS.
The reason lies as follows: Although there always exist two surface points with
normals n1, n2 and equal pixel values (if equal albedo) when the light source
moves to si, however, as long as the light source does not move in the direction
of blue line (the bisector of the angle formed by the two red line), their pixel
intensities are not equal generally under the other lighting positions (e.g., the
light moves to the position of sk). As for object with non-uniform albedo, the
possibility of their pixel intensities being equal at all the lighting positions are
even smaller.

(a) (b)

Fig. 2. The illustration of Case 1. In (a), the light source is regarded as point light
source whereas, in (b), it is non-point light source.

If the light source cannot be regarded as a point light (e.g., area light source),
as in Fig.2.(b), it can be regarded as a cluster of many point light sources.
The radiance of each surface point is determined by each of these point light
sources (the scaled linear summation of irradiance from each point light source).
Similar to the case in Fig.2.(a), as long as the light source does not move along
the blue line, the orientation-consistency is enough for reconstruction. Since
the lighting position is changed arbitrarily instead of along straight line, from
Fig.2 (a) and (b), we can generally conclude that the orientation-consistency
cue is enough for the case when the reflectance of the convex object surface is
lambertian.
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Case 2: Lambertian Reflectance and Non-Convex Object. When the
reflectance of the object surface is lambertian, but the object is non-convex (e.g.,
part of the object surface is planar, see Fig.3), the orientation-consistency cue
alone is not enough for reconstruction with B-UPS. In Fig.3 (a), two parts of the
surface are planar. Within each planar surface, if two individual surface points
have equal albedo, the orientation-consistency will always fail in reconstruction
under the distant lighting. However, an alternative , called local-orientation-
consistency cue, can be used to overcome this problem. This cue states that,
under the non-distant lighting conditions, the local areas of the planar parts of
the object surface are orientation-consistent, see Fig.3 (b). The local-orientation-
consistency cue indicates that when the planar surface is illuminated by non-
distant lighting, the irradiance of its surface points are different even for uniform
albedo case. In Fig.3 (b), the light can also be regarded as point and non-point
light source. Similar to Case 1, it is easy to check that the LOC is valid for both
types of light sources.

(a)(b)

Fig. 3. The illustration of Case 1. In (a), the light source is regarded as point light
source whereas, in (b), it is non-point light source.

Case 3: Non-Lambertian Reflectance and Convex Object. Torrance-
Sparrow model is a physically-based reflectance model that consists of both the
Lambertian part and, more importantly, a specular lobe of varying sharpness
and strength. This model was based on a physical model of the roughness of
surfaces and can capture the reflectance properties of a wide variety of non-
Lambertian surfaces. It is assumed that the non-Lambertian reflectance in this
paper is Torrance-Sparrow model. The pixel intensity derived from the Torrance-
Sparrow model when a single distant light source illuminates the object is given
by

ITS = αd‖s‖ cosθi + αs‖s‖QF (θ
′
, η)
exp(−ν2θ2α)

cos θr
(1)

where the description for these parameters in (1) is introduced in [7]. Fig.4 shows
the geometry of the Torrance-Sparrow model.

Since the camera we use is a parallel short-baseline stereo rig, with the as-
sumption that the camera is located far enough from the target object, it is
reasonable that the viewing directions of the two cameras are approximately
the same. That means that the pixel intensities of the same surface point from
the two-view images are approximately the same. With this constraint, we have
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Fig. 4. The geometry of T-S model: l is the direction of light source. v1 and v2 are
the viewing directions of the two cameras. n is the normal of the local surface patch.
h1 is the bisector of v1 and l, and h2 is the bisector of v2 and l.

the following two observations similar to Case 1. (1) If the object is convex, the
orientation-consistency alone is enough for reconstruction with B-UPS when the
light is distant from the target object. (2) If the object is convex, the orientation-
consistency alone is enough for reconstruction with B-UPS when the light is close
to the target object. It is not hard to verify this observation by looking into Fig.2
(a) and (b) with non-Lambertian (T-S) reflectance model. By revisiting Fig.4
and Eq.(2), it is easy to see that the BRDF of the same point is almost the same
when the camera is far enough. Therefore, the intensity of the pixels correspond-
ing to the same surface point is approximately equal.

Case 4: Non-Lambertian Reflectance and Non-Convex Object. Similar
to case 2, if the object is non-convex (e.g., with planar part), the orientation-
consistency alone is not enough for reconstruction with B-UPS with distant
lighting condition. However, the local-orientation-consistency cue can be incor-
porated into the B-UPS framework for complete reconstruction with close light-
ing condition.

3 Segmented Binocular Uncalibrated Photometric Stereo

A Segmented Binocular Uncalibrated Photometric Stereo (S-BUPS) algorithm
is proposed in this section to improve the matching performance of B-UPS.
Before the introduction of the S-BUPS, we give the motivation of this segmenta-
tion based B-UPS algorithm. When illuminated by distant light source, B-UPS
can easily find the correspondence of the convex part of the object surface be-
tween the two views, but it fails in planar parts. However, the local-orientation-
consistency cue with non-distant lighting can help B-UPS to find the correspon-
dence for matching those points in planar areas. Therefore, our motivation is
that whether we can find a method that can automatically detect those pla-
nar areas of the target object surface. Usually, it is a tough task to detect the
planar areas of a scene if we have no prior information. As we know, the nor-
mals of all the planar-surface points are in the same direction. This naturally
leads us to the uncalibrated photometric stereo because it is probably the most
common method for normal estimation. Although currently we do not know the
real-normals, however, we can easily compute the pseudo-normals by Singular
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Table 1. S − BUPS algorithm

Algorithm: S − BUPS
1. Input: two sets of stereo images: one is taken by stereo camera under distant
lighting and the other is taken under non-distant lighting.
2. Based on the orientation-consistency cue, use both the two sets of stereo images
for stereo matching
3. Using the distant-lighting stereo image set, calculate the pseudo-normal maps based
on SVD.
4. Based on the pseudo-maps, calculate the variation of the pseudo-normals within
a fixed-sized window area. Set a threshold for the variation to perform planar-area
detection to find those planar areas. Label the segmented areas corresponding to those
piece-wise planar surfaces.
5. Based on the local-orientation-consistency cue, use only non-distant lighting stereo
images for stereo matching for those marked points which are detected as planar
surfaces. For those areas which are detected as non-planar areas, keep the matching
result of step 2 unchanged
6. Output: Disparity (depth) images.

Value Decomposition (SVD). Because the real-normals can be obtained from the
pseudo-normals up to the same invertible transformation, those surface points
with equal real-normals must have equal pseudo-normals in the pseudo-normal
map. As long as we can find an small area within which each point has equal
pseudo-normal, this area can be regarded as a small planar surface, see the
detailed S-BUPS algorithm in Table 1.

4 Experiment Results

In our experiment, two objects are used as the target objects for our B-UPS
and S-BUPS. They are a plaster Angel (lambertian non-convex) and a porcelain
Fish (non-lambertian and non-convex). For each of them, we have captured 20
pairs of distant-lighting images and 15 pairs of non-distant-lighting images. Fig.5
shows two pairs of images for each object.

4.1 Pseudo-normal Segmentation for Planar-Area Detection

We use SVD decomposition to compute the rank-3 pseudo-normal images for
both the left- and right-view images for the two objects. The first two rows of
Fig. 6 show the obtained pseudo-normal maps which correspond to x, y, and z
components for the two objects. According to the notion presented in Section 3
that the true normal can be obtained from the pseudo-normal up to the same
transformation, we choose those small areas (a window with a size of 3×3 or
5×5) whose variation in pseudo-normal is smaller than a threshold as planar
areas. The last four rows of Fig. 6 show the planar-area detection results for the
scenes of Fish and Angel, where columns (a) to (c) are the results for the Fish
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(a)

(b)

Fig. 5. Fish and Angel stereo image sets: (a) Fish (non-lambertian and non-convex),
(b) Angel (lambertian non-convex)

(a) (b) (c) (d) (e) (f)

Fig. 6. Fish and Angel pseudo-normal images for the two views and planar-area de-
tection results

scene and columns (d) to (e) correspond to the Angel scene. The two middle
images in (a) show the variation maps for the left- and right-view when the
window size is 3×3. The two bottom images in (a) show the variation maps for
the left- and right-view when the window size is 5×5. The two middle images in
(b) show the detected planar-areas with the threshold of 0.0001 in the variation
of pseudo-normal for the two views (3×3) and the two bottom images in (b) show
the detected planar-areas with the threshold of 0.0001 in the variation of pseudo-
normal for the two views (5×5). The two middle images in (c) are the detected
planar-areas with the threshold of 0.0003 for the two views (3×3) and the two
bottom images in (c) are the detected planar-areas with the threshold of 0.0003
(5×5). The last four rows of Fig.6 (d) to (f) correspond to the detected results for
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(a) (b) (c) (d)

Fig. 7. Fish and Angel disparity images

Fig. 8. Reconstructed 3D models for Fish and Angel

the Angel scene with similar settings, i.e., the two middle rows corresponding to
the 3×3 window while the two bottom rows corresponding to the 5×5 window.

4.2 Stereo Matching with OC in S-BUPS

With OC and LOC cues, we show the stereo matching result for the two
object using images taken under distant lighting. The metrics used in stereo
matching are the Sum-of-Absolute-Differences (SAD) and window-based SAD
(wSAD). The SAD is defined as the sum of the absolute value of the difference
of [p1L, p

2
L, · · · , pM

L ] and [p1R, p
2
R, · · · , pM

R ] at the location i of left image sequence
and the location j of the right-camera sequence, i.e.,

Mc(i, j) = sum(abs([p1L, p
2
L, · · · , pM

L ]T − [p1R, p
2
R, · · · , pM

R ]T ))|i,j (2)

wSAD is to compute the sum of the absolute value of the differences of the (i,j)
pixel-pair and its neighboring pixel-pairs. In our experiment, the window size is
3x3 or 5x5 respectively for each object. The stereo matching results are shown in
Fig.7, where column (a) corresponding to the disparity images using SAD metric
and OC constraint, (b) corresponding to the results using 3x3 window-based
SAD and OC cue, (c) corresponding to the results using 5x5 wSAD and OC
cue, (d) corresponding to the results using 5x5 wSAD, OC and LOC cues. From
Fig.7, wSAD is generally better than SAD metric in computing the disparities.
The results with OC and LOC constraints are better than the ones with only
OC cue. Fig. 8 shows the reconstructed 3D Fish and Angel.
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5 Conclusions

A framework of B-UPS is given for accurate stereo matching for lambertian and
non-lambertian objects. By a planar-area detection based on a pseudo-normal-
map segmentation scheme, the OC for distant-lighting condition and LOC for
non-distant lighting condition are used together for stereo reconstruction.
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Abstract. This paper introduces a method that presents a number of characteris-
tics of threads in a discussion forum through graphical illustrations. This tech-
nique brings together visual components, such as dimension, color, intensity, 
and position to present multiple aspects of a thread including the amount of in-
formation, popularity, activities, comparative value, and tenure of the thread. 
This high visual abstraction of threads allows us to display a large number of 
threads showing overall properties of the contents on a limited screen space. 
These proposed visualization techniques will assist the user to filtering noisy 
threads effectively from threads having important features. We have conducted 
an experimental study, which compares the effectiveness of the developed vis-
ual interface to a traditional text-based interface. The experimental study has 
shown that the user’s search speed and accuracy in finding noticeable threads 
from a huge collection of threads has improved significantly by using the visual 
navigation tool.  

1   Introduction 

The internet has positioned itself as an indispensable tool for accessing massive col-
lections of digitized information. This important communication media allows people 
to construct many forms of online social spaces such as Usenet newsgroups, message 
boards, blogs, and virtual environments. Traditional bulletin boards, which organize 
large amounts of text-based information in the form of threaded messages, have been 
actively used for social interaction and information sharing on a wide range of sub-
jects. This valuable resource provides us with useful information, but this social space 
is commonly overloaded with contributions and innocuous information which im-
pedes users’ ability to find this information.  

Current text-based interfaces present a list of threads using primitive information 
such as title, number of messages, references, thread initiator, and last posting date. 
Only a small fraction of this list is displayed. This is neither effective when accessing 
a large compilation of resources, nor can the users evaluate the quality of contents 
without reading portions of the threads. In order to address such limitations, research-
ers have applied visualization techniques that show visual abstractions of features of 
threads [1, 2, 3]. Studies have shown that users’ reviewing speeds and insights into 
information are improved by exploiting their cognitive activities when exploring large 
information spaces [4, 5, 6, 7].  
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Several types of information filtering techniques have been explored to eliminate 
noisy threads from valuable threads by means of analyzing content or social interac-
tions within these social spaces. Content-based filters suggest major discussion 
themes or semantic structures of an archive of articles after analyzing its content [10, 
11]. Social filtering analyzes the behavioral aspects of authors over time to estimate 
influential sources of information by investigating the historical participations in 
social interactions [1, 3]. Perry and Donath proposed an anthropomorphic visualiza-
tion that illustrates historical information about the population of an online social 
space [17]. In this system, human shape icons symbolize activities and roles of par-
ticipants, emotional tone of messages, and the connections to other icons represent the 
social networks. A study analyzing the behavior of authors reported that the quality of 
a message is highly correlated with the frequency, longevity, and amount of informa-
tion its author has contributed to the Usenet Newsgroup [12]. Collaborative filtering, 
which is a type of content-based filtering, utilizes the opinions of other readers to 
predict the value of content [13]. The accuracy of this assumption is highly correlated 
with the number of evaluators and their preferences. Note that there are many  
more passive readers than active writers in online discussion forums. The estimated 
value of threads will be unreliable when there are not a large enough number of 
evaluators [14].  

Presenting a large volume of data on limited screen space is a challenging task 
without the assistance of visual abstraction. Previous studies have proposed visualiza-
tion techniques to present features of message boards compactly and informatively [1, 
2, 8]. The PeopleGarden project used a garden metaphor to visualize overall activities 
of users on a bulletin board [2]. In this activity portrait, individual authors are mapped 
to flowers and other attributes such as petals, color, and flower height represent the 
author’s profile (i.e. the level of activity, author’s tenure, and posting history). Fo-
rumReader has combined data visualization with automatic topic extraction tech-
niques to provide visual overviews of conversations [15, 16]. This method lists 
thumbnails symbolizing messages with indentation along the horizontal axis that 
represents structure of the conversation. The thumbnail color indicates the quality of 
the content posted by conversation participants. The system executes contents search-
ing by allowing the user to supply queries and then highlights all related messages in 
the forum. A recent paper introduces a technique for visualizing threads of message 
boards on mobile devices [8]. By using a treemap[9], this study renders threads in 
bulletin boards as colored rectangles on a reduced screen size. The size of a rectangle 
is proportional to the number of articles in a thread and the color represents the activ-
ity of the thread or relevancy of a thread to a given query. Their pilot study reported 
that applying visual interfaces to text-based message boards looks highly promising in 
assisting users’ search activities. 

These studies have suggested ways of presenting various aspects of discussion fo-
rums and their experimental results support the efficiency of exploiting visual inter-
faces to access larges amount of disparate information. Meanwhile, current  
approaches have focused on delivering only certain features associated with message 
boards. There are still many other valuable attributes for recognizing meaningful 
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contents from noise. The main goal of this research is the development of a visual 
interface that helps the user to recognize worthwhile messages from a large collection 
of threads. This paper introduces visualization techniques that transform multiple 
aspects of threads to a graphical illustration while addressing the drawbacks in exist-
ing systems. The developed system called Discussion Forum Visualizer (DifVis), 
achieves higher visual abstraction by employing multiple visual components and 
presenting those relations intuitively. This visual overview of message boards will 
assist the user in evaluating the value of threads and correlations of threads while 
decreasing access to the underlying content of threads. We have conducted experi-
ments to evaluate the effectiveness of DifVis as a visual interface for discussion  
forums.  

The remainder of this paper is structured as follows. Section 2 introduces concepts 
and algorithms for transforming multiple attributes of threads to a visual representa-
tion. Section 3 explains supporting tools equipped in DifVis. Section 4 discusses the 
experiments and performance results of the proposed method. In Section 5, we dis-
cuss issues identified via experiments and suggest future works to be studied further. 
Finally, the last section presents the conclusions of this work. 

2   Visualizing Procedures 

The proposed system executes two major processes to transform major features of 
threads into visual notations. Each thread in the forum is mapped to a square shape 
object whose dimension is defined relative to the magnitude of the associated thread 
and the temporal location of the thread in a message board. This method exploits 
color-coding to represent the popularity, activities, and tenure of a thread where the 
color intensity represents the significance of each component. The following subsec-
tions describe in detail the mechanism of visual transformations.  

2.1   Visualizing Magnitude of Threads 

As suggested in [12], the number of postings to a thread shows a close correlation to 
the quality of that thread. To display this significance graphical, the DifVis system 
maps the total number of words in the forum ( =

n
0j

W
jT ) to the total number of pixels 

available to the viewport (Vsize). The magnitude of thread i is proportional to the 
magnitude of the entire forum and is relative to Vsize.  This transformation can be 
expressed as  

⋅= =
n

0j
W
jsize

W
i

M
i TVTT /)( . (1) 

where TiM is the magnitude of thread i, and TiW is the total number of words in 
thread i.  This magnitude defines the size of a square object representing a thread. 
The system then considers the relationship between magnitude and time. Threads that 
have a substantial lifetime will overpower threads that have not had the opportunity to 
build up as much information. To lessen the effects of this the DifVis system then 
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applies a perspective projection where the temporal domain is mapped to the Z-axis. 
We define the position of Ti along the Z-axis as the distance from the front of Ti to 
the center of projection (Ti

Z). This projection has the advantage in that it places higher 
significance on current information than on information from the past. In other words, 
threads at the beginning of the temporal domain will be displayed with its normal 
magnitude whereas threads that do not have recent activity will have its magnitude 
diminished. Eq.(2) shows this computation, 

Z
i

M
i

D
i TTT /*α= . (2) 

where TiD is the dimension of thread i, and  is the distance from the center of pro-
jection to the projection plane. By moving the camera down the Z-axis the user can 
then control the time domain visible to them. 

2.2   Visualizing References to Threads 

The number of references to a thread is the number of readers who have viewed a 
thread’s content. This is a useful form of collaborative filtering which can be used to 
determine a given thread’s quality by proxy instead of by content examination. Col-
laborative filtering can be a practical mechanism for distinguishing noise from con-
structive information in the information space [13]. It allows users to rapidly distin-
guish and remove noisy threads present in the discussion forum, by giving a lower 
value to threads with a low number of references. 

In the DifVis system, we represent the number of references with the green color 
component (Eq.(3)).   

maxmaxmax *)//()/( ITTTTT LRL
i

R
i

CG
i =∈ . (3) 

where CG
iT
∈ is the intensity of green component associated of thread i, TiR is the 

total number of references to thread i, TiL is the lifetime of the thread, TRmax and 
TLmax refer to the thread with the maximum number of references and it’s associated 
lifetime, and Imax is the brightest intensity of green possible on the machine. To 
diminish the magnitude of the range, which can be distorted by special purpose 
threads, the square root was used to standardize the values [20]. Generally threads 
that have a long lifetime have a larger number of references. Dividing TiR by  
Ti

L ensures that the intensity distribution does not favor only threads with a long 
lifetime. 

2.3   Visualizing Thread Tenure 

The tenure of a thread allows users to estimate the integrity of a topic [12]. Subject 
matter which the population of users feel is insignificant will die quickly, whereas 
threads which can keep a population’s interest will live longer. Defining the tenure as 
simply the amount of time between the postings of the first message and the last mes-
sage can be deceptive. A thread which contains two messages posted at the ends of a 
given time period is not as interesting as a thread which has messages posted to it 
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Fig. 1. DifVis showing the visualized threads in a message board 

every day over the same period of time.  Therefore, to define a more meaningful rep-
resentation of tenure, the DifVis system uses the number of days on which there was 
at least one message posted. The red color component is used to symbolize the tenure. 
The intensity of the red component is defined as follows  

T
maxmax

T
i

CR
i TITT /)*(=∈ . (4) 

where CR
iT
∈ is the intensity of the red component of thread i, Imax is the maximum 

color intensity, TiT is the tenure of thread i,  and TmaxT is the longest tenure of a 
thread in the discussion forum. 

2.4   Visualizing Temporal Activities of Threads 

Subjects of discussion and their popularity vary over time depending on the popula-
tions interests. Threads which summon a higher level of interest will be accessed by a 
larger percentage of the population and will therefore have more postings made to it.  
A thread that has a more common subject matter, or has a topic that is not entirely 
time dependant, will in general show a relatively constant posting activity over its 
lifetime. Meanwhile, the population’s posting activities to a thread about a periodic 
issue will change considerable and abruptly. Especially the users’ posting activity to a 
newly initiated thread regarding a current issue will show greater fluctuation. 

In order to deliver the population’s posting patterns, the DifVis system uses the 
blue color component. Turbulence is, in the DifVis system, the measure of variability 
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of the number of postings per day to a thread, measured by the standard deviation ( ).  
Since users are generally more interested in the most recent topics, the DifVis systems 
weights  based on when the fluctuations have occurred.  

−= = =
n

0a
n

0a
aD
i

aD
i

2a
i

A
i

Tu
i TNORMTNORMTTT )(/))(*)(( . (5) 

where TiTu is the turbulence of thread i,  Tia is the number of postings on day a and 
NORM(Ti

aD) is the normalized length of time from today to a. The TiTu of each 
thread linearly maps to the intensity of the blue color component where the brightest 
intensity is assigned to the thread that has the greatest amount of turbulence as 

TuTu
i

CB
i TITT maxmax /)*(=∈ . (6) 

where CB
iT
∈ is the intensity of the blue component of thread i, Imax is the maximum 

color intensity, and TmaxTu is the greatest amount of turbulence in the forum. 
Figure 1 shows a visualization of a forum which contains approximately 200 

threads over a 90 day time domain. The threads are displayed in a radial layout and 
sorted based on the average significance of the four visual components. 

3   Supporting Tools 

The DifVis system provides interactive tools, keyword search, attribute filtering and 
sorting, and Focus+Context to increase the effectiveness of the system. Keyword 
searching can be utilized by users to highlight threads containing information re-
quested. Filtering removes noisy threads based upon user-defined thresholds for the 
attributes. Sorting allows the user to visually distinguish noise from value. Fo-
cus+Context enables users to drill down to more detail such as associated keywords.  
Thread keywords are defined using content analysis, suffix-stemming and stop-word 
removal, where the keyword’s size is scaled proportional to its frequency in the 
thread.  

4   Evaluation  

4.1   Experimental Environments  

The experiment was conducted in an isolated PC-Lab where each computer was 
equipped with a 2.8GHz Pentium 4 Intel CPU and 1.0 GB main memory. The time 
required for analyzing and retrieving a huge amount of threads can be a variance in 
this experiment. For a more accurate comparison between the DifVis and traditional 
systems, properties of threads’ are pre-analyzed and the metadata is stored. This al-
lows both applications to generate output with minimal lead-in time. Twenty-two 
experimental participants have been recruited from the authors’ university. They had 
no difficulties using the computers, no problems in color perception, and the majority 
of the participants have experience using some type of online social environment.  
Three distinct data sets were used covering mutually exclusive topics from separate 
message boards and having variations in the attributes’ distributional qualities.  
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4.2   Experimental Procedures 

Using two randomly selected experimental data sets, each participant classified the 
significance of the threads using the DifVis system for one and the traditional text-
based system (TextB) for the other. Although the DifVis provides various visual 
navigation tools, for an accurate evaluation of the proposed approach these tools were 
disabled. Based on their judgments, participants were asked to identify as many 
threads as possible that possess significant characteristics within a five-minute period.  
For each application when the user clicks on a thread the rank of each visual attribute 
defined above is displayed. 

Although both systems were intuitive, an orientation of both systems was given to 
the participants before starting the experiment. This introduction explained the basic 
functionalities that are provided by both systems along with the significance of the 
visual abstractions. Participants were given enough time to be familiar with both sys-
tems and fully comprehend their assigned tasks. 

4.3   Experimental Results 

The table below presents experimental results comparing participants’ speed and 
accuracy in categorizing the attributes utilizing the two systems. The speed of iden-
tifying significant threads was evaluated by measuring the total number of catego-
rized threads within the experimental time period listed in the second column of 
table 1. The accuracy of identifying threads having outstanding attributes was 
measured in the following manner. Let us assume a participant marked an attribute 
of a thread as significant. When the actual percentile value of that attribute is 
ranked within the top % of the data set, this judgment is counted as a correct iden-
tification. Otherwise, the thread is considered incorrectly categorized. The second 
and third column of the table below show the accuracy of all judged attributes with 
two different ’s 5 and 10.  

Table 1. Comparative experimental results showing the swiftness and accuracy of recognizing 
noticable threads between the DifVis and TextB interfaces 

 Judging speed  
(Mean + SD)  

Accuracy  
(Within top 5%) 

Accuracy  
(Within top 10%) 

DifVis  51.6 ± 12.7 threads 70.7 % 84.3 % 
TextB 37.4 ± 12.0 threads 35.4 % 57.1 % 

Figure 2.a shows the results of judging speed where the X-axis represents the indi-
vidual participant and the Y-axis denotes the total number of categorized threads. The 
solid line stands for the mean and dashed lines represent the standard deviation. Fig-
ure 2.b shows the accuracy of all judged characteristics and accuracy for individual 
attributes. The X-axis shows the four attributes associated with each thread and the Y-
axis is the number of attributes that are categorized correctly and incorrectly.  

 



300 B. Kim, P. Johnson, and J. Baker 

             

Fig. 2. (a) The judging speed of individual participant. (b) Accuracy of categorizing four at-
tributes of judged threads where Tot is the total number of attributes judged, D is Dimension, 
Te is Tenure, R is References, Tu is Turbulence, -C is correct, and -I is incorrectly judged. 

The experimental outcomes from these testing data sets were as expected. Partici-
pants who used the DifVis system categorized approximately 1.38 times as many 
threads as those who used the TextB system. The accuracy of identifying important 
threads ranked in the top 5% improved significantly, about 2 times when they used 
the visual interface.  

5   Discussion and Future Works 

We conducted a post experiment survey to collect the participants’ opinions regarding 
the performance of the developed system as a visual interface. The questionnaire 
asked the participants’ views concerning the DifVis system in comparison with the 
TextB system for distinguishing threads with remarkable attributes. The users’ feed-
back about the DifVis as a visual navigation tool was positive. Table 2 shows the 
survey results for selected questions. 

The DifVis system uses three primary color red, green, and blue to encode the 
value of attributes. Each color component varies within a predefined intensity range. 
The sensitivity of the eye to the same intensity of primary colors is different. The 
Spectral-response function suggests that the human eye is most sensitive to greenish-
yellow light [18]. In order to reflect the importance of collaborative filtering sug-
gested in previous studies [13, 16], the Difvis system employed green to represent the 
degree of references to a thread. As shown in Fig. 2, experimental participants judged 
more threads where they felt the reference was a significant attribute than threads 
where they felt the turbulence was significant attributes, but the actual significance 
was overestimated more often for references. It is a challenging task to ensure that 
attributes with unequal significance are assigned to colors of appropriate spectral 
intensity. In the future, further research is expected to use color-coding while consid-
ering the comparative importance among attributes. 
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Table 2. Summarized results from post experiment survey 

Items 
Means  

(Out of 5) 
Overall satisfaction using DifVis over traditional interface 4.2 

Improved ability to recognize the major subjects of discussions 4.3 
Helpfulness to predict the value of threads 4.4 

Easiness of finding threads having larger information 4.4 
Easiness of finding threads having active users’ participation 4.7 

Ease of finding threads having longer lifetime with recent contents 4.5 
Ease of finding threads having fluctuations in users’ participation 4.3 

Preference of using visual interface in the future 4.3 
 

One of the major difficulties in executing a systematic experiment is the lack of a 
gold standard to be compared to for the evaluation of the system. The users’ judgment 
about the importance of attributes was compared to the relative order of values of 
attributes. The rank of the attribute’s value can not properly represent the significance 
of threads. A high value for an attribute in one forum may be a low value for that 
same attribute in another forum. Although we executed experiments with apparent 
answers, the performance of DifVis can be assessed more objectively when we con-
duct experimental studies with a standardized data set similar to test collections pro-
vided by National Institute of Standards and Technology [19].  

6   Conclusions 

This paper introduces a visual interface for presenting multiple aspects of threads in 
message boards through a graphical illustration. By integrating color-coding and other 
visual components to encode major features of threads, our system achieves higher 
visual abstraction while enhancing deficiencies of existing methods. The visual repre-
sentation of threads uses the limited screen space efficiently. It helps the user to pre-
dict the quality of information in the thread and to understand the correlations among 
threads. Eventually it will expand the user’s ability to find desired information from a 
workspace both vast and noisy.  The experimental study has supported the feasibility 
of using this proposed visualization technique for exploring message boards. The post 
experiment survey shows that the visual navigation tool, DifVis, is well-liked by 
users. This study also suggests the future task that will be investigated further to make 
the DifVis system a practical application. 
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Abstract. The increasing use of active vision systems makes it necessary to 
determine the relative geometry between the cameras in the system at arbitrary 
time. There has been some work on on-line estimation of the relative camera 
geometry parameters. However, many of them are based on epipolar geometry, 
motion correspondences, or even presence of some calibration reference objects 
in the scene. In this paper, we describe a method that allows the relative 
geometry of two cameras be estimated without assuming that their visual fields 
picture the same object, nor that motion correspondences in each camera are 
fully estimated beforehand.  The method starts from monocular normal flows in 
the two cameras and estimates the relative geometry parameters without 
evening accessing the full optical flows.  Experimental results are shown to 
illustrate the performance of the method. 

1   Introduction 

Active camera systems, often called “head-eye” systems, typically consist of a pair of 
cameras whose motions can be individually controlled. The active camera system 
platform could be more effective in achieving 3D reconstruction when stereo vision 
and dynamic vision are integrated. However, the relative geometry between the 
cameras could be varying should each camera have its own degree of freedom, and 
needs be estimated in an on-line manner. There have been much work on online 
estimation of the intrinsic parameters (the focal length and principal point) [[2] [12] 
[13]], which are parameters related to the inherent settings of the cameras. In this 
work we only focus on the on-line estimation of the camera-to-camera geometry, and 
make the assumption that the intrinsic parameters remain unchanged or are available 
by the application of the above methods.   

There has been some work on estimating the binocular geometry in on-line 
manner. However, many of them require certain specific objects appearing in the 
scene. There are other techniques [4] [8] [13] that do not need the presence of 
calibration reference object, but they require the accessibility of either cross-camera 
feature correspondences [1] [9] [11] [13] or motion correspondences [3]. While cross-
camera correspondences require that the cameras have much in common in what they 
picture, estimating motion correspondences (i.e., full optical flow) from the directly 
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observable normal flow is an ill-posed task due to the aperture problem and requires 
the introduction of heuristics like smoothness which could lead to errors. 

We see the binocular geometry estimation problem in the following light.  If 
binocular geometry could be deduced from full optical flows, and full optical flows 
from normal, there likely exists a mechanism that allows the binocular geometry be 
estimated from the normal flows directly.  In this paper, we propose a method to 
estimate the binocular geometry from the monocular normal optical flows by 
borrowing the concept of motion field introduced in [5][6]. Our work aims at arriving 
at a solution of recovering the relative geometry of two camera heads without 
assuming the presence of calibration objects or specific shapes or features in the 
imaged scene, allowing the possibility of on-line application.  Furthermore, no 
restriction is to be imposed on the viewing directions of the respective cameras, 
allowing the relative geometry be estimated despite possibly no overlap in the visual 
fields of the respective cameras.   

This paper is structured as follows. Section 2 gives a brief review of the field 
models we need for the image domain. In section 3 we describe our method on 
binocular geometry estimation. Experimental results will be shown in section 4. 
Finally in section 5, we give a conclusion and put forward the future work.  

2   Vector Fields Induced by Arbitrary Axis for Image Domain 

Here we review briefly the motion field models for the image domain, which were 
introduced by Fermüller and Aloimonos [5] [6].   

2.1  Copoint and Coaxis Vector Field 

Suppose the normalized planar image surface is positioned perpendicular to the 
optical axis. We choose an axis s= [A B C] passing through the image plane with the 
intersection point S=[A/C B/C]. The conic sections on the image plane are generated 
by a family of cones with respect to axis s. The s-copoint vector field is defined as the 
field with vectors perpendicular to the tangent of conic sections at each image point: 

[Mx, My]=[(-A(y2+f2)+Bxy+Cxf),(Axy-B(x2+f2)+Cyf)]                     (2.1) 

where [Mx, My] is the vector assigned at image point[x, y] in s-copoint vector field 
for a given axis s= [A B C], and f is the focal length of the camera, as shown in 
Fig.1 (a). If the camera rotates about the direction of s-axis, then the full optical 
flows in the image domain due to this rotation will be just orthogonal to the s-
copoint vector field. 

Similarly, we take an arbitrary axis p=[A B C] passing the image plane at the point 
P=[A/C B/C], and then draw a series of lines starting from point P. The p-coaxis 
vector field is defined as the field with vectors perpendicular to the lines passing 
through point P, as shown in Fig. 1 (b).  
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where [Mx, My] is the vector assigned at image point[x, y] in p-coaxis vector field for a 
given axis p=[A B C]. If the camera translates in the direction of p-axis, full optical 
flows in the image domain will then be orthogonal to the p-coaxis vector field.  

 
                                         
 
 
 
 
 
 

(a)              (b) 

Fig. 1. (a) s-copoint vector field (b) p-coaxis vector field 

Actually, s-copoint vector field and p-coaxis vector field are equivalent and can be 
generated by an arbitrarily given axis. In the following sections we will only discuss 
the camera motion under the s-copoint vector field for an example. 

2.2  Field Models for Camera Motion Estimation 

Here we review how the above vector fields induced by arbitrary s-axes could aid in 
recovering the camera motion from video data.  The idea is adopted from what is 
presented in [5][6]. 

Suppose full optical flows are computed at each image point when the camera 
undergoes a pure translation. For a given s-axis, an s-copoint vector field is generated 
by assigning a specific vector to each image point according to equation (2.1). Then 
we examine the dot product of the full optical flow and the vector defined by the s-
copoint vector field at each image point, and label the image point a ‘+’ if its dot 
product is positive and vice versa. Finally a pattern with the‘+’ and ‘-’ labels in the 
image domain is generated. According to the ‘+’ and ‘-’ labels, the image plane will 
be divided into two regions (Fig.2 (a)): one is called positive region with all the dot 
products positive; and the other is the negative region with all negative dot products. 
Also in this pattern there exists a second order curve, called zero-boundary, between 
the positive and negative regions, on which the image points have optical flows just 
orthogonal to the vectors in the vector field. Moreover, this second order curve is a 
function of the focus of expansion (FOE), which exactly describes the translational 
direction of the camera.  

Fig.2 (b) illustrates the positive-negative pattern generated in the same way 
described above, when the camera takes only pure rotation. Let’s describe the rotation 
using a vector =[   ], where the direction of  is the axis that the camera rotates 
about, and the length of  is the rotational angle. Different from the pattern caused by 
camera’s pure translation, the zero-boundary on the pattern (Fig.2 (b)) is now a 
straight line which is only determined by the ratios /  and / . 

If the motion of the camera includes both translation and rotation, according to 
Fermüller and Aloimonos’ theory, the positive-negative pattern can be simply 
obtained by the addition of the pure translational pattern (Fig.2 (a)) and the pure 

S=[A/C   B/C]   P=[A/C  B/C ] 
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rotational pattern (Fig.2 (b)), if following the rule: Positive+Positive=Positive; 
Negative+Negative =Negative; Positve+ Negative =Don’t know (depends on the 
structure of the scene), as shown in Fig. 2 (c). 

 
 
 
 
 
 

    
 

(a)                        (b)                            (c) 

Fig. 2. s-copoint positive-negative patterns. (a) Camera undergoes pure translations. (b) Cam-
era undergoes pure rotations. (c) Camera takes an arbitrary motion.  

However, only normal flows can be computed directly from the image sequences. 
Fortunately, the positive-negative pattern still can be generated by only using the 
normal flows in specific directions for a given s-axis according to Fermüller and 
Aloimonos’ theory [5] [6].  

Since the zero-boundaries in the positive-negative patterns carry the information of 
the camera motion, it is possible to estimate the binocular geometry by locating these 
zero-boundaries when the stereo-rig as a whole undergoes a motion, without 
recovering the explicit ego-motion of each camera. Therefore, estimating the 
binocular geometry can be realized by only analyzing monocular normal flows.  

3   Stereo Geometry Estimation 

In this section, we will present the novel method on estimating binocular geometry 
using monocular normal flows. 

In Fig. 3, we suppose the stereo rig moves as a whole to let stereo geometry  
(Rx, tx,) remain the same during the motion. (RA, tA,) and (RB,tB) represent the 
motions of camera A and camera B respectively.  

 
 

Fig. 3. Stereo geometry estimation of active binocular head 

We use a 4×4 matrix X to represent the stereo geometry. Suppose the motions of 
cameras are A and B, then we have AX=XB which could be broken into: 

X  : Rx, tx 

X  : Rx, tx 

B : RB, tB A  : RA, tA 

Negative Positive Don’t know 
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BxxA RRRR =   (or  BxA R=  in vector form)                  (3.1) 

ABxxA ttRtIR −=− )(                                               (3.2) 

where Rx, RA, RB are 3×3 rotational components in X, A, B, and tx, tA, tB are the 
translational vectors, A and B are the rotational components of camera A and B 
respectively in the vector form.  

Obviously the stereo geometry can be calculated by equation (3.1) and (3.2) if all 
A, B and tA, tB are available. However, in our novel algorithm only partial 

information of motions achieved by locating zero-boundaries on the positive-negative 
patterns (Fig.2) is sufficient to calculate stereo geometry. Even so, locating zero-
boundaries precisely is itself a great challenge. Firstly of all, for an arbitrarily given s-
axis, only a few image points, where their normal flows are exactly along the 
direction of the s-copoint vector field, would be valid candidates and taken into 
account to generate the positive-negative pattern. Therefore, the positive-negative 
pattern actually has sparse positive and negative candidates, which causes the great 
difficulty in precisely locating the zero- boundaries. Furthermore, in Fig.2(c), there 
are two “Don’t know” regions appearing in the pattern when camera takes an arbitrary 
motion. These regions result in more uncertainties in estimating zero-boundaries. 

Aiming at the above two major problems, we propose our strategies. Firstly, we 
utilize more s-axes to make use of as many normal flows in the image as possible to 
improve the precision of the estimation. Secondly, some specific motions are applied 
to simplify the analysis on the patterns.  

3.1   Estimation of Rx  

Estimation of Rx is the first step in calculating the stereo geometry. In this step, we let 
the stereo rig undergo the specific motion, pure translation, so as to reduce the 
complexity on locating the zero-boundaries in the positive-negative patterns. 

When the stereo rig only has pure translations as a rigid body, motions of both 
cameras are pure translations.  From (3.2) we have: 

BxA tRt ~~ =                                                            (3.3) 

where 
At

~  and 
Bt

~  are both unit vectors representing the FOEs of the two cameras. 

Equation (3.3) only provides two linear equations for Rx. Hence, at least two 
translational motions in different directions possibly are the minimum to achieve a 
unique solution of Rx [10]. The rotational component of the stereo geometry is: 

Τ

Τ

= t

tt

tx V

VU

UR

)det(00

010

001                                            (3.4)                 

where Kt =Ut St Vt by SVD (singular value decomposition), and
=

=
N

BAt
1

T~~

α
ttK . N 

represents the number of pure translations in different directions. Equation (3.4) has a 
unique solution if and only if rank (Kt)>1. We conclude that the unique solution of Rx 
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always exits, if at least two pure translations of the stereo rig in different directions 
are available, that is, min (N) =2. 

Now that the motion of the stereo rig only includes pure translation when capturing 
images, assume we adopt the s-copoint vector field to generate patterns from the 
normal flows calculated by the image sequences, and then both cameras will have the 
positive-negative patterns (like Fig. 2 (a)) containing only the positive and the 
negative regions divided by a second order curve, without including the “Don’t 
know” regions. Obviously locating precise zero-boundaries on these positive-negative 
patterns is not a challenging task, as long as enough s-axes are used. 

3.2   Estimation of tx Up to Scale 

Similar to the previous step of estimating the rational component Rx, we apply another 
kind of specific motion to simplify the positive-negative pattern analysis. We choose 
pure rotations this time to the stereo rig to compute the baseline tx of stereo geometry. 
However, only tx up to scale is able to obtained, since we do not have any information 
on the 3D world beforehand. 

Suppose the stereo rig has a pure rotation about an axis passing through the optical 
center of one camera, say optical center of camera A, then camera A only undergoes a 
pure rotation; while for camera B, it rotates about an axis passing through the optical 
center of camera A, and at the same time translates along the direction tangent to the 
baseline. In this case equation (3.2) is rewritten as: 

BxxA tRtIR =− )(                                                 (3.5) 

where RA is the rotation of camera A, vector tB
 is the translation of camera B, and 

rank (RA- I)=2, since it has a nonzero nullspace. We then rewrite (3.5) to a 
homogeneous system: 

0tA =x

~                                                          (3.6) 

where A , calculated by Rx, RA and tB, is a 2×3 matrix with rank( A )=1, and tx is the 
normalized vector which represents the direction of the baseline. Therefore, at least 
two rotations are the minimum to compute a unique tx. We then apply SVD to the 
homogeneous linear system of equations (3.6) to estimate the optimal tx up to scale. 

Camera A, including only pure rotation, has the positive-negative pattern generated 
from its normal flows by a given s-axis with the characteristic as shown in Fig. 2 (b), 
where a straight line divides the image domain into positive and negative regions, 
without having the “Don’t know” area. Thus, locating the straight line on such pattern 
is not a difficult task. We use vector A=[ A A A] to represent the rotation of camera 
A. The ratios A / A and A / A will be obtained during locating this straight line (zero-
boundary). The two ratios cannot describe full rotation A, so the third component A 
have to be estimated by using the method named “detranslation” presented in [6].   

For camera B, the positive-negative pattern generated from normal flows is much 
more complex than the pattern of camera A, because of the two “Don’t know” regions 
within the pattern (Fig.2(c)). However, the rotational component of camera B B can 
be computed directly from equation (3.1), since Rx is already calculated in the 
previous step and available now. Assume we apply s-copoint vector field, then the 
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straight line of the two zero-boundaries on the positive-negative pattern is known to 
us if B is determined, consequently the other second order zero-boundary defined by 
FOE is easy to locate, even though there are two “Don’t know” regions. The direction 
of the translational component tB is determined during locating the second order 
boundary. tx (up to scale) can be calculated by far from (3.6), since RA and  tB  are 
both computed from the positive-negative patterns. 

4   Experimental Results 

We have implemented the proposed method and tested it with both synthetic and real 
image data to investigate its performance. The whole algorithm includes two steps. 
Firstly, the stereo cameras undergo pure translations twice as a whole, and each time 
they moves in different directions. The rotational component Rx is computed in the 
first step. After that, we rotate the stereo rig twice according to two different axes 
passing through the optical center of one of the cameras to estimate tx up to scale. 

4.1  Experimental Results on Synthetic Data 

The experiments on synthetic data aim to investigate the accuracy and precision of the 
algorithm. We firstly applied synthetic image data to evaluate the accuracy of the 
algorithm. Suppose the image resolution is 101×101.  

Estimation of Rx Using Synthetic Image Data. After calculating the synthetic optical 
flows at each image point according to the given two translational velocities of the 
camera motions, we assigned each image point an arbitrary gradient direction to 
generate the normal flows for each camera. In the experiment on synthetic data, these 
normal flows are the inputs of our system to estimate the binocular geometry. 

Given the first arbitrary s-axis, for instance s=[1 0 0], we got the first pattern as 
shown in Fig 4(a). Initially FOE is supposed possibly located in anywhere within the 
image frame. After investigating the pseudo FOEs 0.25 by 0.25 pixel, more than 1000 
curves determined by these pseudo FOEs could divide the pattern into two regions 
well. Then we applied a second s-axis to examine whether these 1000 pseudo FOEs 
that had good performance in the first pattern would still perform well in the new 
pattern. We discarded wrong FOEs that had bad performance this time, and kept 
others to the next round of new s-axis, until all the possible FOEs located within a 
small area. The number of possible FOEs dramatically decreased when more s-axes 
are utilized. Then the center of all possible FOEs’ was considered as the input to 
compute Rx.  Table 1 shows the FOEs estimated by locating the zero-boundaries.  

Table 1. Estimation of FOEs. CA: Camera A; CB: Camera B; M1: Motion 1; M2: Motion 2. 

 Ground Truth (Unit: pixel) Experiment (Unit: pixel) 
CA,M1 [29.534     2.465] [30.000    2.950] 
CB,M1 [-5.000    30.000] [-5.000    29.775] 
CA,M2 [30.972     9.198] [32.000    9.475] 

FOE 

CB,M2 [-3.000    27.000] [-3.000    27.375] 
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Fig.  shows the zero-boundaries determined by the estimated FOEs exactly 
divided the image domain into two regions according. to the positive candidates and 
negative candidates.  

  

       
 (a)                     (b)                     (c)                   (d)     

Fig. 4. The zero-boundaries (s=[1 0 0]) are estimated precisely. Gray dots=negative candidates; 
black dots = positive candidates. (a) Camera B, Motion 1; (b) Camera A, Motion 1; (c) Camera 
B, Motion 2; (d) Camera A, Motion 2.   

Then the rotational component x of the stereo geometry was estimated from the 
FOEs by SVD, shown in the Tab.2. 

Table 2. Estimation the rotational component of the stereo geometry. Error: 0.7964o in dir-
ection, 1.2621%in length. 

 x 
Ground Truth   [0.1000     0.1000     -0.2000]T 
Experiment     [0.0974     0.2041    -0.2029] T 

Estimation of tx up to Scale Using Synthetic Image Data. After the step of 
estimating Rx ( x), we assumed the stereo rig rotated about an axis passing the optical 
center of camera A at two different given velocities. Similarly, the normal flows were 
then generated. We also used s-axes to locate the zero boundaries on the positive-
negative patters to estimate rotations of camera A A combining the algorithm named 
‘detranslation’[6]. And then FOE of camera B tB was easily obtained from the 
patterns. The experimental result is shown in Table 3. 

Table 3. Estimation of FOE of Camera B and rotation of Camera A. CA: Camera A; CB: 
Camera B; M1: Motion 1; M2: Motion 2. 

 Ground Truth Experiment 
CA,M1 [0.8000 0.8000 8.0000] ×10-4 [0.8023    0.8023    8.0237] ×10-4 A 
CA,M2 [0.6000 0.4000 2.0000] ×10-4 [0.5920    0.3947    1.9733] ×10-4 
CB,M1 [0.0910    0.5495      0.0459] tb /| tb |: [1.9645      -11.2941] tB 
CB,M2 [0.0216    0.1352      0.0206] tb /| tb |: [1.5864       -6.1978] 

Finally we obtained tx up to scale by using equation (3.6), as shown in Table 4.   
In the experiment using synthetic data, we first assumed a motion of the cameras, 

and then calculated the theoretical full optical flows at each pixel. The normal flows 
were computed by allocating each pixel a random gradient direction. Therefore, the 
synthetic normal flow is consistent with its definition. Moreover, the synthetic normal 
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Table 4. Estimation of tx up to scale. The result estimated is a unit vector describing the 
direction of the baseline. We compared the angle between the ground truth and the result from 
the synthetic experiment, and got the angle is 2.0907o.  

 tx 
Ground Truth [-700    20    80]T 
Experiment [  -0.9883     0.0428     0.1466] T 

 

flows are more general than the ones calculated from the image sequences, because 
there is no any assumption about the characteristics of the captured scene. Hence, the 
precision of the experimental results is able to prove the accuracy of our algorithm. 

4.2   Experimental Results on Real Image Data 

We also tested the proposed method using real image data. However, we only 
recovered Rx ( x) by setting the stereo cameras on a translational stage, due to the 
limitation of the equipment. 

The image sequences were captured by Dragonfly CCD cameras with resolution 
640×480. Some examples are shown in Fig. 5. We used the algorithm described in [7] 
to estimate the intrinsic parameters of the two cameras and smoothed input images by 
using Gaussian Filter with n=5 and =1.4 to eliminate the Gaussian noise.  

We examined pseudo FOEs pixel by pixel within the image frames. At most 145 s-
axes were applied to shrink the location of possible FOEs. The zero-boundaries 
determined by the estimated FOEs and specific s-axes are shown in Fig.5. 

Fig. 5. The zero-boundaries determined by estimated FOEs. (a) Camera A, Motion 1, s=[0 0 
1]; (b) Camera A, Motion 2, s=[1 0 0]; (c) Camera B, Motion 1, s=[0 0 1]; (d) Camera B, 
Motion 2, s=[0 0 1]. 

There are no ground truths of the extrinsic parameters of the stereo rig for us to 
compare our experimental result with, thus we have to compare a second individual 
experimental result to prove the consistency of the algorithm, so as to examine the 
accuracy of the results. The frame rate of the image sequences in the 2nd experiment 
is 1.5 times of the first experiment. The stereo geometry remained during the two 
experiments. Results of x in two individual experiments are shown in Table 5.  

Table 5. Estimation the rotational component x of the stereo geometry. We compared the two 
rotational vectors and calculate the error is10.8789%in length and 1.4663o in direction. 

Experiment 1 Experiment 2 
[0.0213    0.1012    0.0535]T [0.0238    0.1106    0.0622] T 
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5   Conclusion and Future Work 

We have presented a new method on estimating binocular geometry directly from 
monocular normal flows, which requires no cross-camera correspondences nor full 
optical flow be accessible. Our future work is to relax the requirement of specific 
stereo-rig motions in the method.   
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Abstract. This paper presents a singular value decomposition (SVD)-based 
illumination compensation method in video having varying scene illumination. 
In video that does not contain scene changes, the color distributions in the RGB 
space are different frame to frame, mainly due to varying illumination. In this 
paper, the color distribution of a scene is modeled as an ellipsoid using SVD 
and scene illumination of successive frames is preserved by the linear 
transformation in the RGB space. The effect of illumination change is 
effectively removed by the linear transformation and the similarity measures 
such as the normalized cross correlation, the sum of absolute differences, and 
the sum of squared differences of two successive image frames, are preserved, 
which illustrates the effectiveness of the proposed algorithm. Simulation results 
with several synthetic and real test sequences show the robustness of the 
proposed method to illumination changes compared with the conventional 
methods. 

1   Introduction 

Video processing algorithms, such as motion estimation and video coding, make use 
of spatial and temporal similarities [1]. In practice, the similarity between successive 
frames decreases by many factors: for example, object and/or camera motion, scene 
change, and illumination change between successive frames. In video containing no 
scene changes, the abrupt decrease of the similarity value is predominantly due to the 
scene illumination change. Of course, object and/or camera motion is also to be 
considered when scene illumination is compensated in video. When the input 
sequence contains (unknown) scene illumination changes between successive image 
frames, the performance of video processing algorithms cannot be guaranteed for a 
variety of video sequences with different statistical properties. Wei and Li proposed a 
block-matching with illumination variations (BMIV) method to remove illumination 
variations for motion compensation in color video [2]. Gomez-Moreno et al. 
presented a method that extracts and recovers illumination using wavelet transform 
for image coding [3]. 

The problem of obtaining constant color under different imaging condition is 
called color constancy and a large number of researches have been presented to solve 
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the problem [4][5]. Forsyth [6] had proposed a gamut mapping algorithm, which was 
further improved by Finlayson and Hordley [7]. Forsyth showed that the shape of the 
color in the RGB space is a convex hull and that two images with the same surface 
reflectance but different shape of the gamut illustrate that lighting environment of two 
images is different. Linear mapping to the reference convex hull preserves lighting 
environment, in which linear mapping is obtained from the volume of a convex hull 
under the uniform and natural light. Gray world (GW) assumed that the average value 
of the RGB value of a scene should be gray value. This assumption is valid in general 
since any given real world scene has lots of different color variations [4][5]. Land and 
McCann proposed a retinex method [8] and Funt et al. implemented it in MATLABTM 
[9]. Finlayson et al. showed that histogram equalization (HE) of each channel of a 
color image renders invariant color under imaging conditions (imaging device and 
scene illumination) [10]. 

In this paper, a new illumination compensation algorithm is presented, in which the 
color distribution of a scene in video is analyzed in the RGB color space. A scene 
illumination change is described by the color distribution change of a scene, in which 
a color distribution of a scene is modeled by an ellipsoid in the RGB color space. The 
illumination compensation matrix explaining the relationship between two ellipsoids 
is obtained using singular value decomposition (SVD), in which two ellipsoids 
represent color distributions of two successive frames in the RGB color space. This 
matrix removes the effect of illumination change between two successive frames and 
preserves similarity measures such as the normalized cross correlation (NCC), sum of 
absolute differences (SAD), and the sum of squared differences (SSD), compared 
with conventional methods (GW, Retinex, and HE). 

2   Illumination Compensation in Video 

2.1   Color Distribution Model 

Gamut is a region showing defined color values in some color space and its shape in 
the RGB color space is represented by a convex hull [6]. In [6], gamut represents a 
scene illumination and gamut mapping converts an arbitrary illumination of a scene 
into the scene illumination under the specified illumination, e.g., daylight. Gamut 
mapping that makes use of the temporal redundancy is not suitable for a video 
because this approach considers natural light and most of surfaces are assumed to be 
Lambertian. Artificial and non-uniform lights having a very narrow wavelength 
characteristic can suddenly change illuminations, which produces a more significant 
change in the color distribution than the gamut change does (see Fig. 3). The color 
distribution in the color space gives some explanation of the color difference of two 
frames of the scenes. When surface reflectance and illumination in two successive 
frames are equal, their color distributions are the same, which does not signify that 
two successive frames are exactly the same on the pixel-by-pixel basis. Notice that if 
two images are exactly the same, their color distributions are the same. In video, the 
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Fig. 1. An ellipsoidal color distribution model: three axes and a center of an ellipsoid represent 
a scene illumination. Three axes (v1, v2, and v3) are obtained by SVD and a center (m) denotes 
an average in the RGB color space. 

surface reflectance in the successive image frames is similar if a scene change does 
not occur, which means that a color distribution change represents the illumination 
change of a scene. 

Fig. 1 shows a color distribution in the RGB space modeled by an ellipsoid, in 
which three axes and a center are illustrated. Three axes (v1, v2, and v3) are obtained by 
SVD, representing the color distribution of a scene. The center m of an ellipsoid 
signifies the average of RGB values, exhibiting the average color brightness of a 
scene. If illumination changes exist between two successive frames, one ellipsoid is 
transformed (translated, rotated or distorted) into another. In cases of no distortion, in 
which no new objects with different surface color are inserted, the transformation 
between two ellipsoids is represented by the rotation and translation. 

2.2   A Constraint 

In modeling the color distribution by three axes of an ellipsoid, a consideration must 
be taken into. An axis can be equivalently expressed by two directions, for example, 
(1, 1, 1)T and (-1, -1, -1)T. The two vectors are not the same, however, two axes 
represented by two vectors are exactly the same. 

Fig. 2 illustrates that two ellipsoids modeled from the color distributions of two 
successive frames look similar, however directions of these two axes are opposite. A 
small shift of color around the major axis of an ellipsoid changes the direction of 
ellipsoid axes. Opposite direction of the axes does not guarantee the good 
performance of the proposed illumination compensation method. To guarantee the 
good performance, the sign change in the axis vector between successive frames is to 
be restricted. The orthonormal matrix VT is expressed by 

( )Tvvv 321=TV . (1) 

To remove the sign change of the axes of an ellipsoid, VT is modified as 

( )Tvbvbvb 332211

~ =T V  (2) 

R

B 

G

v1

v3v2

m
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Fig. 2. Two ellipsoidal models of successive frames, in which the center of an ellipsoid is 
shifted to the origin of the RGB space. Two ellipsoids look similar, however the current frame 
shows more red color than the previous frame. The ellipsoid of the current frame inclines to the 
B axis and the directions of two axes are opposite to each other. 

where bi (i=1, 2, and 3) are binary numbers, 1 or 1 depending on the sign of vi. If the 
(k+1)th frame is equal to the kth frame, bi is set to 1. Otherwise, bi is set to 1. 

2.3   Illumination Compensation 

The orientation or direction of a color distribution is described by three axes of an 
ellipsoid and the ellipsoid center represents an average of color values in the RGB 
color space. A major axis and the other two orthonormal axes are obtained by SVD 
[11]. Let A be a P 3 matrix, where P represents the number of image pixels in each 
of three RGB color channels. Then, A is decomposed by 

TT V  UmO A =−  (3) 

where  represents a singular value matrix, VT signifies an orthonormal matrix, m 
denotes the average column vector of columns of A, and O is a P 1 column vector 
with all elements being equal to one. Fig. 1 shows the ellipsoid model of the color 
distribution in the RGB space, where three column vectors (v1, v2, and v3) are 
orthonormal and represent the rotation of an ellipsoid. A column vector of VT with the 
largest singular value of  denotes the major axis of an ellipsoid. If VT of the current 
frame is quite different from that of the next frame, the illuminations of two 
successive frames are not the same. 

Fig. 3 shows six successive frames, which contain object motions and illumination 
changes, as well as their color distributions. Note that the gamut of six successive 
frames is similar although artificial and non-uniform light is incident from top right. 
But the color distributions of six successive frames are quite different. When blue and 
green light is incident at top right, G and B values at each pixel increase. Note that 
only the pixels affected by the illumination change have the increased G and B color 
values. This phenomenon changes the color distribution, which is shown in Fig. 3(b). 

To preserve the same scene illumination, three directions and a center of the 
ellipsoid that represent the color distribution have to be the same for successive image 
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(b) Their color distributions 

(a) Real video sequences 

Frame 19 Frame 20 Frame 21 Frame 22 Frame 23 Frame 24 

Frame 19 Frame 20 Frame 21 Frame 22 Frame 23 Frame 24 

 

Fig. 3. Six successive image frames (a) and their color distributions in the RGB color space (b). 
Blue and some green lights suddenly illuminate at top right at frame 21. The illumination 
changes object and background colors, making color at top right more bluish and greenish. In 
this test video containing small object motions, the illumination change mainly produces the 
color distribution shift in the RGB color space. 

frames, preserving the similarity value between two successive frames of the same 
scene. With a constraint, the kth frame is decomposed by 

T
kkk

T
kk V  UmO A

~=−  (4) 

and that of the (k+1)th frame is decomposed by 

T
kkk

T
kk V  UmO A 11111

~
+++++ =− . (5) 

Then, the illumination compensation matrix Tk+1, k is given by  

 
kk

T
k ,11

~~
++= TVV T

k
. (6) 

The illumination-compensated image A’

k+1 is computed as 

( ) T
kk,k

T
kk mO TmO A 1111

'
1 +++++ +−= kA  (7) 

where mk and mk+1 denote the average RGB values of the kth and (k+1)th frames, 
respectively. Three directions and a center of A’

k+1 should be equal to those of Ak, 
making the illuminations of successive image frames equal. 

3   Experimental Results and Discussions 

In the previous section, it is assumed that the illumination change between successive 
frames is estimated by the change of a color distribution in the RGB space and then 
removed by the compensation of a color distribution using SVD. To show the 
effectiveness of the proposed scene illumination compensation method using SVD, 
first of all, the GretagMacbeth color checker chart (24c) illuminated under the 
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Fig. 4. GretagMacbeth 24 color charts under representative illuminations (a). ((b)-(d)) represent 
the illumination-compensated images of (a) using the conventional methods. Illumination-
compensated images by the proposed algorithm are shown in (e). 

representative illuminations is used as a test image. Fig. 4(a) shows the GretagMacbeth 
color checker chart (24c) under three representative illuminations: 6500K, 4156K, and 
2856K from top to bottom. Their images are captured by Sony 3CCD camera (DXC-
990) in the lighting device (Spectralight III). Figs. 4(b), 4(c), and 4(d) show 
illumination-compensated images by the conventional methods (Gray world (GW), 
Retinex and histogram equalization (HE), respectively). In experiments of the proposed 
algorithm, the image under 6500K (at the top of Fig. 4(a)) is chosen as the reference 
image and Fig. 4(e) illustrates illumination-compensated images by the proposed 
method, under the same scene illumination as in Fig. 4(a), showing that their scene 
illuminations are compensated better than scene illuminations of the conventional 
methods. The proposed method converts color checker chart (24c) images under 4156K 
and 2856K into those under 6500K (note that the top image is empty in Fig. 4(e)). 

Next, we use a real video sequence that is composed of 48 frames.  Fig. 3(a) shows 
six successive frames containing object motions and illumination changes. Varying 
illumination shifts the color values in the RGB color space to the direction of the 
color of illumination. Note that an occlusion of surfaces more or less affects the color 
distribution. In successive frames, most color values changed by the illumination 
changes are shifted to the direction of the illumination color in the color space. An 
illumination change, not just an illumination itself, is estimated by this shift in the 
RGB space. We can obtain the information of this shift using SVD and the average of 
RGB values. Fig. 5 shows six successive illumination-compensated image frames by 
the conventional methods and the proposed method. The proposed method effectively 
removes some green illuminations at top right. Conventional methods (GW, Retinex, 
and HE) cannot effectively remove them. Note that the synthetic color value is fixed 
with varying lighting condition and does not follow the model mentioned  
in the previous section, in which the model assumes that the color values 

(a) Origin (b) GW (c) Retinex (d) HE (e) Proposed 
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Fig. 5. Original real image sequences (a) and illumination-compensated image frames by the 
conventional methods ((b)-(d)) and the proposed method (e) 

are shifted by the change of scene illumination and the change of scene illumination 
can be estimated from the change of the color distribution in the RGB color space. 

The previous section explains a constraint, i.e., the signs of vectors of two 
ellipsoids, which represent the color distribution directions of two successive frames, 
must be the same, in the context of the geometrical model in which the color 
distribution is modeled by an ellipsoid. Two opposite directions by the sign change of 
vectors are considered to represent the same direction. Figs. 6(b) and 6(c) show that 
the constraint must be considered for better results. From frame 0 to frame 35, the 
illumination compensation is acceptable in terms of the NCC, and thus the constraint 
is not needed. From frame 36 to frame 48, directions of color distributions look 
similar, however the directions of v2 and v3 or the directions of v3 of two ellipsoids, 
estimated from two successive frames, are opposite. In that case, a constraint is to be 
applied (i.e., by removing the sign change between two successive frames) to ensure 
the performance of the proposed illumination compensation method. 

Fig. 7 shows the similarity measure as a function of the frame index, in terms of 
the NCC, of real image frames and illumination-compensated image frames. Fig. 7(a) 
illustrates the NCC of the original sequences and Fig. 7(e) shows the NCC of the 
illumination-compensated sequence by the proposed algorithm. Figs. 7(b), 7(c), and 

 

(b) GW 

(c) Retinex 

(d) HE 

(e) Proposed 

(a) Original real image sequences 
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Fig. 6. NCC, as a function of the frame index of original real image sequences (a), of the 
illumination-compensated image sequence by the proposed method without (b) and with (c) a 
constraint 

7(d) illustrate the NCC of the illumination-compensated sequences by the conventional 
GW, Retinex, and HE, respectively. 

NCC values of the input (original) image sequence are small at frames at which 
abrupt illumination change occurs. Because illumination color is blue and is mixed 
with some green, the NCC values of B and G channels abruptly decrease (Fig. 7(a)). 
NCC values in B and G channels of the illumination-compensated image sequences 
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Fig. 7. NCC, as a function of the frame index of original real image sequences (a), of the 
illumination-compensated image sequence by GW (b), Retinex (c) and HE (d), of the 
illumination-compensated image sequence by the proposed method (e) 
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Table 1. Performance comparison of the proposed method with the conventional methods 

Real video 
 color checker 

charts (24c) 
NCC SAD SSD 

Remark 
(Reconstruction) 

GW 

Retinex 

HE 

Proposed 

increase (Fig. 7(e)), preserving the similarity measure even in video images with 
varying scene illumination. Figs. 7(b)-7(d) show that NCC values of illumination-
compensated image sequences are not increased much by the conventional methods 
(GW, Retinex, and HE). 

Table 1 shows the performance of similarity measures such as the NCC, SAD, and 
SSD, in which ‘ ’ represents effective improvement of the performance, ‘ ’ 
signifies slight improvement, and ‘ ’ denotes no improvement. The retinex method 
and the proposed method effectively improve the performance in terms of the 
specified similarity measures. It is shown that illumination-compensation methods 
require a number of coefficients, which make the compensated image sequences equal 
to the original image sequences. GW and the proposed methods require 3 and 12 
coefficients to reconstruct the original image sequence in each frame. HE requires the 
cumulative density function to recover the original image sequence. It is difficult to 
recover the original image sequences by illumination compensation by a retinex 
algorithm. If the difference image between the original image and illumination-
compensated image is given, the original image sequences can be recovered. 

Especially for video compression, the proposed method has several advantages: it 
works well in image sequences containing object and/or camera motions. Illumination 
compensation is performed using only 12 coefficients (two types of parameters: 3×3 
illumination compensation matrix and the means of RGB channels). Compensated-
image sequences are easily recovered to the original image sequences. 

Table 2 shows the performance comparison of the proposed method and the 
conventional methods in terms of the computation time, in which 48 frames of 320 × 
240 images are used. The codes of four methods (GW, Retinex, HE, and the proposed 
method) are programmed in MATLAB on 3.2 GHz CPU processor. The proposed 
method has the highest computational complexity mainly due to the time taken to 
obtain three orthonormal vectors using SVD. The proposed method is suitable for 
applications in which encoding time is less critical than decoding time. 

Table 2. Performance comparison of the proposed method and the conventional methods in 
terms of the computation time (uint: second) 

 GW Retinex HE Proposed 

Computation time 2.61 226.75 2.84 871.47 
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4   Conclusions 

This paper proposes an illumination compensation method in video robust to varying 
scene illumination. In the proposed algorithm, the change of scene illumination is 
represented by the change of color distribution that is modeled by an ellipsoid using 
SVD, in which three axes and a center of an ellipsoid are used. Simple computation 
(linear transformation with a constraint) is enough for removing illumination 
variations. Similarity measures such as the NCC, SAD, and SSD are preserved by the 
proposed illumination compensation method. Synthetic images and real video image 
frames are used to show the effectiveness of the proposed illumination compensation 
method for images containing illumination changes. The effectiveness of the proposed 
algorithm is also shown in terms of the subjective quality of the illumination-
compensated image frames and the quantitative similarity measure such as the NCC, 
SAD, and SSD. 
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Abstract. This paper presents a method of expression-invariant face
recognition by transforming the input face image with an arbitrary ex-
pression into its corresponding neutral facial expression image. When a
new face image with an arbitrary expression is queried, it is represented
by a feature vector using the active appearance model. Then, the facial
expression state of the queried feature vector is identified by the facial ex-
pression recognizer. Then, the queried feature vector is transformed into
the neutral facial expression vector using the identified facial expression
state via the direct or indirect facial expression transformation, where
the former uses the bilinear translation directly to transform the facial
expression, but the latter uses the bilinear translation to obtain the rela-
tive expression parameters and transforms the facial expression indirectly
by the obtained relative expression parameters. Then, the neutral facial
expression vector is converted into the neutral facial expression image
via the AAM reconstruction. Finally, the face recognition has been per-
formed by the distance-based matching technique. Experimental results
show that the proposed expression-invariant face recognition method is
very robust under a variety of facial expressions.

1 Introduction

Since Kanade[1] attempted an automatical face recognition 30 years ago, many
researchers have investigated the face recognition. Among various face recogni-
tion methods, holistic appearance-based approach seems to have been prevailed
up to now. However, face appearances are varied drastically with changes of
poses, illuminations, facial expressions, and so forth. Such variations make the
appearance-based face recognition difficult. This paper attempts to overcome
the variations of facial expression among many difficulties.

There were many previous researches to recognize individuals across different
expressions. Liu et al.[2] measured two types of the facial asymmetric informa-
tion, density difference and edge orientation. They showed that this facial asym-
metric information could obtain individual differences which are stable to the
changes of facial expressions. Elad and Kimmel[3] proposed an efficient isometric
transformation framework of non-rigid object on the manifold. This framework
overcame the disadvantage of taking the rigid transformation of existing iso-
metric transformation by using the multidimensional scaling (MDS). Wang and

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 323–333, 2006.
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Ahuja[4] decomposed facial expression features using the higher-order singular
value decomposition (HOSVD) on the expression subspace and performed face
recognition and facial expression recognition at the same time in the subspace.
On the other hand, some researchers treated face geometry and texture infor-
mation separately. The separate modeling of geometry and texture information
has been occurred from the active appearance model (AAM). Li et al.[5] used
the AAM to recognize individuals with face expression. They were fitting AAM
to the input image and warping to the reference image frame to remove the ge-
ometry information. However, the texture information still included expression
features even though their approach was better than the others.

In this paper, we transform the input arbitrary facial expression image into
its corresponding neutral facial expression image for expression-invariant face
recognition, assuming that gallery images consist of neutral facial expression
images. Bilinear model is an appropriate technique for synthesizing new expres-
sion image from input expression image with unchanged identity. Abboud and
Davoine[6] used AAM and bilinear model to synthesize expression images. How-
ever the identity of synthesized image by their method is far different from the
ground-truth image, thus their method is not appropriate for face recognition.
We adopted the result of Zhou and Lin[7] to synthesize realistic facial expression
images and extended their work to the face recognition application.

First, we extract facial feature vector from the input image using AAM. Then,
we obtain the facial expression state of the input facial feature vector by the
facial expression recognizer. Then, we transform the input facial feature vector
into its corresponding neutral facial expression vector using the direct or indirect
facial expression transformation, and convert the neutral facial expression vector
into the neutral facial expression image via the AAM reconstruction. Finally, we
perform the expression-invariant face recognition by the distance-based matching
techniques like nearest neighbor classifier, linear discriminant analysis(LDA),
and generalized discriminant analysis (GDA).

2 Facial Feature Extraction Using AAM

The 2D shape of an AAM is defined by a 2D triangulated mesh and in particular
the vertex locations of the mesh. AAMs are normally computed from training
data consisting of a set of images with the shape mesh (usually hand) marked
on them. The Principal Component Analysis (PCA) is then applied to the train-
ing meshes. The base shape s0 is the mean shape and the matrices si are the
(reshaped) eigenvectors corresponding to the m largest eigenvalues. The 2D ap-
pearance is defined in the mean shape s0 and its variation is modelled by the
linear combination of a mean 2D appearance A0 and orthogonal 2D appearance
bases Ai. Finally, to control both the shape and 2D appearance of the model, we
generate the concatenated vector b which is the combination of weighted shape
vector and 2D appearance vector

b =
(

Ψspi

αi

)
, (1)
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where Ψs is a diagonal matrix of weights for each shape parameter. We apply a
further PCA on vector b to get the feature vector y. We use the feature vector
y as the input of bilinear model in the following sections.

3 Bilinear Model

Bilinear model[8] is a two-factor model that separates the observation into the
style and the content. In this paper, we set the facial identity as a content factor
and the facial expression as a style factor. When new face image is appeared,
we can change the facial expression of the face image, while the identity is
fixed. Bilinear model is categorized as symmetric model and asymmetric model.
Since the symmetric bilinear model tries to estimate the identity factor and
expression factor simultaneously, it often fails to decompose the input image
into two factors. To get a robust face recognition, we adopt the asymmetric
bilinear model in this work.

Asymmetric bilinear model can be expressed as

y =
J∑

j=1

(
I∑

i=1

wijai

)
bj,= Wsb, (2)

where Ws is a style specific basis matrix with a known style s, b is a content
parameter vector, J is the dimension of the content vector, and I is the dimension
of the style vector, respectively. Assume that we have S(Style) × C(Content)
training samples and built the observation matrix Y by stacking them. Then,
the asymmetric model can be rewritten in a compact form as

Y = WB, (3)

where W and B have the sizes of SK × J and J × C, respectively.(K is the
dimension of observation vector.)

Usually, the optimal content matrix B and the interaction matrix W are
estimated by applying the singular value decomposition of the observation matrix
Y. From the SVD of Y, we obtain the decomposition result Y = USVT . Then,
W and B are obtained from the first J columns of US and the first J rows of
VT , respectively.

When an observation vector y with known style s is appeared, the content
vector b can be computed by a single pseudo inverse operation as

b = (Ws)
† y, (4)

where the symbol † denotes the pseudo inverse operation. After obtaining con-
tent factor b, we can synthesize new feature vector with the same content and
different style n as y′ = Wnb. The readers is referred to [8] for details.

In addition, we proposed ridge regressive bilinear model[9] which combines
the ridge regression into the bilinear model. This combination provides some
advantages: it makes the bilinear model more stable by shrinking the range of
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content and style factors appropriately, and it improves the recognition perfor-
mance. In the case of asymmetric ridge regressive bilinear model, the content
vector can be computed by the following simple equation:

b =
(
WT W + λI

)−1

WT y (5)

4 Expression-Invariant Face Recognition

For the expression-invariant face recognition, we assume that the face images in
the gallery have only neutral facial expressions. Then, a new face image with
an arbitrary facial expression is queried, it is transformed into its corresponding
neutral facial expression image. We adopt asymmetric bilinear model for this
transformation and treat the facial identity and the facial expression as a content
factor and a style factor of bilinear model, respectively. We assume that the
style factor (i.e. facial expression) of the input face image is already known in
virtue of the facial expression recognition. We adopt a double layered GDA-based
facial expression recognizer[10]. Then, we transform the input face image with
a known facial expression into its corresponding neutral facial expression image
in terms of the direct or indirect facial expression transformation which will be
explained later. Then, we perform the expression-invariant face recognition using
the transformed neutral facial expression images.

4.1 Direct Facial Expression Transformation

Assume that the style factor s (facial expression) of the input face image is known
by the facial expression recognizer. The output of facial expression recognizer
provides the facial expression state s, which is one of the facial expressions:
Happy, Surprise, Anger, Disgust, Sad, and Fear. Direct method transforms the
input face image with an arbitrary facial expression into its corresponding neutral
facial expression image as follows.

First, we perform the AAM fitting for the input image I and extract the facial
feature vector y by the method described in Section 2. Second, we obtain the style
s (facial expression) of the input image by the facial expression recognizer. Third,
we compute the content (identity) vector biden by a simple operation like Eq. 4 or
5 using the known expression-specific basis matrix Ws, where the style factor s
can be known by the facial expression recognizer. Fourth, we translate the facial
expression vector y with a facial expression s into its corresponding neutral facial
expression vector y′ by multiplying neutral expression-specific basis matrix Wn

with the identity factor biden. Finally, we obtain the neutral facial expression
image I ′ by reconstructing AAM parameters of y′. Fig. 1 summarizes an overall
procedure that transforms the input face image with a specific facial expression
into its corresponding neutral facial expression image.

Fig. 3-(a) shows some examples of the transformed facial images, where each
column represents five different subjects and each rows represent the input sur-
prise facial expression images (row 1), the bilinear model fitted images (row 2),
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Fig. 1. An overall procedure of the direct facial expression transformation

the neutral facial expression images using the direct facial expression transforma-
tion (row 3), the neutral facial expression images using the indirect facial expres-
sion transformation (row 4) and the ground-truth neutral facial expression images
(row 5) respectively.

As you can see, we successfully transform the input surprise facial expression
images (row 1) into the neutral facial expression images (row 3). Here, if the
transformation is perfect, the transformed images (row 3) must be almost identi-
cal with the ground-truth images (row 5). However, the identities of transformed
neutral facial expression images (row 3) are far from those of the ground-truth
face images (row 5). This is mainly because we have a small number of sub-
jects in our training set and the bilinear model trained with a limited number of
training set can not fully express new face images far different from the train-
ing data set and accordingly the identities of the transformed face images are
also far from those of input face images. As a result, the performance of face
recognition using the direct facial expression transformation is poor. Therefore,
we need a novel facial expression transformation method that can well express
a new subject who is not contained in the training set.

4.2 Indirect Facial Expression Transformation

As mentioned before, the identity discrepancy between the transformed images
and the ground-truth images comes from the fact the bilinear model itself can
not express a new person who is not contained in the training set. To avoid this
problem, we take the indirect facial expression transformation that performs the
bilinear translation to obtain the relative expression parameters and transforms
the facial expression indirectly by the obtained relative expression parameters.
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Fig. 2. An overall procedure of the indirect facial expression transformation

Zhou and Lin[7] proposed the relative expression parameters such as the shape
difference and the appearance ratio in order to get the robust facial expression
image synthesis. The basic idea of their approach can be described as follows.
Let Δs = sn − ss be the shape difference between the feature points of neutral
facial expression face image and that of a specific facial expression face image.
Then, if s

′
s is the shape of a specific facial expression image of a new person,

the transformed neutral facial expression image s
′
n can be obtained by s

′
n =

s
′
s +Δs. If we assume that two persons with the same expression are in the same

pose, lighting condition, and their face image are warped to the same shape,
the appearance ratio of two persons which defined as R(u, v) = An(u,v)

As(u,v) will be
almost the same, where (u, v) are the coordinates of a pixel in the images, An

and As are the appearances of the neutral and a specific expression face image,
respectively. Then, if A′

s is the appearance with a specific facial expression s of
a new person, the transformed neutral facial appearance A′

n of that person can
be obtained by A′

n(u, v) = R(u, v)A′
s(u, v).

Fig. 2 summarizes an overall procedure of the indirect facial expression transfor-
mation of a new person by using relative expression parameters (shape difference
and appearance ratio). The detailed explanation of the procedure is given below.

1. Perform the AAM fitting for the input image I and extract facial feature
vector y by the method described in Section 2.

2. Perform a facial expression recognition and obtain the facial expression
state s.

3. Obtain a style specific basis matrix Ws. Then, compute the content (iden-
tity) vector biden and obtain the bilinear model fitted feature vector ys =
Wsbiden.

4. Obtain the neutral facial expression feature vector yn = Wnbiden.
5. Compute the relative expression parameters such as shape difference and ap-

pearance ratio asΔs = syn − sys , R(u, v) = Ayn (u,v)
Ays (u,v) , where syn and sys are

the shape vectors of yn and ys, Ayn and Ays are the appearance images of yn

and ys, and (u, v) is the 2D coordinates of a pixel in the appearance image.
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(a) Some facial expression images obtained
from the direct and indirect facial expression
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Fig. 3. The experimental results

6. Transform the input feature vector y into its corresponding neutral facial
expression feature vector y

′
using the relative expression parameters Δs

and R as sy′ = Δs + sy, Ay′ (u, v) = R(u, v)Ay(u, v).
7. Obtain the neutral facial expression image I ′ by reconstructing AAM pa-

rameters of the neutral facial expression feature vector y′.

As you can see from fig. 3-(a), the identities and shapes of the neutral fa-
cial expression images using indirect facial expression transformation (row 4)
are almost identical with those of the ground-truth images (row 5). It is mainly
because the neutral facial expression images are obtained from a combination of
the trained bases of bilinear model in the direct facial expression transformation,
but they are obtained by modifying the input images by the relative expression
parameters in the indirect facial expression transformation. Thus, the indirect
facial expression transformation provides a more effective facial expression trans-
formation of a new person who is not contained in the training data set and this
improves the performance of facial recognition greatly.

5 Experimental Results and Discussion

5.1 Experiment Setup

To evaluate the proposed expression-invariant face recognition method, we used
“Cohn-Kanade AU-Coded Facial Expression Database”[11] for the following ex-
periments.Thedatabase contains seven facial expressions: neutral, happy, surprise,
anger, disgust, sad and fear. Each subject in the database has at most seven facial
expressions, i.e. not all the subject has seven facial expressions due to the incom-
pleteness of the database. We manually selected 1,020 frontal face images from the
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image sequences.With the selected face images,we construct the active appearance
model for facial feature extraction. The constructed model is built using 56 shape
bases, 79 2D appearance bases and 104 concatenated feature bases. Each number
of bases is selected to account for 95% shape, appearance, and feature variation.
Thus, the observation vector y for the bilinear model is a 104 dimensional vector.

First, we extracted the facial features from all face images in the database
using the AAM. Then, we divided the face database into the training set and the
test set. With the training set, we performed asymmetric bilinear model learning
and obtained the expression specific basis matrices Ws, s = 1, · · · , 7, where s
denotes a specific facial expression among seven different facial expressions. We
divided the test set into the gallery set and the probe set. The gallery set consists
of neutral facial expression images of all subject in the test set, while the probe
set consists of all remaining facial expression images of all subjects in the test set.
Then, we performed the facial expression recognition using the feature vector of
the probe image and determined the style factor (facial expression). Then, we
obtained the identity factor of the probe image by multiplying the pseudo inverse
of the expression specific basis matrix and the feature vector of the probe image.
Then, we transformed the probe image into its corresponding neutral expression
image by the transformation method I or II. Finally, the identity of the gallery
image which has the minimum Euclidean distance to transformed probe image
is selected as the identity of the probe image.

We performed the experiments with several different conditions by changing
the number of facial expressions. Table 1 summarizes the data configuration and
the parameter values for each experiment. For example, for the experiment with
7 expressions, we divided 1,020 facial images of 95 subjects into two data sets:
training set and test set as follows. Among 1,020 facial images, only 11 subjects
have all 7 facial expressions. Thus, the 198 facial images of 11 subjects are taken
for training the bilinear model and the remaining 822 images of 84 subjects are
taken for testing the recognition performance. The training and test data set in
the other experiments are taken in a similar manner. We built the observation
matrix Y by stacking the feature vector y of each training data. Each column of
Y has the feature vector y of a specific subject with all expressions and each row
has the feature vector of all the subjects for a specific expression. We take S = 7,
K = 104, J = 11 and C = 11 for Eq. (3) and take λ = 8 for ridge regressive
bilinear model, which showed the best classification performance through many
different trials of experiments.

5.2 The Effect of the Number of Training Subjects

We performed four different types of facial expression transformations: the face
recognition with no facial expression transformation (TYPE 1), the face recog-
nition with the direct facial expression transformation using the bilinear model
(TYPE 2), the face recognition with the direct facial expression transformation
using the ridge regressive bilinear model (TYPE 3) and the face recognition with
the indirect facial expression transformation (TYPE 4). We performed these ex-
periments with four different numbers of facial expressions: 4, 5, 6 and 7, and
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Table 1. Experimental configuration

Number of Number of Number of S C J λ
expressions training subjects test subjects

4 38 57 4 38 38 17
5 21 74 5 21 21 13
6 14 81 6 14 14 10
7 11 84 7 11 11 8

Table 2. Face recognition results with 4 facial expressions

Transformations Methods Happy Surprise Fear Average

NN 81.82 28.95 100 63.16
TYPE 1 LDA+NN 95.45 71.05 84.61 84.21

GDA+NN 90.9 71.05 92.3 83.15

NN 84.09 68.42 84.61 77.89
TYPE 2 LDA+NN 86.36 86.84 84.61 86.31

GDA+NN 97.72 78.94 61.53 85.26

NN 93.18 76.31 82 85.26
TYPE 3 LDA+NN 93.18 89.47 90 92.63

GDA+NN 90.9 94.73 94 92.63

NN 95.45 84.21 100 91.57
TYPE 4 LDA+NN 90.9 97.36 100 94.73

GDA+NN 97.72 94.73 100 96.84

the numbers of training subjects for each experiment are 38, 21, 14, and 11,
respectively. Fig. 3-(b) shows that (1) the face recognition rate using TYPE 1
rather increases as the number of facial expressions increases. This is because
the facial expressions such as anger, disgust and sad are similar with the neu-
tral facial expression and the addition of these facial expressions increases the
average recognition rate; (2) the face recognition rate using TYPE 2 or TYPE
3 decreases as the number of facial expressions increases. This is because the
number of training subjects decreases as the number of facial expressions in-
creases and it makes the transformed probe images far different from gallery
images as we have shown in section 4.1; and (3) the face recognition rate using
TYPE 4 is almost constant over the different numbers of facial expressions. This
is because the transformed neutral expression images are quite similar with the
gallery images regardless of the number of training subjects.

5.3 Face Recognition Results

Table 2 summarizes the face recognition results with 4 facial expressions. We
used three different classification methods: nearest neighbor method (NN), linear
discriminant analysis followed by NN (LDA+NN), and generalized discriminant
analysis followed by NN (GDA+NN). This table shows that the face recognition
result using TYPE 4 shows the best performance, while the face recognition
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Table 3. Face recognition results with 7 facial expressions

Transformations Methods Happy Surprise Anger Disgust Sad Fear Average

NN 81.69 27.69 96.77 96.77 91.67 90.0 74.81
TYPE 1 LDA+NN 60.56 20.00 83.87 87.09 63.89 67.5 58.02

GDA+NN 31.81 44.73 42.85 57.14 36.00 38.46 40.74

NN 47.88 33.84 64.51 48.38 63.8 52.5 49.27
TYPE 2 LDA+NN 50.7 40.0 54.83 54.83 52.78 47.5 48.9

GDA+NN 53.21 35.38 54.83 58.06 38.89 52.5 47.8

NN 50.7 32.3 67.74 51.61 66.67 47.5 50.0
TYPE 3 LDA+NN 50.7 36.92 61.29 64.51 61.11 47.5 51.09

GDA+NN 53.52 38.46 61.29 70.96 50.0 50.0 51.82

NN 94.36 84.61 100.0 96.77 91.67 90.0 91.97
TYPE 4 LDA+NN 85.91 87.69 90.32 90.32 83.33 90.0 87.59

GDA+NN 85.91 72.31 83.87 87.09 86.11 72.5 80.65

result using TYPE 2 or TYPE 3 shows also a reasonable performance. Moreover,
the use of LDA and GDA improves the face recognition performance greatly.

Table 3 summarizes the face recognition results with 7 facial expressions.
This table shows that (1) the face recognition rate using TYPE 2 or TYPE 3
is very poor. This is because the number of training subjects are limited and
accordingly the transformed neutral facial expression images are considerably
different from the input images; (2) the face recognition rate using TYPE 4 is
still over than 90%. It shows the effectiveness of our method; and (3) Although
we applied the discriminant methods to improve face recognition performance,
the face recognition results of using LDA+NN and GDA+NN did not improve
the performance of NN. Rather it degraded the face recognition performance.
This is because the representational ability of LDA and GDA bases is also limited
due to the limited number of training samples of each subject.

6 Conclusion

In this paper, we proposed the expression-invariant face recognition. To achieve
expression-invariance, we first extract facial feature vector from the input image
using AAM. Then, we obtain the facial expression state of the input facial feature
vector by the facial expression recognizer. Then, we transform the input facial
feature vector into its corresponding neutral facial expression vector using the
direct or indirect facial expression transformation, and convert the neutral facial
expression vector into the neutral facial expression image via the AAM recon-
struction. Finally, we perform the expression-invariant face recognition by the
distance-based matching techniques. From the experimental results, we note that
face recognition rate with proposed expression transformation greatly improve
that without transformation. In addition, the face recognition rate using our
proposed expression transformation is almost constant over the different num-
bers of training subjects, while that using bilinear model and ridge-regressive
bilinear model decrease as the number of training subject decreases.
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Abstract. The stereo matching algorithm based on the belief propagation (BP)
has the low matching error as the global method, but has the disadvantage of a
long processing time. In addition to a low error of less than 2.6% in the Mid-
dlebury image simulation, a new architecture based on BP shows a high-speed
parallel VLSI structure of the time complexity O(N), at properly small itera-
tions, so that it can be useful as a chip in the real-time application like robots and
navigations.

1 Introduction

The stereo matching is the method which finds the corresponding points in a pair of
images to locate the 3D positions. It can be mainly separated into the local and the
global matching part [1]. The former is based on the winner-take-all (WTA) method
and can be processed in the real-time, but produces big errors [2] [3]. Some VLSI
architectures [2] [4] exist in this area.The latter finds the approximated global minimum
energy in the full image, see for example, the graph cuts [5] and the belief propagation
(BP) [6] approaches. It produces excellent results but takes a long time on a single CPU
of. PC. In the real-time applications like robots, the high-speed small compact system
is necessary. We will present a new high-speed parallel VLSI architecture for the stereo
matching based on BP.

2 Problem Formulation

Markov random field(MRF) energy model of stereo matching can be represented as
follows given the left and right image and the parameter Cd, Cv ,Kd,Kv [6].

d̂ = arg min
d

E(d), E(d) =
∑

p,q∈N

V (dp, dq) +
∑
p∈P

D(dp), (1)

D(dp) = min(Cd|gr(dp) − gl(p)|,Kd), V (dp, dq) = min(Cv|dp − dq|,Kv). (2)

D(dp) is the data cost of the label dp at the pixel p in the image P , and V (dp, dq) is the
discontinuity cost between the label dp and dq of the neighbour nodes N. The disparity
d̂ can be estimated using the following BP.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 334–342, 2006.
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mt
pq(dq) = min

dp

⎛⎝V (dp, dq) +Dp(dp) +
∑

s∈N(p)\q

(
mt−1

sp (dp) − α
)⎞⎠ , (3)

α =
∑
dp

mt−1
sp (dp), (4)

d̂p = arg min
dp

⎛⎝Dp(dp) +
∑

s∈N(p)

mT
qp(dp)

⎞⎠ , (5)

where N(p)\q denotes the neighbours of p other than q, and α is the normalization
value. The message mt

pq(dq) is calculated at iteration t and sent from the node p to the

neighbour node q. After T iterations, the d̂p at each node is decided using Eq. (5).

3 Architecture of Stereo Matching

BP can be separated into two methods mainly as the update style [7]. The first way is
to update all the nodes synchronously and in parallel, and the second thing is to update
sequentially in the inward direction from the leaf to the root and the reverse direction
on the tree. The sequential method at each update is not to calculate the messages of all
the node so that they can be propagated fully in the small number of operations. In tree
case, both algorithms produce exact solutions [7] [8]. Thus there are equivalent to the
dynamic programming technique.

In Fig. 1(b) the optimal diparity solution is calculated on the 1D markov chain by
the sequential update of the forward and backward directions similar to the dynamic
programming(DP) based stereo vision [1]. As this DP based algorithm, the markovian
dependence of the horizontal scanline direction is more important than the vertical part
in the stereo matching [1]. The vertical smoothness constraint between the scanlines is
also necessary but this propagation range doesn’t need to be long to just eliminate the
streak noises. Applying the hypertree structure to each scanline as shown in Fig. 1(c),
the smoothness constraint messages are possible to be propagated through the connec-
tion between hypertrees. It has the overall small iteration times in the MRF due to the
sequential full propagation inside of the tree and the short vertical propagation outside
of it. Another hypertree based algorithm [8] also shows the fast convergence. In this pa-
per we didn’t use the reparametized potential functions but reuse the updated messages.

For more explicit expression considering the image coordinate, the message nota-
tions like mt

pq(dq) will be changed as follows. If the node q is changed to (j, i), the
state dq to k,and the iteration step of the vertical message propagation between hyper-
trees is denoted to f , they can be represented as the forward message mf (k, j, i, f),
the backward messagemb(k, j, i, f), the upward messagemu(k, j, i, f), and the down-
ward messagemd(k, j, i, f) when considering the message propagation direction from
the node q to the node p like Fig. 1(c).

Fig. 2 shows the parallel processing of P lines. Using the processor index p, we can
change the image coordinate (j, i) to (j, q ∗ P + p) at the step q.

We will present a VLSI parallel pipeline algorithm based on the previous explana-
tions. Let us calculate the message mf (k, j),mb(k, j) ,mu(k, j, q ∗ P + p− 1, f), and
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Fig. 1. Message update methods

P parallel
processors

M pixels

0
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q N
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Fig. 2. Parallel processing

md(k, j, q ∗P +p+1, f) at the state k and the node (j, q ∗P +p) in the N by M image,
and find the disparity d̂ , at the iteration f , the processor p, and the step q.

The messages are updated sequentially inside of the hypertree by the following for-
ward and backward processing and the upward and downward messages are used for
the propagation between the neighboring hypertrees.
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For q ∈ [0, Q− 1], f ∈ [0, F − 1],

D(d) = min
d∈[0,dmax−1]

(
Cd

∣∣gr(j + d, q ∗ P + p) − gl(j, q ∗ P + p)
∣∣ ,Kd

)
V (l, k) = min (Cv |l − k| ,Kv) .

1. Forward processing for state k = 0, ..., dmax −1 and node j = 0, ...,M −1 for the
forward message,

mf (k, j) = min
d∈[0,dmax−1]

V (l, k) +msum(l),

msum(l) = D(l) +mf (k, j − 1)

+md(k, j − 1, q ∗ P + p, f − 1) +mu(k, j − 1, q ∗ P + p, f − 1).

2. Backward processing for state k = 0, ..., dmax − 1 and node j = M − 1, ..., 0,
(a) Backward message

mb(k, j) = min
d∈[0,dmax−1]

V (l, k) +msum(l),

msum(l) = D(l) +mb
n(l, j + 1)

+md
n(l, j + 1, q ∗ P + p, f − 1) +mu

n(l, j + 1, q ∗ P + p, f − 1).

(b) Downward message

md(k, j, q ∗ P + p+ 1, f) = min
d∈[0,dmax−1]

V (l, k) +msum(l),

msum(l) = D(l) +mf
n(l, j) +mb

n(l, j)

+md
n(l, j, q ∗ P + p, f − 1).

(c) Upward message

mu(k, j, q ∗ P + p− 1, f) = min
d∈[0,dmax−1]

V (l, k) +msum(l),

msum(l) = D(l) +mf
n(l, j) +mb

n(l, j)
+mu

n(l, j, q ∗ P + p, f − 1).

(d) Disparity decision

mb(k, j) = min
d∈[0,dmax−1]

V (l, k) +msum(l),

msum(l) = D(l) +mf
n(l, j) +mb

n(l, j)

+md
n(l, j, q ∗ P + p, f − 1) +mu

n(l, j, q ∗ P + p, f − 1).

The parameters which are not used for the memory storage are omitted. For instance
D(d, j, q ∗ P + p)is replaced with D(d) . mn(·) means m(·) − α as the normalized
message, and dmax is the total disparity level number. The total step Q is equal to
the image line N divided by the processor number P. This algorithm will be explained
together with the following architectures.
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Fig. 3. Parallel architecture of stereo matching

As shown in Fig. 3, the P processors calculate the message md,mu in the parallel,
receiving the left and right pixel data from the P scan line buffers, and reading and writing
with the P message buffers. The processor consists of processorPEf ,PEb,PEu,PEd,
and PEo. Using the image data and the neighborhood messages, PEf calculates the
message mf in the forward time and PEb, PEu ,PEd , and PEo calculate the each
messagemb, mu,md and disparity d̂ in the backward time.

4 Architecture of Processing Element (PE)

The PE is the basis logic which calculates the messagesmf ,mb ,mu , andmd at each
node. The main processing part at node j for k = 0, ..., dmax − 1 is as follows, when
V (l, k) = min(Cv|l− k|,Kv),

m(k, j) = min
d∈[0,dmax−1]

V (l, k) +msum(l).

By the recursive backward and forward skills of the distance transform [6], the time
complexity can be reduced fromO(D2) to O(5D) for D disparity levels. We optimized
it to O(2D) with a pipeline structure as follows. That is, we need 2D clocks for calcu-
lating the messagem(k, j), which is denoted asmo(k) after.

In the forward initialization,D1(−1) = B,D2(−1) = B (B is as big as possible).
For t from 0 to D-1 at the forward processing time,

D1(t) = min(msum(t), D1(t− 1) + Cv), (6)

D2(t) = min(msum(t), D2(t− 1)), (7)

mf (t) = D1(t), (8)

mf (−1) = D2(D − 1) +Kv. (9)

In the backward initialization,D3(−1) = B,D4(−1) = B .
For t from 0 to D-1 at the backward processing time,

D3(t) = min(mf (D − 1 − t), D3(t) + Cv), (10)

mo(t) = min(D3(t− 1),mf (−1)), (11)

D4(t) = mo(t) +D4(t− 1), (12)

mo(−1) = D4(D − 1)/D. (13)
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The following VLSI architecture will be described together with this algorithm.
Fig. 4 shows the basis PE architecture of PEf , PEb, PEu, and PEd. The data

cost PE calculates the data cost D(t) from the left and right image pixels. The for-
ward PE reads the messages and the data cost, and outputs the forward cost mf (t) and
saves it to the stack and finally the backward PE reads it from the stack and calculates
mo(t).

In the forward processor architecture, Fig. 5(a) and Eq. (6) show the cost pro-
cessor and sequences that output the minimum value between msum(t) and D1(t −
1) + Cv after each message m0(t), ...,mL−1(t) are subtracted by the parameter
m0(−1), ...,mL−1(−1) for the normalization and added together with the matching
costD(t) to calculatemsum(t).

In Fig. 5(b) and Eq. (7), the logic calculates the parameter which is used in the
backward time. Fig. 6 describes the backward processor’s architecture. As shown in
Fig. 6(a), Eq. (10), and Eq. (11), the cost processor reads the mf (D − 1 − t) from the
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stack and calculates the minimum valueD3(t) and outputs the minimum value between
D3(t) and the parametermf (−1). In Fig. 6(b), Eq. (12), and Eq. (13), after the message
mo(t) is summed up, it is divided by the disparity level D. If the disparity level is 2’s
exponent, we can replace the divider with the bit shifter. This normalization parame-
ter will be used for the for-ward time afterward. BP [6] has the total time complexity
O(NMDT) given N by M image, and D disparity levels and T iterations. Its complexity
reduces to O(NMDT/P) by the P processors, so that it can process in the high speed.
Furthermore, the real-time processing is possible with O(NM) when P equal to DT is
properly small. The iteration number is related to the vertical message propagation. As
shown the experiment, the small iterations are enough for the good results.

5 Experimental Results

We tested our system using the following Middlebury bench mark quantitatively and
qualitatively. In Fig. 7 and Table 1, the synchronous BP and ours produce the small
error difference and the results superior to the WTA [3] in the Tsukuba image. The

Table 1. Error rate of several methods

methods(iter.) BP(100) BP(30) Ours(7) WTA(1)

error 2.12% 2.6% 2.6% 4.25%

(a) Input Tsukuba image (b) BP at 100 iterations

(c) Our method at 7 iterations (d) WTA

Fig. 7. Several disparity image output
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Fig. 8. Comparison of convergence rate

error rate represents the percentage of disparity error of more than 1. When comparing
the convergence error between BP and our method in Fig. 8, while BP needs more than
30 iterations, ours is enough for 7 iterations because of the horizontal asynchronous
update for the fast convergence. The 112 processors have to be implemented for the
real-time processing at 16 disparity levels.

6 Conclusions

The BP is powerful and widely used in the area of the image processing.Although BP
produces the good error performances, the VLSI architecture has not been researched
yet. In this letter, we explained the parallel VLSI architecture and algorithm for the
stereo matching which shows the low matching error and the high-speed performance,
and tested it with the several simulation results.

References

1. D. Scharstein and R. Szeliski: A Taxonomy and Evaluation of Dense Two-Frame Stereo Cor-
respondence Algorithms. International Journal of Computer Vision 47(1-3) (2002) 7-42.

2. S. Kimura, T. Shinbo, H. Yamaguchi, E. Kawamura, and K. Naka: A Convolver-Based Real-
Time Stereo Machine (SAZAN). Proc. Computer Vision and Pattern Recognition 1 (1999)
457-463

3. Hirschmuller, H.: Improvements in real-time correlation-based stereo vision. IEEE Workshop
on Stereo and Multi-Baseline Vision. Dec. (2001) 141 - 148

4. Hariyama, M., et al.: Architecture of a stereo matching VLSI processor based on hierarchi-
cally parallel memory access. The 2004 47th Midwest Symposium on Cir-cuits and Systems
2 (2004) II245 - II247

5. Kolmogorov, V. and Zabih, R.: Computing visual correspondence with occlusions using graph
cuts. In ICCV 2 (2001) 508- 515

6. Felzenszwalb, P.F. and Huttenlocher, D.R.: Efficient belief propagation for early vision. Pro-
ceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern
Recognition 1 (2004) I261 - I268



342 S. Park and H. Jeong

7. M.I. Jordan, An Introduction to Probabilistic Graphical Models, in preparation.
8. Martin J. Wainwright, Tommi Jaakkola, Alan S. Willsky: Tree-based reparameterization

framework for analysis of sum-product and related algorithms. IEEE Transactions on Infor-
mation Theory 49(5) (2003) 1120-1146



Light Simulation in a Distributed Driving

Simulator�

Stefan Lietsch, Henning Zabel, Martin Eikermann, Veit Wittenberg,
and Jan Berssenbrügge
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Abstract. In this paper we present our work on modularizing and dis-
tributing a VR application - the Virtual Night Drive simulator. The main
focus in our work is the simulation of headlights. The realistic but still
interactive visualization of those lights is essential for a usable driving
simulator at night. Modern techniques like pixel and vertex shaders and
volume rendering help to realize the complex task of light simulation.
But there are still scenarios, especially when having several cars with
headlights in one scene, that require distributed setups to run the simu-
lation in an interactive way. In this paper we present an architecture that
supports several approaches of distributed light simulation, compare it
to existing systems and give an outlook on what is left to do.

1 Introduction

The simulation of real world processes plays a very important role in today’s busi-
ness and science life. It for example helps developers and researchers to build,
test and evaluate products much easier and cheaper than before. The compu-
tation of these simulations becomes very complex soon and the produced data
gets unmanageable. Thus much research on visualization has been done to make
the data produced by the simulation easier to understand. By combining High
Performance Simulation and High Performance Visualization researchers and de-
velopers get powerful systems that significantly ease their work and help to share
costs. One special form of simulation is Virtual Reality (VR). VR applications
are specialized simulations that allow users to interact in virtual environments
in real time. Most of those systems are highly integrated and tightly coupled
and designed for a very special purpose. Our approach is to split up this tight
coupling and build a more universal and scalable Virtual Reality system. This
also includes the possibility to connect different simulations to this system and
see how they interact.

As an exemplary Virtual Reality application the Virtual Night Drive (VND)
system was chosen. This specialized driving simulator is described in [1] and in
� Partially supported by the Ministry of Innovation, Science, Research and Technology

of the State of North Rhine-Westphalia, Germany under the Target Agreement II
“Distributed Visualization and Simulation (VisSim)”.
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[2] and was developed at the Heinz Nixdorf Institute, Paderborn in cooperation
with the Hella KGaA Hueck & Co. Its main focus is the realistic simulation of
headlights on real-world tracks to do physiological tests and to let engineers eval-
uate prototypes of new headlights. There are several characteristics of headlights
that need to be considered when designing a simulator. It is nearly impossible
to visualize the complex light distribution with traditional computer graphics
lighting and shading methods like point light sources or Phong shading. Instead
a system was developed that takes advantage of programmable pixel and vertex
shaders to project the light of a headlight onto the scene per pixel. This provides
a very realistic impression for test people and engineers and allows the differen-
tiation of several types of headlights. It is also possible to check the compliance
of the headlights to strict standards in a very early stage of development (e.g.
dimmed headlights may not beam over a certain horizon).

The first version of the simulator works quite well as long as only one car with
headlights is simulated. For more cars the light simulation requires more compu-
tational power than a single CPU/GPU workstation can provide. Additionally,
it is not trivial to realize effects like blending with the existing shader approach
since no real light sources are utilized. But especially for the psychological test-
ing it is extremely important to have more than one car with realistic headlights
to simulate effects like oncoming traffic or colones of vehicles which are really
important in everyday life. This lead to the idea of distributing the whole sys-
tem onto several computers and bundle their computational power to provide
an interactive system for complex scenarios. By introducing a communication
server we created a platform to distribute instances of visualization and simula-
tion. On this basis we developed and partially implemented several methods of
distributed light simulations.

In the following we will present the architecture of our system and compare it
to existing projects in this area. We give examples on how new simulations can
easily be integrated and line out what needs to be considered in the special case
of Virtual Reality. Afterwards we focus on the (distributed) simulation of light
in the simulator. Finally we give an outlook on what still needs to be done and
a conclusion of our work.

2 Related Work

A lot of work on distributed visualization especially on graphic clusters has been
done and many interesting techniques were developed. But most of this work
focussed either on the visualization of Computational Fluid Dynamics or Finite
Element simulations or on volumetric data representation of medical imagery
e.g. from Computer Tomography. Starting 1995 when Virtual Reality systems
became real enough to be used, a lot of research was done on driving simula-
tors. One of the first was the Iowa Driving Simulator [3] which already offered a
modular and flexible architecture. Kuhl et al. proposed a bus system called Iowa
Driving Simulator Control program (ICON) [4] that interconnects the different
subsystems. These subsystems include all relevant functionalities (Dynamics,
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Visualization, Control etc.) and databases (Objects, Terrain, Scenario etc.) of
the simulator and can be exchanged to test different setups. This architecture
provides a scalable and flexible platform for the highly integrated Iowa Driving
Simulator. The Iowa Driving Simulator was enhanced by new hardware and soft-
ware and is now known as the National Advanced Driving Simulator (NADS) or
”the worlds most sophisticated research driving simulator” [5] and is exemplary
for a variety of other driving simulators all over the world. However its main
focus, as is most of the current driving simulators, is to simulate the physics
and the visualization of driving at daytime. Very high effort is put into realistic
haptic behavior by building huge Hexapod setups and putting whole cars into
big 360 degree visualization domes. This again leads to very specialized sys-
tems that are tightly coupled to certain hardware and can only be used at one
site.

The main focus of our research lies on on the interactive simulation of light
within certain scenarios - realistic dynamic and haptic behavior are needed but
of secondary importance. Other applications of our research could therefore be
the interactive illumination of the interior of cars or architectural studies with
realistic real-time lighting. Thus, we decided to implement a more universal
system that acts as a platform for our research on distributed visualization and
light simulation.

There are already really good systems for (semi-)automatic distribution of
visualization such as Chromium [6] or VR Juggler [7]. Both enable their users to
realize complex multi-screen, CAVE [8] or Stereoscopic Display setups (nearly)
independent of the Visualization software generating the OpenGL stream. But
both systems lack two features that are essential for our scenario:

– Only visualization is considered. To also include simulation and input han-
dling additional, independent systems are needed

– Both systems completely base on distributing the OpenGL stream which is
good for transparency but often causes performance issues especially when
dealing with big scenes or shader code as in our case.

Therefore we designed and implemented a new platform that satisfies all our
needs and that can be adopted to future developments. The architecture of this
platform and its features is presented in section 3.

To complete the related work section we refer to research of the Renault Re-
search Center in France. Lecoq et al. present a real-time simulation of automotive
headlights that allows various testing scenarios for the companies newly devel-
oped headlights ([9] and [10]). However the proposed system bases on traditional
lighting methods and needs highly detailed scene models with huge amounts of
polygons to achieve acceptable realism. This limits the architecture in perfor-
mance and scalability. Additionally there is no indication that more than one
car with realistic headlights is supported. This is one of the main features our
system supports.
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3 System Architecture

The initial objective of the Virtual NightDrive application was to give engineers an
early impression of new headlight developments. The requirements have evolved
since then to more complex scenarios including visualization on stereo displays,
tiled screens and cave environments. In addition, support for a variety of input
methods such as force feedback wheels (USB), an industrial force feedback steer-
ing wheel (CAN-Bus), an existing drive simulator (Smart, L-Lab) and keyboard
control had to be integrated. Furthermore a multiuser system was needed to do
more extensive psychological tests and to simulate more complex scenarios.

Fig. 1. Overview of the distributed Visualization and Simulation Architecture

In order to achieve the desired flexibility and meet our requirements it was
necessary to break down the monolithic design of the Virtual Night Drive ap-
plication into individual components. To enable a uniform communication be-
tween these components we developed the TCP/IP based communication server
COMMUVIT 1. The components simulation, visualization and interaction are
separated from each other and executed in different tools as shown in figure
2. COMMUVIT exchanges data between the tools, with the help of a variable
map. This universal tool structure is the base of a construction kit for creating
interactive visualizations. The network based architecture also allows the dis-
tributed execution of this environment, which is an important requirement for
the interactive, multiuser simulation. In the following sections we will describe
each of the components in detail.

3.1 COMMUVIT

The development of COMMUVIT started within the collaborative research cen-
ter SFB 614 ,,Self-optimizing concepts and structures in mechanical engineering”
1 Communication server for a Simulation and Visualization Toolset.
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at the University of Paderborn2 in the subproject called ”Virtual Prototyping”.
The main goal was to utilize Virtual Reality on the one hand to simplify the
design of a mechatronic system and on the other hand to support the analysis
of simulations. Especially the second goal required a generic interface between
visualization (VR) and simulation. The interface of COMMUVIT supports the
runtime platform for simulation and execution IPANEMA that is used within
this research center. To provide a broader base for different applications COM-
MUVIT also supports the connection to the standard simulation systems Mat-
lab/Simulink, PTOLEMY II and SystemC. COMMUVIT has been successfully
used for interactive analysis of different case studies (e.g. [11]). The COMMU-
VIT server offers a universal interface for all components (tools). The protocol
used for communication allows controlling calculations within the tools as well
as reading output values and writing new parameters to them. To connect tools
to COMMUVIT a so called moderation interface is needed. This can be imple-
mented easily with the help of a C++ or Java library that delivers the above
mentioned functionality.

The main task of COMMUVIT is to exchange data between the different tools
and to force the tools to follow a global clock. Therefore, COMMUVIT is divided
into three parts: (1) a master thread that controls time and coordinates com-
munication, (2) a variable map: this map stores the current values of variables
during data transfer between the tools and also defines the mapping between
input and output variables, (3) a communication process for each master port:
these processes executes the communication with the connected tools.

The master process separates the time in intervals of fixed size Δt. For given
time t it initiates the sequential execution of the following steps:

1. Write current values from the map as parameters to the tool
2. Setup the time interval [t, t+Δt] for calculation and initiate the calculation
3. Wait until the tool has finished calculation
4. Read the output variables and store them back in the map

Each step is executed synchronously, that means the master process initiates
one single step and all communication processes execute the necessary data
transfers with its corresponding tool. If all communication is done the master
continues with the next step. After one sequence is executed the global time is
increased to t = t+Δt and the execution restarts with the new time interval.

3.2 Simulation

To enable a realistic driving simulator a dynamic simulation was integrated into
the Virtual Night Drive. This system simulates effects like suspension and a
lifelike drivability from a physical model. In the initial version of the Virtual
Night Drive this simulation was realized by proprietary software called Vortex.
We have adapted this version to our COMMUVIT environment and separated
2 The SFB614 is founded by the ,,Deutsche Forschungsgemeinschaft” (DFG - German

Research Foundation).
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the Vortex simulation from the visualization part. This allows us to replace the
simulation by a more accurate one (e.g. Matlab/Simulink) or an open source
system like Open Dynamics Engine without changing the visualization and in-
teraction parts anymore. Moreover, since not only one but many cars need to be
simulated, possibilities to distribute the dynamics simulation are given by the
architecture of our environment. The distribution of a single dynamic simulation
itself is another considerable option

3.3 Input Devices

Simple mouse/keyboard input is not sufficient for a realistic driving simulator.
Therefore, a support for special input devices like steering wheels and pedals is
needed. Depending on the setup of the environment many different input devices
connected to various computers can be used to control different cars. Besides
common USB steering wheels, we integrated a real Smart car which is an integral
part of a drive simulator in the L-LAB3 facility of the University of Paderborn.
Because the input handling is designed as an independent component we can
realize various setups. It is for example possible to let remote users control cars
through a network connection. Furthermore, new input devices like an industrial
force feedback wheel can be integrated easily.

3.4 Visualization

Though simulation of car dynamics is an important part of the sample applica-
tion the focus is mainly on the realistic simulation of headlights. Virtual Night
Drive bases on OpenSceneGraph to render a test scenario consisting of a virtually
reconstructed track and one or more cars. Its modularized architecture allows
comfortable addition of new objects, like pedestrians or wild life to the scene. We
included all functionalities of the visualization into a component named VND-
Vis. Each car in the visualization is linked to a corresponding simulation through
COMMUVIT. That means every VND-Vis entity has an interface through which
it receives positions, directions, speeds and other parameters of all dynamic ob-
jects. The visualization component only displays these objects at the right place.
COMMUVIT also allows transmitting simulation data to multiple, distributed
VND-Vis instances.

3.5 Distributed Visualization

High-resolution visualization on Tiled Walls can be realized really easy with the
proposed architecture. For each screen an instance of the VND-Vis component
is launched. Each instance gets the information which tile of the whole display
it has to render at initialization time. This group of instances acts like a sin-
gle visualization to the corresponding simulation. That is, all instances get the
same data from the simulation including speed, direction and position of the car
3 L-Lab is a public private partnership between University of Paderborn and Hella

KGaA Hueck & Co, Germany - a manufacturer of automotive headlights.
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as well as state parameters such as day/night, headlight type etc. Thereby we
achieve best possible scalability for this scenario, since we can nearly keep up
the frame rates of a non-distributed visualization in our distributed architecture
independent of the number of tiles. In comparison to frameworks like Chromium
this is a great benefit that results from reduced amount of data that has to
be transferred. While Chromium needs to transfer the OpenGL-Stream which
can be up to 1 Gbit/s (without optimizations like display lists etc.) per tile our
architecture gets by with only small amounts of data containing the positions
of the objects. In our test scenario which is 6 nodes (Dual Opteron, Quadro
FX4500) driving 6 screens (1280x1024) we got frame rates around 150 Hz with
our architecture vs. 20-30 Hz with Chromium. This isn’t really a fair comparison
since Chromium tries to distribute non-parallel applications but it shows that
its really worth to put effort in distributing Virtual Reality applications in the
way we do.

For stereoscopic display wall or CAVE setups our architecture can provide
similar functionalities as for the tiled wall described above. The difference is that
in addition to the viewport we also have to specify different camera positions
and directions at initialization time. This allows us to realize really complex
settings without having to rewrite source code and without seriously loosing
performance.

4 Light Simulation

The automotive industry uses VR-technology for driving simulation within the
development and evaluation of new car concepts. Mostly these systems visual-
ize a car driving at daylight. A visualization of nightly scenes is often done by
using conventional, OpenGL-based lighting effects. But standard OpenGL light
sources only provide a simple light model, i.e. a conic emission characteristic,
which cannot emulate a headlight’s complex luminance distribution. Addition-
ally they lack of distance-dependent attenuation for the luminance and complex
luminance distribution models, which are essential to realistically simulate head-
lights.

A further problem is a permanently changing position and orientation of the
light source and the user’s viewpoint within a driving situation at night. Thus,
it is not sufficient to calculate the illumination of the whole scene in advance,
because the illumination conditions change drastically depending on the head-
light’s position and orientation.

4.1 Shader-Based Light Simulation

To solve these problems, we developed the following approach shown in figure
6. The basic idea is to use a homogenous emitting OpenGL light source as a
slide projector. The luminance distribution functions as a slide being projected
onto the landscape in the nocturnal scenery. The slide filters the homogenous
OpenGL light source to provide the complex lighting characteristics. To add
the headlights illumination onto the scenery the standard rendering pipeline is
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Fig. 2. Overview of the distributed Visualization and Simulation Architecture

extended by additional steps after an object has been transformed, textured,
and ambiently lighted. The steps contain roughly the following operations:

1. Project the vertices of a scene object by an inverse perspective transforma-
tion onto its corresponding point on the luminance distribution texture.

2. Determine the illumination intensity according to the point’s position on the
luminance distribution texture.

3. Calculate the final illumination of the scene objects by using a vertex shader.
The vertex shader considers the illumination intensity value from step 2, the
color of the corresponding ambient lighted object vertex, and the distance
between the vertex and the observer for the distance-dependent attenuation
of light.

4.2 Distributed Shader Visualization

One of the biggest limitations we face in the Virtual Night Drive application are
the shader programs used for the simulation of the headlights. We use textures
of up to 2048x2048 pixels which represent the light distribution of one headlight.
This high resolution is needed to provide a realistic visualization of the headlights
and to study the differences between different types of headlights. Each car has
two headlights that is two textures and having a scene with more than one car
results in significant frame rate drops. Our approach is to use more than one
GPU to calculate the distribution of light for multiple cars in the scene. Starting
off with one car per GPU in later versions we may be able to optimize the code
to handle two or three cars.

The distribution takes place as follows:

1. For each simulated car one instance of VND-Vis is started.
2. All instance have the same view, that is viewport, frustum, camera position,

of the scene.
3. Each VND-Vis has the appropriate light distribution textures for one car.
4. Each instance renders a grey-scale image of its light distribution, not includ-

ing scene textures or colors.
5. All rendered images are sent to the additional VND-Vis instance where they

are combined and mapped to the unlighted scene.
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One difficulty of this method is the reassembly of the final frame because we
have to transfer and combine n high resolution pictures depending on how many
nodes are used. This implicates the need of very fast interconnects between the
visualization nodes and optimized algorithms to combine the rendered images.
In our case the visualization nodes are connected through a high speed Infini-
Band network that will be sufficient in terms of bandwidth and latency. For the
second problem, the combination of the frames, we are currently implementing
a software that can do this task with the help of GPUs or FPGAs. The goal is
to be able to distribute the shader computation and thereby breach the shader
limitation without the user noticing it.

4.3 Volumetric Light and Fog

To further improve realism in the simulation of luminance, one must consider
the three-dimensionality of light. Especially for headlights of cars the light cones
have very specific shapes that have effects on the illumination of the landscape,
blending of the oncoming traffic or refractions in foggy or rainy situations. In
order to simulate three-dimensional light we consider using specialized volume
rendering methods. Therefore, the relevant space in front of the car is partitioned
into a sufficient amount of voxels that all have a light value. These light values
are computed from the given light distribution texture by shooting attenuating
rays through the texture where they get their initial light values from. Each voxel
stores the light value of the ray at its current position. Thereby we get a highly
realistic three dimensional-luminance distribution. By varying the amount of
rays or the size of the voxels we can adjust the simulation in terms of performance
and quality. This computation only need to be done when the light distribution
texture is changed. Once calculated the 3d light distribution is projected into
the scene by shading technologies. To simulate fog or rain, particle systems can
be employed where each particle gets transparency and lighting information
from the voxel at its current position. This approach is still at an early stage of
development and will be published in more details soon.

5 Conclusion and Outlook

In this paper we presented an approach to use the power of distributed comput-
ing and visualization for an exemplary driving simulator at night. We designed
a component based architecture that supports us in researching new forms of
distributed visualization and the simulation of light. This architecture can easily
be reused in similar scenarios and applications because of its modular design
and its various interfaces. By distributing the visualization component we are
able to on the one hand visualize the VR application on various high-end devices
(tiled walls, stereoscopic displays, caves) without having to change the source
code and on the other hand can breach limitations that current hardware has.
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This for example helps to do interactive light simulations, as described above,
that were not possible on non-distributed systems before. On the basis of this
architecture we will develop other techniques for luminance simulation such as
the volumetric light approach also briefly described in this paper.
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Abstract. A self-adaptive radial basis function neural network (RBFNN)-based 
recognition of human faces has been proposed in this paper. Conventionally, all 
the hidden layer neurons of an RBFNN are considered to generate outputs at the 
output layer. In this work, a confidence measure has been imposed to select a 
subset of the hidden layer neurons to generate outputs at the output layer, 
thereby making the RBFNN as self-adaptive for choosing hidden layer neurons 
to be considered while generating outputs at the output layer. This process also 
reduces the computation time at the output layer of the RBFNN by neglecting 
the ineffective RBFs. The performance of the proposed method has been evalu-
ated on the ORL and the UMIST face databases. The experimental results indi-
cate that the proposed method can achieve excellent recognition rates and out-
perform some of the traditional face recognition approaches. 

1   Introduction 

Face recognition is a process, by which the identification of a person is determined 
from the faces stored in a large database. It has many potential applications, such as, 
surveillance, credit cards, passport, security, etc. Many approaches for face recogni-
tion have proposed since last two decades [1]. Neural networks have also been used 
successfully for face recognition problem [2]-[4]. The advantage of using the neural 
networks for face recognition is that the networks can be trained to capture more 
knowledge about the variation of face patterns and thereby achieving good generaliza-
tion. In recent times many researchers have used RBF networks for face recognition 
for its faster learning ability and best approximation property [2]-[4]. However, many 
of their success rates are not so promising under the variation of pose, orientation, 
scale and light [3]. This may be due to the fact that the selection of the centers of the 
hidden layer neurons might not have been done by capturing the knowledge about the 
distribution of training patterns and variations of face pose, orientation and lighting. 
Er et al. [2] have used principal component analysis (PCA) method with radial basis 
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function (RBF) networks for face recognition. The PCA techniques involve some face 
feature extraction process, which is computationally expensive. The PCA technique 
also retains unwanted variations due to lighting, facial expression, and other factors 
[2]. In our earlier work [3], we have used a modified k-means clustering algorithm 
using point symmetry distance as similarity measure to model the hidden layer neu-
rons of an RBFNN for face recognition. Yang et al. [4] have also used RBF neural 
network for face recognition.  

In this work, a self-adaptive radial basis function neural network-based recognition 
of human faces has been proposed. Conventionally, all the hidden layer neurons of an 
RBFNN are considered to generate outputs at the output layer. To make the RBFNN 
self-adaptive for choosing a subset of the hidden layer neurons to be considered while 
generating outputs at the output layer, a confidence measure has been imposed on the 
outputs of the hidden layer neurons. Thereby, the computation time at the output layer 
of the RBFNN gets reduced. 

2   Design of the Self-adaptive RBFNN 

The RBFNN is a three-layered feed forward neural network. The function of an 
RBFNN can be viewed as a process, which maps each of the p-dimensional input 
patterns from input space to a decision space of m-dimension. In doing so, a non-
linear function and a linear function are used in the hidden layer and output layer, 
respectively. Conventionally, a Gaussian function is used as a non-linear function, 
which is defined as follows: 
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where cj and σj are the center and the width of the receptive field of the jth neuron of 
the hidden layer, respectively, n and N are the total number of hidden layer neurons 
and total number of input patterns, respectively. The output of the kth output layer 
neuron is generated by the following linear function: 
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where wkj is the weight of the link between the jth neuron of the hidden layer and the 
kth neuron of the output layer, bk and wk are unit positive bias and weight of the link to 
the kth output neuron from the bias neuron, respectively. 

In this work, we have tried to implement the human cognition process, which, 
when new information comes, recalls only a few experiences those are highly related 
to the new information from its vast experiences. To realize the human cognition 
process, a confidence measure ε has been imposed to select the appropriate hidden 
layer neurons to be used to generate the outputs at the output layer of the proposed 
RBFNN. The jth hidden layer neuron is selected for the computation of outputs at the 
output layer for an input pattern xi if )x( ijϕ  ≥ ε, otherwise it is neglected. Therefore, 
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this approach selects those nonlinear models, which belong to the close neighborhood 
of the input pattern. This process reduces the number of false positives or intruders; 
since the less important information (here irrelevant faces) are excluded while com-
puting outputs at the output layer of the RBF networks. Since a subset of the total 
hidden layer neurons are considered, the computation time at the output layer also 
gets reduced. The value of ε should be chosen by considering the width of the recep-
tive fields of the Gaussian function used in hidden layer neurons, performance 
needed, etc. Therefore, considering the above model, the equation (2) becomes as 
follows: 
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It has been seen that the difference between two face images, taken varying pose, 
orientation, light, etc., of a person is much more than that of two different persons. 
Therefore, to cover the wide variation in the input space, each of the training images 
has been chosen as a candidate for a cluster center. A subset of the hidden layer neu-
rons is selected, according to the outputs of their Gaussian functions using equation 
(3), for each of the training patterns after completion of the very first epoch, while 
training the network. Since the centers of these Gaussian functions (i.e. the cluster 
centers) are fixed, the selected subset of the hidden layer neurons, corresponding to a 
training pattern, remains unchanged during the subsequent epochs during training 
period. Thus the training process remains stable in successive epochs.  

The Euclidean distance between the center of the jth hidden layer neuron and the 
center of the other nearest neuron, multiplied by a constant B, has been taken as the 
width of the receptive field of the jth hidden layer neuron and is defined as follows: 

σj = B x min ij cc − , i, j= 1, 2, …, n and i != j (4) 

where B (>=1) is a constant and its value can be obtained experimentally for which 
maximum average recognition rate is achieved.  

A faster version of the Least-Mean-Square (LMS) algorithm has been used to esti-
mate the weights of the links between the hidden layer and output layer of the pro-
posed self-adaptive RBFNN.  

3   Experimental Results 

The performance of the proposed method has been evaluated on two popular face 
databases, the AT&T Laboratories Cambridge database (formerly called ORL face 
database) [5] and the UMIST face database [10]. All the face images of the two data-
bases have been normalized by sub sampling with a resolution of 16x16 and 256 gray 
levels [3], [4]. Each face image has been converted into a 1-dimentional array by 
concatenating rows, where each element of the array represents the gray value of the 



356 S. Gharai et al. 

corresponding pixel. Thus, each face image is represented by a vector of 16x16 = 256 
features. The recognition rate (Ravg) has been defined as the ratio of the total number 
of correct recognition by the method to the total number of images in the test set for a 
single experimental run.  

3.1   Performance Evaluation on the ORL Database 

The ORL database contains 400 grayscale images of 40 persons. Each person has 10 
images, each having a resolution of 92 x 112 and 256 gray levels. Five (s=5) images 
from each individual of the database are selected randomly for training set and the 
rest of the face images are included in the test set. Therefore, a total of 200 faces are 
used to train and another 200 faces are used to test the self-adaptive RBFNN. It 
should be noted that there is no overlap between the training and test images. In this 
way five different training and test sets have been generated. Next, the training and 
test images are exchanged and experiments were repeated once more.  

In our first experiment, the value of the threshold (ε) on the output of the hidden 
layer neurons has been determined for which maximum average recognition rate is 
achieved. When value of the threshold is set to zero, all the 200 hidden layer neurons 
are considered for computation of outputs at the output layer. When this value is in-
creased slowly, some of the hidden layer neurons are neglected for computation at the 
output layer. Fig. 1 shows the average recognition rates of the proposed method for 
different values of the threshold. The highest average recognition rate (96.25%) has 
been obtained and average 188 hidden layer neurons are selected for computation of 
outputs at the output layer when value of the threshold (ε) is set to 0.145.  

In the next experiment, we have fixed the widths of the receptive fields. The per-
formance of the proposed self-adaptive RBFNN also heavily depends on the widths of 
the receptive fields of the Gaussian functions. The larger width means that the RBF is 
spread out more to cover a larger number of clusters in the input space, resulting in 
more misclassifications. Similarly, a shorter width also leads to more misclassifica-
tions since it will cover a small number of clusters. Fig. 2 shows the average recogni-
tion rate of the method by varying multiplicative factor B. It shows that the highest 
average recognition rate (97.10%) is achieved when B = 1.01. 

Due to the characteristics of the face structure, many features may be redundant in 
the 256-dimensional feature vector. In the third experiment, the performance of the 
self-adaptive RBFNN has been tested by reducing the feature vector length. We have 
taken average gray level of 2, 4, and 8 consecutive pixels on each row of the face 
image resulting in feature vectors of length 128, 64 and 32, respectively. The Average 
recognition rates and hidden layer neurons are found to be 96.30%, 95.00%, and 
91.25% and 182, 172, and 163 for 128, 64, and 32 features, respectively.  

The performance of the proposed method has also been evaluated by averaging 
gray levels of 2, 4, and 8 consecutive pixels on each column of the face image. The 
Average recognition rates and hidden layer neurons are found to be 96.90%, 87.85%, 
and 80.15% and 181, 164, and 135 for 128, 64, and 32 features, respectively.  
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Fig. 1. Recognition rate versus threshold value ε. The upper and lower extrema of the error bars 
represents the maximum and minimum values, respectively. 

90
92
94
96
98

100

0.5 0.75 1 1.005 1.01 1.05

R
ec

og
ni

tio
n 

ra
te

 (%
)

B  

Fig. 2. Recognition rate versus the value of B. The upper and lower extrema of the error bars 
represents the maximum and minimum values, respectively. 

The performance of the proposed method has also further been evaluated by aver-
aging gray levels of 2, 4, and 8 consecutive pixels on each row and column simulta-
neously. The average recognition rates obtained and hidden layer neurons selected are 
found to be 94.40%, 88.90%, and 53.85% and 174, 160, and 149 for 64, 16, and 4 
features, respectively.  

In all the above experiments, five (s=5) images per individual have been included 
in the training set and rests are included in the test set. However, in this experiment 
we have evaluated the average recognition rates of the proposed method by consider-
ing one, two, three, four, six and seven (s=1, 2, 3, 4, 6 and 7) images per individual 
into each of the training set and rests of the faces into the corresponding test set. For 
each value of s, 10 different training and test sets have been generated by selecting 
training images randomly from the database. It should be again noted that there is no 
overlap between the training images and the corresponding test images. Table 1 
shows the average recognition rates of the proposed method and hidden layer neurons 
selected (HLNavg), in 10 experimental runs using 256 features for different values of s. 
With s=6 we have achieved highest average recognition rate of 98.73%. 
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Table 1. Average recognition rates of the self-adaptive RBFNN for different number of training 
samples 

s 7 6 5 4 3 2 1 

HLNavg 269 229 188 145 101 51 39 

Ravg (%) 98.58 98.73 97.10 96.33 93.96 84.81 75.11 
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Fig. 3. Average mean square errors (MSEs) of the proposed RBFNN in successive epochs 

The training process of the self-adaptive RBFNN remains stable during training 
period, as discussed in Section 2. The convergence of the proposed method can be 
visualized by considering the convergence of means square errors (MSEs) at the out-
put layer over the training patterns. For the simplicity, Fig. 3 shows the convergences 
of average MSE in 10 experimental runs using each of the five different configura-
tions (s=2, 3, 4, 5, and 6) of the method. 

Recently, many researchers have used the ORL face database to evaluate the per-
formances of their algorithms [2], [3], [6]-[9]. The performances (in terms of average 
error rate, Eavg) of the proposed method have been compared with the methods re-
ported in [2], [3], [6]-[9], as shown in Table 2. The best values for the CNN [8], NFL 
[9], M-PCA [7], and PCA+FLD+RBF [2] are based on three, four, ten, and six runs of 
experiments, respectively. In our earlier work [3], we have achieved some good rec-
ognition results in comparison to the others. It should be noted that the results pre-
sented in Table 2 are obtained using 200 training and 200 test face images. The aver-
age error rate (Eavg = 2.90 in 10 experimental runs) of our method is comparable to the 
other reported methods.  

3.2   Performance Evaluation on the UMIST Database 

The UMIST face database consists of 575 gray-scale pre-cropped images of 20 peo-
ple, each covering a wide range of poses from profile to frontal views. Each subject  
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Table 2. Comparison of error rates with other methods 

Approach No. of simulations Eavg (%) 
CNN [8] 3 3.83 
NFL [9] 4 3.13 

M-PCA [7] 10 2.40 
PCA+FLD+RBF [2] 6 1.92 

RBF+Point Symmetry [3] 10 2.80 
RCGI [6] 1 8.50 

Proposed Method 10 2.90 
Proposed Method 6 2.50 
Proposed Method 4 2.25 
Proposed Method 3 2.00 
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Fig. 4. Recognition rate versus the value of B. The upper and lower extrema of the error bars 
represents the maximum and minimum values, respectively. 

also covers a range of race, sex and appearance. Each image has a resolution of 92 x 
112 and 256 gray levels.  

Eight images per subject have been selected randomly to form a training set of 160 
images. Remaining 415 images have been used as the corresponding test set. In this 
way five different training and test sets have been generated to test the performance of 
the proposed method. The recognition rate of the proposed method has been evaluated 
by averaging the recognition rates obtained over these five experimental runs. It 
should be again noted that there is no overlap between the training and test sets in a 
particular experimental run. In this experiment, first, widths of the receptive fields of 
the Gaussian functions have been identified and then value of the threshold of the 
output of the hidden layer neurons has been fixed. The average recognition rates of 
the proposed method over the UMIST database by varying the multiplicative factor B 
have shown in Fig. 4. The highest average recognition rate (96%) has been obtained 
by using B = 1.50.  

In this section, value of the threshold on the outputs of the hidden layer neurons 
has been set for which maximum average recognition rate is achieved. Fig. 5 shows 
the average recognition rates of the method by varying value of the threshold ε. In all 
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experimental runs, the value of B has been set to 1.50. The highest average recogni-
tion rate (96.24%) has been obtained and average 121 hidden layer neurons are se-
lected for computation of outputs at the output layer when ε = 0.025. 
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Fig. 5. Recognition rate versus threshold value ε. The upper and lower extrema of the error bars 
represents the maximum and minimum values, respectively. 

The recognition rates of the proposed method have also been tested by reducing 
feature vector length in row and column-wise. The values of B and ε have been set to 
1.50 and 0.025, respectively. The feature vector has been reduced in the same way as 
it has been discussed in sub-section 3.1. Average recognition rates and hidden layer 
neurons are found to be 95.71%, 96.48%, and 96.00% and 105, 83, and 60 for 128, 
64, and 32 features, respectively for row-wise reduction. Whereas the average recog-
nition rates and hidden layer neurons are obtained as 95.61%, 94.75%, and 93.01% 
and 112, 103, and 90 for 128, 64, and 32 features, respectively for column-wise 
reduction.  

In this experiment, the average recognition rates of the proposed method have 
been evaluated by considering four and six (s=4 and 6) images per individual into 
each of the training set and rest of the faces into the corresponding test set. For each 
value of s, five different training and test sets have been generated, by selecting 
training images randomly, from the database. The feature vectors for all the images 
of the training and test sets have been reduced by taking average gray level of 4 
consecutive pixels on each row of the face image, resulting its length of 64 features. 
The average recognition rates of the proposed method and selected hidden layer 
neurons, in 5 experimental runs for s = 6 and 4 are obtained as 91.69%, 88.04% and 
75, 63, respectively.  

A number of methods have also used the UMIST database to evaluate their per-
formances. Table 3 shows the comparison between the proposed method and the 
methods as reported in [11]. It should be noted that methods presented in [11] have 
not considered all the 575 images of the database; rather they have selected 25 images 
from each subject to construct 500 input images. In the case of six subjects, which 
have less than 25 images, they have generated a few “mirror” images to make the 
image number in the subject up to 25. 

ε
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Table 3. Comparison of error rates (%) with other methods 

No. of sample(s) / individual 4 6 8 
PCA [11] 16.94 13.25 6.40 

PCA+FLD [11] 14.24 9.33 5.43 
DLDA [11] 11.62 8.99 3.79 
2DPCA [11] 10.39 6.86 3.07 
2DFLD [11] 7.11 5.46 1.76 

Proposed Method 11.96 8.31 3.52 

The face recognition method has been implemented in C programming language 
on a Gateway Intel Pentium III 450 MHz computer with 256 MB SDRAM running on 
Fedora Core Linux. The method (with 64 features, 121 average hidden layer neurons, 
20 output layer neurons, B = 1.50 and ε = 0.025) takes approximately 12 minutes to 
complete a run of 10000 epochs, each one having 160 training images for the 
determination of the required parameters. On the other hand, it takes approximately 
13 minutes to complete the above run when ε is set to zero. Therefore, in the proposed 
method, the training time of the RBF network is approximately reduced by 7%. Once 
the parameters are determined, it takes about 2.4 milliseconds to recognize a face. 
Thus, the present method will be able to recognize faces in interframe periods of 
video and also in other real-time applications.  

4   Conclusion 

A face recognition system using a self-adaptive RBF neural network has been pre-
sented. Since the difference between the two face images of any person varies widely 
due to the variations of poses, orientations, expressions, etc., each of the training 
images has been considered as a candidate for an individual cluster. A criterion has 
been imposed for selection of a subset of the hidden layer neurons, which is to be 
considered for computation of outputs at the output layer of the proposed self-
adaptive RBFNN. In this way, the number of false positives or intruders and the total 
computation time at the output layer of the proposed RBFNN gets reduced. The ex-
perimental results obtained on the ORL and UMIST face databases with different 
configurations of the method, show some promising recognition rates in comparison 
to some other reported methods. 
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Abstract. Junctions form critical features in motion segmentation, im-
age enhancement, and object classification to name but a few application
domains. Traditional approaches to identifying junctions include convo-
lutional methods, which involve considerable tuning to handle non-trivial
inputs and diffusion techniques that address only symmetric structure.
A new approach is proposed that requires minimal tuning and can dis-
tinguish between the basic, but critically different, ‘X’ and ‘T’ junctions.
This involves a multi-directional representation of gradient structure and
employs asymmetric tensor diffusion to emphasize such junctions. The
approach combines the desirable properties of asymmetry from convolu-
tional methods with the robustness of local support from diffusion.

1 Introduction

Extracting high-level structure from image gradients is central to many com-
puter vision applications such as data interpolation, 3D scene reconstruction,
image enhancement, motion segmentation, and biometrics. Each requires a local
description of structure that includes contours and junctions. For example, pro-
cessing laser-rangefinder data or a stereo-depth map may involve interpolation of
sparse data, minimizing the effects of noise, and segmenting this information into
distinct objects [1]. Similar issues are found in the context of image enhancement
as contours and junctions denote regions where smoothing should be inhibited
[2]. In motion segmentation, identifying junctions in the spatio-temporal domain
indicate points of occlusion in a video sequence [3]. Similarly, junctions are used
to determine salient keypoints in fingerprints or defects in lumber [4,5].

One approach to highlighting junctions is to apply diffusion, where local in-
formation is distributed to its neighbors conditioned on specific parameters and
replaced with the consensus from that data. For example, isotropic diffusion
applies local averaging, weighted by relative proximity, to produce a blurring
effect. Most diffusion methods make use of gradient information represented by
a structure tensor [6]. Although it has several benefits, the structure tensor is
limited in that it may only represent gradient in a symmetric, or π-periodic form.
This implies that diffusion using such a form also results in symmetric informa-
tion, thus preventing the distinction between ‘X’ and ‘T’ junctions from being
made. A method to convert this symmetric information into a richer asymmetric

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 363–372, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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form had yet to be incorporated into the diffusion framework. A novel, two-step
solution is presented in Section 3, which first transforms the symmetric gradient
information into a directional voting field representation and second, iteratively
applies asymmetric tensor diffusion. The results of this approach are evaluated
experimentally and contrasted with various competing methods in Section 4.
Finally, several applications and future work are discussed in Section 5. Before
describing the details of our approach, some terminology is defined and a brief
review of previous convolution and diffusion approaches is provided in Section 2.

2 Background

To motivate this work, we begin with a review of convolution-based and dif-
fusion approaches with an emphasis on junction analysis. For consistency of
terminology, we refer to direction as the angle of a vector with respect to the
x-axis, ranging between [0, 2π) while orientation is π-periodic ranging between
[0, π). Symmetry in our work refers to the geometric interpretation with re-
spect to gradient-based contours and does not refer to the concept of symmetric
matrices.

2.1 Convolution-Based Approaches

Early work in the area of convolution-based, directional distribution functions
(DDFs) began with the use of Gabor filters [7]. The DDF is created by convolving
rotated versions of the kernel at discretely sampled angles and incrementing their
respective, angular bins similar to orientation histograms [8]. (examples of DDFs
are shown in figure 3) Although the Gabor uses a quadrature pair to address
both even and odd-phased gradients, its form is symmetric thus preventing the
distinction between ‘T’ and ‘X’ type junctions directly. Asymmetric kernels were
proposed to highlight such distinctions. For example, Gaussian derivatives were
used to derive logical/linear operators and one-sided filter pairs [9,10], while later
work by Simoncelli and Farid improved on the accuracy by designing a set of
polar-based Gabor kernels, known as wedge-filters [11].

The DDF maxima for these methods do not necessarily imply gradient struc-
ture along the direction of the maxima as they are template-matching approaches
at their core: implying that they are best suited to finding matches between pat-
terns and not necessarily designed to identify gradient structure [12]. Although
steerability has been explored in the use of such approaches, [10], they also re-
quire a large bank of filters to address different spatial frequencies [13]. Improved
results were obtained using the rotated averaging wedge method (RWAM), which
calculated average pixel values within wedge-shaped regions and generated the
DDF as the 1D derivative of these values [14]. More recent work by Michelet et
al. used a homogeneity function based on an asymmetric sampling grid to pop-
ulate the DDF, albeit without the benefit of local support through diffusion and
also requiring considerable parameter tuning [15]. Although these approaches
perform well on trivial, step-edge images, they are inappropriate for estimating
gradient direction on more complex data such as that in Figure 3a.
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2.2 Diffusion-Based Approaches

The convolution-based approaches described in section 2.1 apply a kernel to the
data at a given scale to create the DDF. An alternative is to propagate gradi-
ent information from all pixels to their corresponding neighbors. This process,
known as diffusion or regularization, maintains a balance between the original
information through the data consistency term, while biasing the local model us-
ing the diffusion term [2]. The gradient data is best represented using a structure
tensor as it encodes not only the orientation and magnitude but the coherence,
as in Equations (2-4):

S =
[
I2x IxIy
IxIy I2y

]
(1)

θ = tan−1
(
e1y/e1x

)
(2)

|S| = (λ1 − λ2) (3)

ς =

{(
λ1−λ2
λ1+λ2

)2

if (λ1 + λ2) > 0
0 otherwise

(4)

where Ix is the partial derivative of image I(x, y) with respect to x, (e1, e2,λ1,
λ2) represent the eigenvectors and values from the decomposition of structure
tensor S respectively and ς is the coherence measure as outlined by Jähne that
provides a measure of certainty in gradient direction along e1 with respect to
e2 [6].

Diffusion techniques can take many forms. For example, isotropic diffusion
is a common approach where data is propagated to its neighbors based solely
on relative proximity. This method reduces noise at the expense of maintaining
high gradient (edge) information. Anisotropic diffusion, reviewed in detail by
Tschumperlé and Deriche [2], preserves edges by restricting smoothing across
high gradient regions [16].

Orientation diffusion, enforces the periodic nature of symmetric gradient in-
formation through the use of a specialized influence function [17]. Several other
works refer to direction-based diffusion in the context of gradient polarity di-
rection to bolster pixel-based feature points or in the framework of color en-
hancement [18,19]. However, the focus of our work is on a phase-independent
description of the gradient structure.

To account for more complex interaction between gradient structures, tensor
voting was introduced [1,20]. It not only diffuses based on proximity, but also
on relative curvature as well as allowing for slowly-varying, orientational pat-
terns with a biasing parameter to favor linear rather than curved contours. This
approach is adept at handling both sparse and noisy data and requires mini-
mal memory requirements by using a single tensor representation at each node.
Relaxation labeling, which permits multiple representations [21], adds support
to those pixel locations or nodes that have compatible structures based on such
criteria as co-circularity, co-heliocity or the normal and tangential curvature
components to the tensor fields [22,21,23].
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3 Asymmetric Tensor Diffusion (ATD)

The previously described diffusion-based approaches directly apply symmetric
information derived from the structure tensor, implying that the resulting DDFs
are also symmetric. This section proposes a technique to transform the orienta-
tion of the structure tensor data into a directional-based voting field to allow for
an asymmetric form at each node. Specifically, a voter distributes ballots to all
of its neighbors (receivers). The ballots are collected into their respective DDFs,
which are then used to seed a secondary, diffusion stage.

3.1 Stage One: Directional Voting Field

Early work in the conversion of orientation data into a meaningful, directional
voting field was proposed in [24]. The present work serves not only to clarify and
extend this concept but also to provide a means by which to properly diffuse
such information. We first determine the orientation, magnitude and coherence
of the structure tensor as per Equations (2-4). Next, an inwardly facing direc-
tional bin field, which represents the initial ballots and the spatial locations of
their corresponding receivers, is constructed. Each ballot points towards the axis
perpendicular to the orientation of the structure tensor, as per Equations 5-6.

Bij (θi, ε) =
{
θi + επ |θi − ϕij | > π

2
θi + (ε+ 1)π otherwise

(5)

Ψij (θi, ε) =
{

1 − 1
2τ ≤ xij ≤ 1

2τ
1 − ε otherwise

(6)

where ε={0, 1}, Bij and Ψij denote the ballot direction and magnitude 1 respec-
tively, θi is the orientation of the structure tensor at i, τ is the minimum distance
between nodes, and ϕij denotes the angle from voter i to receiver j with respect
to the x -axis. A directional bin field created from a horizontally oriented input is
illustrated in Figure 1b, where the ballots point inward towards the vertical axis.
To account for the ambiguity in the original orientation, two opposing ballots
are placed along the vertical axis, centered on the original data. The ballots are
aligned parallel to the original orientation, rather than being steered toward the
center point to prevent biasing at this early stage of processing.

The strength of each ballot sent from voter i to receiver j is then weighted
by an anisotropic map, known as the region-of-influence (ROI) function, Λij ,
aligned with the orientation of the original data:

Λij (θi, ε) = G (0, σx) · Ψij (θi, ε) · R (θi) (7)

where G is a 2D Gaussian with zero mean and σy = qσx (Figure 1c) where q is
the sigma ratio, and R(θi) is the rotation matrix.

1 In essence, Ψ distinguishes between single- and double-ballot locations where the
latter is assigned to points of orientational ambiguity.
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(a) (b) (c) (d)

Fig. 1. Stage one: structure tensor with horizontal orientation and coherence=1 (a),
Bij (b), Λij (c), and the directional voting field where both the vector magnitude and
grayscale denote their relative influence (d)

Rather than summing the collected ballots at each receiver into a single value,
a histogram of N directional bins is used to collect the ballots, as per Equation 8.
While this requires greater memory than that of anisotropic diffusion, tensor
voting, and relaxation labeling, it allows for the all-important representation of
asymmetric structures.

DDFj (ϑ) =
1∑

ε=0

Ω∑
i=1

S̃i · Λij (θi, ε) ·m (ϑ,Bij(θi, ε)) (8)

m (p, q) =
{

1 p = q
0 otherwise

(9)

where ϑ denotes the directional bin, Ω the local neighborhood around j and S̃i

the normalized version of the original structure tensor Si. In brief, voter i sends
a ballot S̃i, weighted by Λij , to bin ϑ = Bij of receiver j.

3.2 Stage Two: Iterative Diffusion of DDF

From stage one, the DDF of each receiver is represented by a single structure ten-
sor per directional bin. This is transformed into a 1D-DDF prior to the diffusion
process using a summation of 2π-periodic, normalized Gaussians, G2π(μ, σ, x).

DDF (ϑ) =
N∑

β=1

|Sβ| ·G2π

(
θβ , σςβ

, ϑ
)

(10)

σς = (1 − ς) (σmax − σmin) + σmin (11)

Gaussians, normalized to unity area under the curve, are amplified by the mag-
nitudes, |Sβ |, where their means are centered at θβ and variances are a function
of coherence. The values of (σmin, σmax) were assigned empirically as (0.25, 2)
to vary between certain and uncertain estimates, where coherence is bounded
between [0, 1]. An example of this transformation with three populated bins of
successively decreasing coherence, is illustrated in Figure 2. The more elongated
ellipses correspond to greater coherence values, which are reflected by Gaussians
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Fig. 2. Stage Two: Three tensors at directional bins 40o (black), 230o (light-gray) and
270o (dark-gray) (a) and their corresponding Gaussians and their 1D-DDF (dashed-
line) (b), polar-equivalent (c) and associated weighted, voter-facing, ballot field (d)

of lower variance. These are summed to form the 1D-DDF, which is then con-
verted into a 2D weighting map with radial-based decay as per Equation 12 and
illustrated in Figure 2d.

Λ̂ij =

⎧⎪⎨⎪⎩
1 ρij < DDF (ϕij)
cos

[
π
2

(
ρij−DDF (ϕij)

ρmax−DDF (ϕij)

)]
DDF (ϕij) ≤ ρij ≤ DDF (ϕij) + ρmax

0 otherwise
(12)

where the hat notation of Λ̂ reflects the second stage, ρij is the Euclidean distance
between nodes i and j, and ρmax denotes the degree of radial decay. Here, each
receiver j, obtains a single ballot from voter i, corresponding to the DDF value
at i pointing towards j. This ballot increments a directional bin at j that points
towards i. We refer to this arrangement as the voter-facing ballot field. The DDF
is then updated as:

DDF t
j (ϑ) = α ·DDF t−1

j (ϑ) + (1 − α) ·
Ω∑

i=1

Λ̂ij ·DDF t−1
i (ϕij) ·m (ϑ, (ϕij + π))

(13)
where t refers to the iteration step and α denotes the diffusion coefficient. An
example of the voter-facing ballot field is illustrated in Figure 2d.

Our approach offers many advantages. First, the only free parameters to tune
are the sigma ratio q for G (empirically set to 1/2) and the scale that dictates
the range over Ω. Second, by diffusing non π-periodic DDF information, local
support is enforced at the pixel level. Finally, this method can also represent
endpoints as well as curved structures using the DDF form.

4 Experimental Evaluation

The ATD method is first compared to the convolution approaches against a
T-junction image. Next, it is contrasted against the diffusion methods for two
tensor field layouts. Finally, ATD is applied to two real-world applications. For
all trials and algorithms, N=36.
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4.1 Results Against Convolution Approaches

A test-image having asymmetric gradient information derived from several spa-
tial frequencies was used, as shown in Figure 3a. All methods used a scale to
match the image of 11x11 pixels. Parameters were tuned for best results against
a step-type corner swatch: exemplifying the need for a bank of filters for con-
volution approaches. The Gabor identified the horizontal orientation; however,
was incapable of distinguishing the lack of a downward gradient direction as the
filters themselves are symmetric. The one-sided, wedge filter and RWAM fall vic-
tim to the presence of several pixel-values along orientations that do not radiate
from the center of the image while the ATD properly depicts the three gradient
directions.

4.2 Results Against Diffusion Approaches

The test sets used to compare with the previous diffusion methods depict an ‘X’
and ‘T’-shaped structure tensor layout (Figures 4(a,g) respectively). Note that
the DDFs shown are from the annotated points ‘P’ and ‘Q’. For the isotropic,
anisotropic and tensor voting methods, the DDF is represented by a single struc-
ture tensor and visualized as an ellipse oriented along e1 with major and minor
radii corresponding to (λ1, λ2). From their results, it is not obvious whether it
resulted from two, perpendicular tensors, or a single tensor with less certainty
without further processing. While relaxation labeling was able to distinguish the
two orientations, only the ATD could disambiguate between the two cases.

Fig. 3. (a) Input image and resulting DDF’s for (b) Gabor, (c) one-sided [10], (d)
wedge filters [11], (e) RWAM [14] and (f) ATD

4.3 Results with Real-World Data

Junction structures are key to occlusion detection in video sequences as occlusion
is denoted as splitting or merging of contours [3]. Using the flower garden se-
quence, a spatio-temporal slice was extracted and ATD applied. Close-ups of the
annotated locations of Figure (5d) correspond to occlusion, disocclusion and no
occlusion respectively. The scale used was 9x9 and DDFs reflect three iterations
for this experiment.
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Fig. 4. Top row: X-junction test case and bottom row: T-junction test case. 1st column:
initial test layouts, 2nd column: isotropic, 3rd column: anisotropic, 4th column: Tensor
Voting [1], 5th column: Relaxation Labeling [22] and 6th column: ATD.

Fig. 5. Two images from the flower garden sequence (a,b) with the corresponding
spatio-temporal volume (c), where a 2D slice is taken from y=80 (d), indicating three
sample locations:‘A’,‘B’,‘C’ denoting occlusion, disocclusion and no occlusion respec-
tively. The initial gradient orientations (e,f,g) and resulting DDFs from proposed ap-
proach (h,i,j) taken from the center of the sample regions.

Junction are also important in fingerprint analysis. A trivial junction model
was implemented as a proof-of-concept. For a given DDF, lobe-based features
were depicted at DDF maxima with an associated saliency equal to the area
of said lobe (integral between the maxima’s left and right-wise local minima).
Lobes having a saliency of less than 10% of the maximum saliency per DDF were
trimmed. Figures (6(b-e)) depict the identification of nodes with a 1,2,3 and 4
lobes respectively.
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Fig. 6. Fingerprint (a) and its sub-image (f), junction classification for 1,2,3 & 4 lobes
(b-e) respectively with DDF close-ups corresponding to labels (1-4)from (f) in (g-j)

5 Conclusion

A novel approach of transforming symmetric gradient information into asym-
metric DDFs is proposed, along with a method by which to diffuse them. The
accuracy is shown to be an improvement over current convolution-based ap-
proaches and the asymmetric representation allows for the distinction between
non-π periodic structures. Future work will investigate a multi-scale as well as a
3D implementation.
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Accurate Extraction of Reciprocal Space

Information from Transmission Electron
Microscopy Images

Edward Rosten and Susan Cox
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Abstract. As the study of complex systems has become dominant in
physics the link between computational and physical science has become
ever more important. In particular, with the rising popularity of imag-
ing techniques in physis, the development and application of cutting edge
computer vision techniques has become vital. Here we present novel im-
age analysis methods which can be used to extract the position of features
in diffraction patterns (reciprocal space) with unprecedented accuracy.

The first contribution we have developed is a method for calculating
the nonlinear response of photographic film by using the noise in the im-
age enabling the extraction of accurate intensity information. This allows
high-resolution (but non-linear) film to be used in place of low-resolution
(but linear) CCD cameras. The second contribution is a method for ac-
curately localising very faint features in diffraction patterns by modelling
the features and using the expectation maximization algorithm directly
on the image to fit them. The accuracy of this technique has been verified
by testing it on synthetic data.

These methods have been applied to transmission electron microscopy
data, and have already enabled discoveries which would have been im-
possible using previously available techniques.

1 Introduction: TEM and the Importance of Image
Analysis

Over the last twenty years the ability to image materials with electrons, which
have a wavelength considerably smaller than light, has revolutionised the phys-
ical sciences. However, generating meaningful data from the images obtained
often requires automated image analysis. A number of programs have been cre-
ated which perform basic operations well, but when dealing with diffraction
patterns (reciprocal space) and with situations where accuracy and statistical
significance are critical these are not adequate. Here we present methods for
extracting extremely accurate and statistically significant data from diffraction
patterns.

The diffraction patterns shown here were obtained using transmission electron
microscopy (TEM), an important technique in both academia and industry. In
a transmission electron microscope [1] a beam of electrons accelerated through
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a* c*

Parent lattice reflectionSuperlattice reflections

Fig. 1. A diffraction pattern taken from La0.5Ca0.5MnO3. The parent lattice reflections
are caused by the cubic parent lattice. The superstructure reflections are caused by the
additional ordering which occurs at ∼ 220K [2], and occur along the primary axis
(labelled a∗). The cutout has been enhanced to make the weak reflections more visible,
since they are present as very faint spots. The superlattice reflections centred at ∗ and
+ are shown in the other highlighted area of the diffraction pattern. The positions are
found using the method described in Section 4.

a high voltage passes through a thin (< 200 nm) area of a sample. The beam
then passes through a series of magnets which act as lenses. By adjusting the
strength of these magnets either an image of the sample (real space information)
or a diffraction pattern (reciprocal space information) can be observed, and
recorded using photographic film or a CCD (depending on the microscope).
Thus both images and diffraction patterns can be obtained from the same area
of the sample. The most advanced TEMs can perform imaging almost at the
atomic scale.

A diffraction pattern is essentially a power spectral density of an affine pro-
jection of the crystal lattice (the array of repeating units, or unit cells, which
comprise the crystal), with some additional effects arising from dynamical (in-
elastic) diffraction, which can be ignored here. The main crystal lattice (the
parent lattice) gives rise to a regular grid of spots termed parent lattice reflec-
tions. In the case of a typical pseudo-cubic parent lattice (see Figure 1), the
grid is described by the two wavevectors a∗ and c∗. A wavevector is simply a
vector defined in reciprocal space. Some materials have a repeating superstruc-
ture with a period greater than the unit cell size superimposed on the parent
lattice. In reciprocal space this gives rise to reflections at wavevectors smaller
than the unit cell (superlattice reflections). In many strongly correlated systems
a one-dimensional electronic superstructure forms at low temperatures. Pairs
of superlattice reflections appear along one axis in the diffraction pattern. The
position of the superlattice reflections is given by a wave vector whose magni-
tude is denoted q (with units m−1), though it is often given in units of a∗. The
relative intensity of the superlattice and parent lattice reflections varies widely
depending on the type of sample, and in some experiments the superlattice re-
flections can be extremely faint as demonstrated by the diffraction pattern for
an La0.5Ca0.5MnO3 thin film shown in Figure 1.
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Although a great deal of effort and expertise has gone into designing packages
for the analysis of certain kinds of TEM images (e.g. SEMPER [3], Digital Mi-
crograph), analysis of diffraction patterns has typically been performed by hand,
which is time consuming and inaccurate. In Section 2 we present a technique
for finding the nonlinear response of photographic film, which allows analysis
techniques which require a linear response to be used. In Section 4, we present a
system which not only allows individual measurements of superlattice reflections
to be made with high, and quantifiable, accuracy, but can measure the position
of every reflection in a diffraction pattern. This allows results to be measured
to a high level of statistical significance, and makes it feasible to obtain data
from patterns which would previously have been abandoned as unusable. These
techniques have been applied to previously unsolvable problems and the results
are presented in Section 5.

2 Nonlinear Film Response Correction

CCD image sensors have a linear response with electron intensity which allows
the intensity of the image to be accurately measured. However, the use of pho-
tographic film has two advantages relative to using a CCD: firstly the resolution
of scanned film is high (typically ∼ 4000 × 4000 pixels, compared to 512 × 512
for common TEM CCD sensors); secondly, the physical robustness of the film
allows much longer exposure times (excessive illumination of a CCD with elec-
trons causes damage). This heavily saturating the brighter reflections, allowing
the faint ones to be visible. However, in order to interpret intensity information
from photographic film correctly it is necessary to process the image, so that the
image intensity is proportional to electron intensity.

Manufacturers provide calibration curves for the film, but they are only accu-
rate if development conditions are identical. This is unlikely to be the case since
the strength of the developing solutions changes over time as they are used or
replaced. Instead, we present a method where the film response can be deduced
from the image noise, individually for each image.

Noise in the electron intensity is approximately constant over the image, and is
caused by random scattering of the diffracted electrons (the diffraction patterns
are typically not scanned at a resolution where film grains are visible, and the
level of shot noise is negligable, since the exposure time is long). Therefore, at a
given film intensity, fi, the amount of image noise, η, is related to the electron
intensity ei:

η ≈ d fi

d ei
, (1)

since d fi

d ei
is the film sensitivity and the electron intensity can be arbitrarily set

so that the noise variance is unity. We use this relationship to find the response
of the film. To do this, we first smooth the image, to remove noise and then find
the difference between the smoothed image (f̂i) and the unsmoothed image (fi)
at every pixel (the difference being due to noise). The measurements are binned
by image intensity, and the amount of noise is measured by taking the standard
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Fig. 2. Plot of noise intensity against image intensity, taken from a typical diffraction
pattern

deviation of the measurements in each bin. Linear smoothing techniques such
as convolving with a Gaussian kernel are unsuitable because they cause features
to spread out. Instead, we fit polynomials of order r to groups of n consecutive
pixels along every scanline to smooth the image. The values of n and r depend
loosely on the feature size.
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Fig. 3. (a) Film response measured with r in the range 3 . . . 10 (in steps of 1) and n in
the range 3r . . . 50 (in steps of 10). (b): Noise distributions for the film responses. (c)
A diffraction pattern before and after correction with the film response curve, using
r = 5 and n = 15.

Having measured η for all image intensities, we now have an approximate
measure of the differential of the film response, which is shown in Figure 2.
Note however the increase in noise for very small pixel values. This is an artifact
caused by the the image being clipped at an intensity of zero, which is not taken
in to account by the polynomial fitting (even though after fitting, the polynomial
is clipped). The function mapping the film intensity to the electron intensity,
ei = ρ(fi) is given by:

ρ(fi) =
∫ fi

0

1
η(τ)

d τ (2)

and

ρ(0) = 0. (3)
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Fig. 4. Plots of scanlines through diffraction patterns of La1−xCaxMnO3. The plot
shows that the calibrated film response and CCD response are very similar. The dif-
fering peak widths are caused by differences in focus.

Using this equation on the data from Figure 2, we obtain the response curve ρ,
shown in Figure 3 a. The integral relationship is useful since it results in a curve
which is significantly smoother than the measured noise data. Is should be noted
that result is not well modelled by a classic gamma correction curve (ρ(i) = iγ):
the curve for low pixel values is well modelled in this manner, but the response
at high pixel values is dominated by the film saturating. The result of applying
this to an image is shown in Figure 3 c.

Figure 3 a, b also show the effect of different values of r and n. As can be
seen, the computed response is insensitive to these values. Further, it shows that
the noise distribution is strongly non-Gaussian. This backs up the calculation
showing that the shot noise is small, since at the currents and exposure times
used, the distribtuion of shot noise (which follows a Poisson distribtuion) would
be approximately Gaussian.

2.1 Evaulation

In order to test the film calibration, one would ideally expose the film to a known
pattern (such as a ramp), and record the film response to the known electron
intensity. Unfortunately, this is not possible with the equipment involved. If a
sample viewed with a CCD is compared to a sample viewed on film, then the
relative intensities of the spots should be the same (when the film is corrected
for its nonlinear response). This is because a CCD responds linearly to electron
intensity.

Figure 4 shows linescans through a diffraction pattern taken on a CCD and
film. For comparison, the background level has been removed, and the brightness
of the images adjusted so that the main peaks are of the same intensity.

The darker spots are significantly stronger on the film than on the CCD.
When the film is corrected, the spots are approximatly the same height. This
gives a good indication that the film calibration produces accurate results.
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3 Accurate Measurement of Parent Lattice Reflections

In order to measure the superlattice reflections, the parent lattice has to be found
first. This is done by manually identifying two adjacent parent lattice reflections.
The positions of these are then refined using the mean-shift algorithm [4]. Since
the diffraction pattern is regular, two spots are enough to define the entire grid
of reflections. In particular the pair of spots are used to define the primary
(a∗) axis, which is the direction along which the superlattice ordering occurs.
However, using only two spots to define the grid is not sufficiently accurate
without further refinement.

The two parent latice positions defines the entire grid of reflections. The
distortion is sufficiently low that each point lies close enough to the relavent
real parent lattice reflection that mean-shift can successfully refine the
position.

There currently exist a variety of techniques for finding the parameters of
imaging systems, such as [5], which finds the parameters of pinhole cameras,
and [6] which find the parameters of a more sophisticated model, which models
nonlinearities with radial distortion. However, not only is the imaging system
in a TEM is not well modelled by these, but many of the standard calibra-
tion procedures require multiple views of a 3D scene. Instead, we have a set
of correspondences between points in the image (the lattice reflections) and
a known shape (a 2 dimensional square grid, the scale, position and orienta-
tion of which can be chosen arbitrarily), so we use a general purpose distortion
model. The model we use to cover all the distortions is akin to a nonlinear
(higher order) version of the homography (this is similar to the model presented
in [7]):

⎛⎝sxsy
s

⎞⎠ =

⎛⎝h1,1 . . . . . . h1,2n+1

h2,1 . . . . . . h2,2n+1

0 . . . 0 h3,2n−1 h3,2n 1

⎞⎠
⎛⎜⎜⎜⎜⎜⎜⎜⎝

Xn

Y n

...
X
Y
1

⎞⎟⎟⎟⎟⎟⎟⎟⎠
, (4)

where (x y) are the grid coordinates and (X Y) are the image coordinates, nor-
malised so that the range of X and Y is ±1. Writing H =

(
h1,1 . . .

. . . 1

)
, we first find

the parameters of H using a linear solution and then refine this using reweighted
least-squares to minimize the image-space error. Reweighting is required because
despite the distortion model, some errors are not easily modelled. For instance, a
relatively large amount of distortion can occur nearby where the film is clamped
in the scanner. Apart from the components of H required to get the image at
the correct orientation, position and scale, the components are typically quite
small, and make corrections on the order of 2–3 pixels towards the edge of
the image.
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4 Accurate Localisation of Superlattice Reflections

In order to find the superlattice reflections, several standard feature detectors
were tested, Harris [8], a DoG (difference of Gaussians—the detector used for
SIFT [9] features) based detector and FAST [10]. However, due to the noisy
background and the faint, sometimes overlapping nature of the features, the
performance of these detectors was poor on all but the best images. Instead, a
model of the image (as opposed to a general purpose detector) is used to achieve
much more accurate detection.

A diffraction pattern can be considered to be an unnormalised probability
distribution, with each pixel representing the probability that a given diffracted
electron will end up there. In addition to linear diffraction, the electrons also
undergo several linear and nonlinear effects. The end result is that the sup-
perlattice reflections end up approximately Gaussian. There is also spreading
from the main central reflection, which results in the space between the spots
not being completely black. This spreading typically takes the form of a very
shallow gradient away from the central reflection. On the scale of a pair of su-
perlattice reflections, this can considered to be flat. Therefore, we can model
the patch of image around a pair of superlattice reflections as a mixture model
consisting of two isotropic Gaussians (the superlattice spots) and a constant
background level, where the size, position and scale of the Gaussians and the
scale of the background are the degrees of freedom. We can then fit this model
direcly to the image patch around the superlattice reflections using the Expecta-
tion Maximization (EM) algorithm [11,12]. Since a reasonable initialization for
EM is available—a∗ is known and the wave vector (q/a∗) is always quite close
to 0.5a∗—the resulting algorithm is very robust and is capable of finding the
positions of very faint spots, in high noise images. This is illustrated in Figure 1.

4.1 Evaluation

In order to test the accuracy of the superlattice localisation, the system was
run on simulated TEM images so that a ground truth measurement for the
spot position was known. The simulations measure accuracy under the following
common noise conditions:

1. Addition of uncorrelated noise to the image.
2. Addition of correlated, unmodelled intensity changes. These occur as a result

of spreading of bright parent lattice reflections and are manifested as an
intensity ramp aligned with the approximate direction of the superlattice
reflections. They are modelled here as a linear ramp, but in practice, the
profile is quite variable.

This is tested in the following manner:

1. Generate ideal image (a constant value with two Gaussian spots at known
positions).

2. Add a linear ramp (from −R to R in intensity) aligned with the superlattice
reflections.
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Fig. 5. (a) Graph showing how computed values for q/a∗ vary with increasing noise.
The background intensity is 0.1, the spot intensity is 0.1 (typical values from images)
and the noise intensity (standard deviation) varies from 0 to 0.35. The patch size is
31 × 31 pixels. (b) Histogram of computed positions. The mean of this distribution
is the asymptotic noise mean in (a). (c) Proportion of points which converge on the
inlier (as opposed to background) distribution. (d) Accuracy of spot position, when
300 measurements are taken (a typical number).

3. Add uncorrelated noise, of standard deviation σ to each pixel.
4. Clip image intensities to the range 0–1.
5. Attempt to find the spot positions using EM.

When the mixture model fails to converge to a sensible value (for instance when
the size of the spots becomes zero, or the computed position or the spots cannot be
correct given that q < 0.5a∗) the result for that individual computation is rejected.

The results of the computed mean for additive noise only (i.e.R = 0) are shown
in Figure 5 a. As can be seen, if the mean value of the computed values is taken,
then the mean decreases with increasing additive noise. The reason for this is that
EM will either converge on the correct spot position (with some small amount of
noise), or some a random position with the ‘background’ distribution. When the
noise gets large, the background distribution will dominate, so the mean computed
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Fig. 6. Plot of the computed spot position against the additive ramp intensity. The
parameters are given in Figure 5 and the noise intensity is 0.05. The histogram is taken
from the high noise limit with no additive ramp. When the ramp intensity exceeds about
0.6, there are no instances in which the system converges to sensible value.

position will simply be the mean of the background distribution. At intermediate
points, the computed mean will be between the two distributions.

The mean can instead be computed robustly by modelling the computed posi-
tion as a mixture model of a Gaussian (representing correct points) and outliers
uniformly distributed between 0 and 0.5. This mixture model can be fitted to the
results (using EM), and the mean position of the Gaussian can be taken as the
computed spot position. It turns out that the background distribtuion is not in
fact uniform as one might expect, but is instead given by the histogram in Fig-
ure 5 b. The reason for this is because there is a background constant component
in the image which will slightly bias the mixture model to converge towards the
centre. However, as can be seein in Figure 5 a, using this distribution, instead of
the uniform distribution in the computation of the mean does not produce sig-
nificantly better results. However, both robust techniques produce significantly
better results than the simple mean computation.

The robust computation of the mean also gives the probability that the mea-
surement is drawn from the Gaussian (foreground) or background distribution.
This can be used to compute the proportion of measurements which converge to
the correct place. This is shown in Figure 5 c. This can also be used to estimate
the accuracy (standard deviation) of the computed mean spot position as shown
in Figure 5 d. Note that when the noise gets large, the robust mean using the
histogram as the background distribution produces considerably more accurate
estimates of the accuracy.

For the correlated noise, the results of the computed mean varying with R are
shown in Figure 6. This shows that the system is very sensitive to unmodelled
correlated noise. This justifies the decision to treat each pair of supperlattice
reflections seperately, as opposed to computing the average pixel values over all
pairs, since a few patches with strongly correlated noise could easily prevent the
system from finding the correct spot position.
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5 Conclusions

This paper has demonstrated that it is possible to correct the nonlinearity of
photographic film, and to extract the positions of superlattice reflections to
a very high degree of accuracy, even when the signal to noise ratio is low.
These techniques have allows us to extract information from very faint super-
lattice reflections. By analysing subtle spatial variations of the superstructure of
La0.5Ca0.5MnO3 using the methods presented here, it was possible to show that
the periodicity of the superlattice can be altered by altering the strain present
in the thin film [13].
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Abstract. Visualizing large unstructured grids is extremely useful to
understand natural and simulated phenomena. However, informative vol-
ume visualization is difficult to achieve efficiently due to the huge amount
of information to process. In this paper, we present a method to efficiently
tessellate on a GPU large unstructured tetrahedral grids made of mil-
lions of cells. This method avoids data redundancy by using textures for
storing most of the needed data; textures are accessed through vertex
texture lookup in the vertex shading unit of modern graphics cards. Re-
sults show that our method is about 2 times faster than the same CPU-
based extraction, and complementary with previous approaches based
on GPU registers: it is less efficient for small grids, but handles millions-
tetrahedra grids in graphics memory, which was impossible with previous
works. Future hardware evolutions are expected to make our approach
much more efficient.

1 Introduction

1.1 Motivations

Visualizing isosurfaces is essential in many different fields of scientific research
like Computational Fluid Dynamics (CFD), finite element modeling and medical
and seismic tomography. These applications often use large unstructured grids
made of millions of tetrahedra. Handling these kind of very large grids without
out-of-core or parallel algorithms using a simple pc leads our approach.

Each cell, in an unstructured tetrahedral mesh, has a constant topology.
Hence, very specialized algorithms for this type of cells have been carried out
using hardware acceleration techniques [1,2,3,4]. Unfortunately, these methods
introduce sometimes redundancy in the storage method, strongly limiting the
size of the grid or, sometimes, use special non-standard functionalities imple-
mented on few graphics cards.

We propose a way to efficiently extract an isosurface from a scalar field by
means of modern GPUs for unstructured tetrahedral meshes. Our method han-
dles very large grids made of millions of tetrahedra by means of common GPUs.
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1.2 Previous Work

Isosurface extraction can be optimized by going only through the intersected
cells in the grid, and by accelerating the extraction of the isovalue polygon in
each intersected cell.

When marching through all cells to extract an isosurface, most of the time
is spent checking for non-intersected cells. Therefore, algorithmic acceleration
techniques have been investigated to discard non-intersected cells before ren-
dering them. Contour seeds [5,6,7] start from seed cells to propagate over the
grid to build the requested isosurface. Interval Trees [8] work on value space to
classify cells within intervals of values. Octrees [9] recursively subdivide space
remembering at each stage the interval of values contained in each subdivision.
Others important algorithmic acceleration techniques exist [10,11,12] and are
very efficient.

This article is mainly focused on cell tessellation of large grids. Cell tessellation
has been extensively studied in the literature for the past 20 years. The Marching
Cubes [13] is one of the first efficient techniques to directly tessellate a hexahe-
dron. Cell projection [14] doing indirect extraction or a technique that turns
around faces [15,16,17] using topological links between the vertices/faces/edges
of each cell, are others basis of art. Our method is inspired by the Marching
Cubes [13], so we now review the main steps of this algorithm.

The Marching Cubes algorithm efficiently tessellates a hexahedron, using two
precomputed lookup tables: the table of edges contains the numbers of the be-
ginning and ending vertices for each cell edge, and the table of cases contains all
possible configurations of the isosurface to be extracted. A plus (resp. minus)
is attached to each vertex if the value at this vertex is higher (resp. lower) than
the isovalue. Out of the 28 = 256 possible configurations for a hexahedron, the
Marching Cubes method takes into account symmetries to reduce the size of the
table of cases to only 15 entries. Knowing both description tables, extracting an
isosurface from a hexahedron is easy:

• From the current hexahedron configuration, compute the index in the table
of cases as: index =

∑7
i=0 (F (xi) >= w) ∗ (i+ 1)2 , where F (xi) is the value

attached to the vertex xi and w the isovalue.
• Read the table of cases at this index to retrieve the list of intersected edges.
• Retrieve the end vertices of each intersected edge using the table of edges,

and compute the intersection with the isosurface by linear interpolation.

The Marching Cubes can be adapted to tetrahedral grids (Marching Tetrahe-
dra), using specific tables of edges and cases for a tetrahedron (Fig1).

Hardware Acceleration Techniques using GPUs. Programmable graph-
ics hardware have opened new perspectives for isosurface extraction. Currently,
due to hardware limitations, the only types of grids that have been hardware-
accelerated for direct isosurface extraction are unstructured tetrahedral meshes
and regular hexahedral meshes. For regular hexahedral grids, isosurface extrac-
tion can be achieved using pre-integrated volume rendering [18,19]. These meth-
ods volume-render the whole grid using a Dirac opacity transfer function so that
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only one isovalue is rendered. They have a high computational complexity as
compared to polygonal isosurface extraction.

For unstructured tetrahedral meshes, the fastest known GPU hardware ac-
celerated technique was recently introduced by Kipfer et al. [1]. This method is
fast, limits data storage redundancy and processing redundancy. However, this
method uses the SuperBuffers extension only available on some ATI graphics
cards, which are not part of any revision of the Shader Model standard and,
therefore, may disappear from the list of supported features on ATI graphics
cards. Consequently, we decided to base our work on another more general fast
technique shown by Pascucci [2] (also present in other papers [4]). Pascucci pro-
poses a hardware implementation of the Marching Tetrahedra, based on a table
of edges and a table of cases. Its method uses standard features but is only
applicable to small and medium-sized grids (less than one million of tetrahedra
with 256MB of graphics memory; see Figure 4 for details). Our technique is sim-
ilar, with the noticeable difference that we completely avoid data redundancy
by using indirect indexing.

On a GPU, textures are only reachable on the pixel shading unit for graphics
cards supporting Shader Model 2.0, and are reachable in both vertex and pixel
shading units for cards fully supporting Shader Model 3.0. Shader Model 3.0 is
supported by all Nvidia graphics cards of 6th generation and above; ATI does
not currently support this functionality, but claims that its next generation of
products will. Previous approaches [2,4] use the vertex shading unit to implicitly
extract the isosurface. They send to the GPU four numbered vertices for each
tetrahedron, since an iso-polygon in a tetrahedron contains at most four vertices.
The number of the iso-polygon vertex, the geometry of the tetrahedron vertices
and the corresponding scalar are also streamed to the GPU through variable
registers. Constant GPU registers are used to efficiently store the tables of edges
and cases. For each vertex sent to the vertex shader unit, the Marching Tetrahe-
dra algorithm is applied: compute the entry in the table of cases, find the edge
corresponding to the vertex number (from 0 to 3), seek the extremities of this
edge in the table of edges, compute the intersection with the isosurface, then
move the current vertex to this position. When the iso-polygon is a triangle, the
extra vertex sent is stacked at the same place than the last found intersection,
and hence is ignored by the graphics card.

It is possible to combine this hardware accelerated isosurface extraction with
algorithmic optimization by sending to the GPU only the intersected cells by
using, e.g., an Interval Tree [8], an Octree [9] or a Seed Set [5].

1.3 Contributions

Pascucci’s method is similar to ours, but one of the strongest bottlenecks of
the Pascucci implementation is that sending all required data to the GPU for
each tetrahedron introduces a strong redundancy, since most of the vertices are
shared between several tetrahedra. The GPU-accelerated method presented in
this paper overcomes these limitations by:
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Fig. 1. Tables of cases and edges

• avoiding data redundancy through shared vertices
• limiting AGP/PCI-Express bus transfers to a minimum
• efficiently storing the whole data inside a texture to improve isosurface ex-

traction performance for large grids
• handling grids made of millions of cells

Moreover, our method also supports both brute force extraction and combination
between GPU tessellation and CPU algorithmic filtering of non-intersected cells
like an Interval Tree, an Octree or a Seed Set. In the next section, we describe
our method to tessellate tetrahedra in very large grids. For this, we use vertex
texture lookup, introduced in the Shader Model 3.0 standard, corresponding to
the Nvidia 6th generation (and above) graphics cards.

2 Our Approach

2.1 Preprocessing

Adapted Data Storage for a GPU. The tables of cases and edges (Figure 1)
are defined during the preprocessing stage. The table of cases is symmetric, so
only the first half of the table must be stored. To handle every possible configu-
ration of the isosurface within a tetrahedron, some edge indexes are duplicated
in the table of cases. This means that the corresponding vertices will be stacked
at the same location and discarded during the real-time rendering stage.

The central question is how to store these two description tables and all re-
quired data to efficiently feed a GPU. Previous approaches [2,4] send geometry,
values and both tables of edges and cases through GPU registers. These ap-
proaches send for each cell every needed data, and, since most of vertices are
shared between several cells, there is a strong redundancy which consumes a
lot of graphics memory and calls for more RAM/Graphics-RAM transfers than
necessary. Moreover, the whole data is packed in OpenGL vertex arrays or dis-
play lists for efficiency, which are also memory hungry. For a tetrahedral mesh,
with Reck et al’s approach [4], size limitation is about 200k cells with a 128MB
graphics card. We propose to push this limit by storing the relevant information
in textures in order to deal with grids made of several million cells.
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Fig. 2. Texture storage of the tetrahedra, the vertices and the description tables (each
texel obviously contains four indexes)

Our goal is to store every needed data in a texture. Four indexes can be stored
per texel of a texture, one in each RGBA component. As shown in Figure 2, ta-
bles of edges and cases are considered as 1D tables and are stored sequentially.

The following step of texture generation consists in iterating on each vertex
of the grid to pack the corresponding data in a texture. The 3D geometry of the
current vertex is packed in one texel, and so uses three of the four components of
this texel. The remaining component is used to store the scalar value attached
to the vertex. For rendering purposes, one more texel can be used to store a
precomputed gradient.

Similarly, the last step iterates on each tetrahedron to pack the index of its
four vertices in one texel. On the CPU side, each tetrahedron stores its unique
entry in the corresponding texture.

Remark. Using our data storage method (Figure 2), the texture memory usage
is evaluated to one texel per vertex without shading and one more texel per
tetrahedron, plus few texels for the storage of the description tables. For a 128MB
graphics card, a theoretical calculus shows that about 7 million tetrahedra could
be stored on the graphics memory. This theoretical limit is higher than the
practical limit because the graphics memory is not exclusively used for storing
our textures. Nevertheless, current graphics cards commonly board 512MB (up
to 1GB sometimes) of graphics memory. See results section 3 for more details.

2.2 Real-Time Rendering

Overview (Brute-force algorithm). After preprocessing, the isosurface ex-
traction proceeds as follows:

• Done Once (Step 1)

• Load the texture in the graphics memory
• Load the vertex shading program
• Set the isovalue

• For Each Cell (Step 2, see details below)

• Send current cell index to the GPU
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• Send four vertices to the GPU, and implicitly execute the vertex shading
program

• Updating (Step 3)
• Update isovalue and go to Step 2

Sending Vertices to the GPU. The requested vertex number is sent to the
vertex shading program through the position argument of the OpenGL vertex
creation call:
glBegin(GL\_QUAD) ;

glVertex2i(0, 0) ; // sends vertex 0
glVertex2i(1, 1) ; // sends vertex 1
glVertex2i(2, 2) ; // sends vertex 2
glVertex2i(3, 3) ; // sends vertex 3

glEnd() ;

Vertex Shading Program. To code our vertex shading programs, we decided
to use the high level programming language from Nvidia called CG1, which is
compatible with both ATI and Nvidia graphics cards. In this subsection, the
pseudo CG code for extracting an isosurface from a tetrahedron is provided.

First, the algorithm reads the indexes of the vertices of the currently processed
tetrahedron in the tetra texture ((1) in Fig.2). From these indexes, the loca-
tions and values of the tetrahedron vertices are read in the vertices texture
((2) in Fig.2):

float4 verticesIndex = tex1D ( tetra_texture, index_tetrahedron ) ;
float4 vertex_0 = tex1D ( vertices_texture, verticesIndex.r ) ;
float4 vertex_1 = tex1D ( vertices_texture, verticesIndex.g ) ;
float4 vertex_2 = tex1D ( vertices_texture, verticesIndex.b ) ;
float4 vertex_3 = tex1D ( vertices_texture, verticesIndex.a ) ;
float4 values = float4(vertex_0.a, vertex_1.a, vertex_2.a, vertex_3.a );

where tex1D is a function which performs a 1D texture lookup.
Then, the four vertices are assigned a 1 or a 0 flag depending on the iso-

value, and the index in the table of cases is computed to determine the current
configuration:

bool4 tested_vertices = ( values >= isovalue ) ;
int index = dot ( tested_vertices, float4(1,2,4,8) ) ;
// The symmetry of the table of cases is exploited
if ( index >= 8 ) { index = 15 - index } ;

According to the number of the vertex being processed (from 0 to 3, denoted
vertex number), the index of the intersected edge and of its end-points are
retrieved from the table of cases texture ((3) in Fig.2) and the
table of edges texture ((4) in Fig.2):

int intersected_edge = tex1D(table_of_cases_texture,index*4+vertex_number);
int vertex_index_0 = tex1D(table_of_edges_texture,intersected_edge*2 );
int vertex_index_1 = tex1D(table_of_edges_texture,intersected_edge*2+1 );

The vertex shading program then linearly interpolates the intersection of the
edge with the isosurface, and finally moves the isosurface vertex to this location.
1 http://developer.nvidia.com/object/cg toolkit.html
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Fig. 3. Isosurface rendering of the fluid pressure field in a tetrahedralized geological
model

Comments. Texture lookup in vertex shader unit is, at this time, relatively
slow. Nvidia’s documentation2 indicates that a Geforce 6800 is theoretically
capable of processing more than 600 million vertices per second. Add to this
bench a vertex texture lookup for each vertex, and the performance falls to
33 million processed vertices per second. This drop of performance is due to
long latencies introduced when a texture lookup is requested. ‘Latency’ means
that vertex shading program could execute some assembly codes which are not
related to the texture lookup (even other texture lookups) while waiting for this
lookup. Therefore, grouping the texture lookups in the vertex shading program
parallelizes texture lookup latencies and optimizes performance.

3 Results and Comparisons

Our algorithm has been tested on several tetrahedral grids used in geological
modeling, made of up to 5 million cells (see for instance Fig.3). All benchmarks
(Fig.4) are done on a laptop with an Intel Centrino 2Ghz processor with 1GB
of RAM and an Nvidia QuadroFX Go 1400 256MB PCI-Express graphics card
(6th generation from this manufacturer). This card has only 3 vertex shading
units, against 8 units in a 7th generation card: using the last 7th generation from
Nvidia would have further increased the differences between the CPU and the
GPU methods. Notice that the desktop equivalent to our testing graphics card
is now a low cost hardware.

Figure 4 presents the number of tessellated tetrahedra per second in a brute-
force algorithm with shading for several grid sizes using different methods: a pure
CPU based, a GPU register based [2,4] and our GPU texture based extraction
algorithm. The GPU register curve can be split into three parts: below 600K
tetrahedra, the whole grid fits in graphics memory, figuring a constant process-
ing speed of about 6.7 million tetrahedra per second; between 600k tetrahedra
and about 1 million, the grid does not fit in graphics memory and the PCI-
Express bus is used to swap some data with the RAM, resulting in an important
performance drop; for more than one million tetrahedra, both the 256MB of
graphics memory and the 1GB RAM are fully loaded, and then performance

2 http://developer.nvidia.com/object/using vertex textures.html
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Fig. 4. Number of tetrahedra tessellated per second versus the size of the grid in brute
force mode with shading. GPU(R) denotes GPU method using Registers [2,4] and
GPU(T) our method using Textures.

drops tremendously, since swapping between hard-drive and PC memory is nec-
essary. Pascucci and Reck et al. [2,4] note that performance drops by a factor
of 10 to 20 with an AGP graphics card when the whole data do not fit in video
memory. They also suggest that using a PCI-Express card may greatly help,
which is confirmed by this work. In our tests, at the limit of a grid counting
1 million tetrahedra, the speed is still near 4 million tetrahedra processed per
second (to compare with about 0.5 million processed per second using an AGP
card). Both CPU and GPU texture-based methods are linear, and our texture-
based method applied to tetrahedra appears to be, on average, twice faster. It
is, hence, slower than the GPU register-based method but only for grids made
of less than 1 million tetrahedra. Above (up to at least 5 million tetrahedra),
our method remains linear. Thanks to these benchmarks, choosing the fastest
method for isosurface extraction can be done automatically depending on the
grid size and the available memory (RAM and graphics memory).

Comments. The results above were obtained using a brute-force grid traver-
sal to prove the efficiency of the compared algorithms. These methods, including
ours, can be combined with algorithms that narrow marching time by previously
discarding non-intersected cells (section 1.2). In this case, the whole texture is
uploaded once to the graphics memory and only the list of indexes correspond-
ing to intersected cells is sent to the graphics card at the rendering stage. For
example, with our approach combined with an Interval Tree [8], we get an ac-
celeration factor of about 4 times on average.

Latencies in accessing textures in the vertex shading unit will soon be improved,
according to manufacturers’ plans for their graphics cards supporting ShaderMod-
els 3.0 and 4.0. These accesses would be as fast as accessing a texture in the pixel
shading unit, so about as fast as accessing a register. Then, our method would
combine the speed of the register based approaches [2,4] and the advantages of the
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texture based storage. Also, most manufacturers3 are considering the possibility
of unifying the vertex and pixel shading units under only one unique hardware
unit. Since the pixel shading unit is much more powerful than the vertex shad-
ing unit, our method would be strongly accelerated by this evolution. Moreover,
these manufacturers will introduce the Geometry Shading Unit in their next gen-
eration of graphics cards, enabling the creation of vertices within the GPU. This
functionality will limit the redundancy of the computation of the configuration
index, and will speed up the extraction process.

4 Conclusion

Our method introduces a hardware-accelerated algorithm to efficiently tessellate
very large unstructured tetrahedral meshes, as used for finite element modeling.
This method overcomes several limitations by using textures to store efficiently
the whole data without introducing redundancies through shared vertices, and
limits the AGP/PCI-Express transfers. Our technique handles grids up to five
million tetrahedra at least, while improving tessellation performance as com-
pared to CPU extraction. Moreover, it supports both brute-force extraction and
extraction after discarding non-intersected cells using, e.g., an Interval tree, an
Octree, a Seed Set, etc...

Future works include studying the extraction of isosurface on strongly het-
erogeneous grids using GPU acceleration; the first step in this direction will
be the support for hexahedral meshes. Moreover, non-linear interpolation in iso-
polygons could be interesting to improve rendering quality. This study could also
be extended to time-varying data, volume-rendering and parallel processing.
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Abstract. We propose a new model for visualization of high scale scenes.
It is designed to enhance pertinent informations that become quickly
viewable on a large scene. It consists in mixing different kind of rendering
techniques in the same frame. This method is achieved in real-time dur-
ing the rendering process using GPU programming. Moreover rendering
techniques used and key points defined by the user can be interactively
changed. We present our model, and a new non-photorealistic rendering
techniques. Images produced look better and provide more informations
than traditional rendering techniques.

1 Introduction

This paper presents a new method to render high scale 3D models. The aims
of this model are both a better looking and a more informative image. Ren-
dering is the process of generating an image from a given model. This can be
achieved using software programs (generally through a graphic programing li-
brary) or/and GPU programs. Generally renderings are classified in two main
categories: photo-realistic and by opposition non-photorealistic.

Photo-realistic renderings of a high scale scene do not allow to enrich the
image produced. By opposition non-photorealistic renderings try to enhance the
transmission of information in a picture [1], [2]. Based on the idea that a new
rendering will help the user to visualize 3D models, a lot of previous techniques
have been developed. We present some of these ones organized in different topics:

– deformation of the 3D mesh according to the viewpoint. Rademacher [3]
has proposed to create a view dependent model. It consists of a base model
and a complete description of the model shape from key viewpoints. This
can be used especially by cartoonists. A generalization of view-dependent
deformations was presented by Martin et al. [4]. A control function to relate
position and transformation is used. Other works have been presented and
for example Wood et al. [5] proposed the generation of panoramas for a given
3D scene and a camera path.

– edges extraction. A lot of well-known works have been done to extract edge
features like silhouettes, boundaries and creases from 3D models [6], [7], [8],
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[9]. Frontfacing and backfacing can be used to detect silhouette and normal
maps is one of the real-time methods to find creases and boundaries. Gen-
erally, a preprocessing operation should be done to convert a 3D model in
another data structure in order to obtain edges more easily (for example
half-edge data structure maintains edge adjacency). The main applications
of these techniques are architectural and technical illustrations.

– artistic shading. Hatching [10] [11], cartoon shading [12] and celshading are
examples of non-photorealistic shading. They replace Gouraud or Phong
shading to convey three-dimensional structure of objects in an image. Hatch-
ing is based on the curvature model while cartoon and celshading choose the
fragment color in a one-dimensional texture using the dot product between
light direction and the normal. Note that celshading often includes outline
shading.

As one can see, there is not one solution to enhance the transmission of informa-
tions and each technique has its favorite applications, advantages and drawbacks.

The motivation of this paper can be summarized in one question: why do we
use one and only one rendering to produce an image? This paper presents a
model to combine different renderings in the same frame. Each rendering and its
influence on the scene will be chosen by the user and can be changed interactively.

In the following, we present the general algorithm of our model and detail
the solutions to solve each problem. Then images produced by our system are
detailed and in conclusion the limitations and future works are presented.

2 The Model

Our model mixes different renderings at the same time. The user should spec-
ify which and where renderings will be used. The GPU programming can be
achieved in vertex or/and fragment shaders. The vertex shader is used to pre-
compute values needed in the fragment shader. The main process of our model
is realized on fragments. For a given fragment, different renderings can be ap-
plied simultaneously and should be blended. Due to the real-time constraint, the
computation should be done on GPU.

The specifications given by the user are:

1. key points which are points of the 3D space. In the following n is the
number of key points given by the user;

2. renderings used and for each of them four distances dr0, dr1, dr2 and dr3
where [dr0, dr3] is the range within the rendering is used.
– dr0: the minimal distance in order to use this rendering;
– dr1: the minimal distance where we maximize the use of this rendering.

Between dr0 and dr1 the rendering will be shaded;
– dr2: the maximal distance where we maximize the use of this rendering;
– dr3: the maximal distance in order to use this rendering. Between dr2

and dr3 the rendering will be shaded.



Enhancing Information on Large Scenes by Mixing Renderings 395

Fig. 1. Example of key points and distance given by the user

Left part of figure 1 presents four key points given by the user and their
visualization on the scene and the right part shows the distances for a texture
rendering given by the user on the interface and the result on the scene. The
distances dr0 and dr1 are equal to 0.0, dr2 is equal to 0.5 and dr3 is equal to
0.8. Thus texture is applied in the range of 0.0 to 0.5 from the key points and
in the range between 0.5 to 0.8 the texture is applied shaded with black. In
this example we gave four key points, one rendering and its associated distances.
Note that the number of key points, the coordinates of key points, the number of
rendering used, the renderings chosen and the distances used could be modified
dynamically by the user.

The general form of our algorithm is:

For a given fragment F
Compute the closest distance d to the key points 1©
For each rendering

Compare the distances given by the user and distance d and compute
a weighted value v 2©
Compute the color and weight it by v 3©

Sum the colors previously obtained and clamp it between 0 and 1 for
each component.

In the following we detail the methods used to compute the distance to the key
points 1©, the ratio used for each rendering 2© and present the computation of
the fragment color using a rendering 3©. We also present a new rendering. These
computations are realized only in the GPU and we obtain real-time renderings.
Remark that at the present time, fragment shaders do no permit to make loops
on data which do not reference a texture. So even if we present the algorithms
including loops for the reader, we unfold it. This limit should disappear with
future versions of graphic cards and shaders.

2.1 Distance to Key Points

The user defines key point(s). This section explain how to compute the dis-
tance d. We propose three modes to consider key points:
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– single points: the distance d is the minimal euclidean distance between frag-
ment and each key point(s);

– points of a polyline: the key points form a polyline and d is the minimal
distance between fragment and this polyline. The algorithm used to compute
d for a fragment F is:

For each segment PiPi+1 (i ∈ [0;n− 2]) of the polyline
If PiPi+1 � PiF < 0 then di is the euclidean distance between Pi

and F
Else if PiPi+1�PiF > ‖PiPi+1‖2 then di is the euclidean distance
between Pi+1 and F
Else di = ‖PiPi+1⊗PiF‖

‖PiPi+1‖
d = min di

where � represents the dot product of two vectors, ⊗ the cross product of two
vectors and ‖PiPi+1‖ the norm of the vector PiPi+1. Note that ‖PiPi+1‖2

is equal to PiPi+1 �PiPi+1 and is computed using the dot function on the
fragment shader;

– points of a polyline loop: in this case, we consider the n key points as n
points of a polyline but Pn−1P0 is considered as a polyline segment. The
distance d is computed using the algorithm described for the polyline mode
including one more segment (i.e. Pn−1P0).

Figure 2 shows the influence of the mode used in the computation of the
distance d. The polyline mode is presented at the left and the polyline loop
mode is shown on the right while the single points mode is presented on the left
of figure 1.

2.2 Compute the Weighted Value for Each Rendering

The user enters his choices for renderings used and for each of them four associ-
ated distances (dr0, dr1, dr2, dr3). We have previously computed the distance d
between the fragment and the key points. For each rendering used, we compute
a coefficient v. v is then applied to weight the rendering. The sum of weighted
rendering on a fragment allows us to mix renderings on it. The algorithm is:

For each rendering
If (d ∈ [dr0; dr3]) then

If (d < dr1) v = d−dr0
dr1−dr0

Else if (d ≤ dr2) v = 1.0
Else v = dr3−d

dr3−dr2

Else v = 0

Remark that for a given fragment f , it is possible to have zero, one, two and
more renderings. Each rendering is weighted independently and v can be viewed
as the alpha channel for a rendering on a fragment. Finally the fragment color
is clamped between 0 and 1. We include the ability to blend the image with the
background.
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Fig. 2. Example of polyline and polyline loop use

Fig. 3. Compute the coefficients and render the scene

Figure 3 illustrates this part: the top right screenshot shows the use of blend-
ing; on the bottom image, the distance dr3 of texture rendering has been changed
and fragments are rendered with texture, wb dist (see next section) and material
when d = 0.55.
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2.3 Rendering

Texture rendering, material rendering, toon shading and celshading (using tex-
ture and outline) have been implemented in GPU fragment shader. Vertex shader
is used to transform vertex coordinates and to compute necessary data in the
fragment shader. These shaders are well-known and many books describe it, see
for example[13].

We implement a new rendering, named wb dist for “white to black distance”.
This rendering is very simple and is based on the coefficient previously computed.
The fragment color components received the coefficient v. Then, if the fragment
is in [dr1; dr2], the color is white and alpha is 1, else the fragment color is an
achromatic color and alpha is in[0; 1[ depending on the distance d. For example,
it allows us to make a halo effect when dr1 is closest to dr2. This can be used to
mark a key point or a path as shown in figure 4. Also, other effects like NASA
aerogel can be easily produced.

Fig. 4. Halo and “NASA aerogel” rendering

3 Images and Results

This section presents images produced with our model. Those have been produced
on a PC pentium IV 3.6Ghz with 1Go of memory and a nvidia graphic card Quadro
FX 1400. The top of figure 5 presents a first part of the path described with key-
points. As one can see, the halo rendering and the mix of renderings help the user
to obtain the essential information needed. The bottom of the figure presents two
other views where the used renderings have been changed. Indeed, in the first of
these, textured rendering then material rendering are used according to the dis-
tance of the polyline and in the second one this is the opposite (i.e. material then
textured rendering). The minimal frame rate obtained for this scene composed
by 20 000 triangles is 27 frames per second with 4 renderings (textured, mate-
rial, wd dist and celshading) used simultaneously and 4 key-points. In fact, the
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Fig. 5. Other views of San Diego

number of key-points used has no influence on the frame rate (i.e time computation
needed for the distance computation is negligible).

4 Conclusion

We have proposed the first model to mix renderings. Based on GPU programing,
this model is real time for large scale scenes visualization. A collection of various
rendering shaders have been implemented one of them being a new one and
other ones can be easily added. The user can apply particular renderings on
each part of the scene. This permits to have only advantages of renderings and
never their drawbacks. Moreover every parameters can be modified by the user
dynamically and it is very intuitive. This model allows us to focus on a point or
a path in a large scene. We can apply immediately, as shown in examples, this
model to a car journey. Other applications like for example to show influence of
a construction on an environment, visualization of the same object in a place
(fire extinguisher in a building, electric cables in an oil rig, . . . ), or educational
courses can be realized.

Future works will be done to propose other interpolations in order to compute
the coefficients (non-linear interpolations) and to automatically import other
renderings.
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Auto-focusing in Extreme Zoom Surveillance: A System 
Approach with Application to Faces 
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Abstract. Auto-focusing is an indispensable function for imaging systems used 
in surveillance and object tracking.  In this paper, we conduct a study of an im-
age-based passive auto-focusing control for high magnification (>50×) systems 
using off-the-shelf telescopes and digital camcorders with applications to long 
range near-ground surveillance and face tracking.  Considering both speed of 
convergence and robustness to image degradations induced by high system 
magnifications and long observation distances, we introduce an auto-focusing 
mechanism suitable for such applications, including hardware design and algo-
rithm development.  We focus on the derivation of the transition criteria follow-
ing maximum likelihood (ML) estimation for the selection of adaptive step 
sizes and the use of sharpness measures for the proper evaluation of high mag-
nification images.  The efficiency of the proposed system is demonstrated in 
real-time auto-focusing and tracking of faces from distances of 50m~300m. 

1   Introduction 

PTZ cameras are commonly used in indoor and outdoor surveillance systems [1, 2]. 
Most of these cameras provide a maximum optical magnification in the range of 
20×~25×. However, for long range surveillance and target identification, this magni-
fication is insufficient. To extend the optical zoom capability beyond 50×, we  
exploited digital imaging systems with scopes (telescopes and spotting scopes) in 
near-ground surveillance [3]. 

As the first step in building a high magnification imaging system using off-the-
shelf equipment, we studied several setups based on various scopes, eyepieces, and 
digital cameras/camcorders [3].  The chosen combination of a Celestron telescope 
(GPS 11) and a Sony camcorder (TRV730) is able to achieve a system magnification 
of up to 1800×, which is sufficient for observing human faces from a distance of 1km.   

For this system to be useful in real-time tracking scenarios, it is critical to keep the 
moving target in focus.  In a composite imaging system, the focus of the scope plays a 
dominant role.  Although digital cameras are equipped with auto-focusing function, 
scopes are available only with manual focus control.  To facilitate complete remote 
and automatic control of this high magnification imaging system, the auto-focusing 
capability needs to be integrated.   

However, auto-focusing for composite imaging systems with high magnifications 
is a newly emerged research topic and not well addressed in literature.  Moreover, the 
application of existing auto-focusing algorithms to such systems is non-trivial.  Fig. 1 
depicts the typical responses of the conventional Laplacian sharpness measure [4] for 
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low (2.28×) and high (245× and 1500×) magnification sequences collected at uni-
formly sampled camera focus positions.  Compared with low magnification imaging 
systems, we experience two major difficulties.  (1) For a large visible distance, our 
high magnification imaging system involves a significantly wider dynamic focus 
range varying from 20m up to 1000m (infinity).  (2) The collected images suffer sub-
stantially from degradations such as increased image noise level and severe image 
blur from high magnification and air turbulence, producing time varying and noisy 
sharpness measures.  These two constraints impose additional requirements, espe-
cially the speed of convergence and robustness to image degradations, on the design 
of suitable auto-focusing algorithms.   
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Fig. 1.  Typical responses of sharpness measures for low (2.28×) and high (245× and 1500×) 
magnification sequences.  The dynamic focus range of a low magnification imaging system is 
typically much smaller compared with that of a high magnification imaging system.  The 
sharpness values of high magnification images are severely corrupted by degradations such as 
increased image noise level and blur. 

In consideration of these difficulties, a sequential search with variable step size is 
selected as the backbone search strategy.  The sequential search completes peak de-
tection in one sweep, nearly eliminates changes in motion direction, and saves on 
motor steps.  A variable step size optimizes the motor step distribution in the sampled 
focus range and minimizes the number of iterations.  To improve the algorithm’s 
speed of convergence and robustness to image degradations, we focus on the deriva-
tion of the transition criteria and the selection of sharpness measures.  The transition 
criteria are obtained from ML estimation under the assumption of Gaussian distribu-
tion and from statistical studies of the collected image sequences with various magni-
fications and scene structures.  Meanwhile, two types of sharpness measures are  
employed in the ramp and peak regions according to the way they respond to out-of-
focus blur.  The summation of two types of sharpness measures can also be used for a 
reduced noise level.   

The remainder of this paper is organized as follows.  Section 2 reviews existing 
image-based passive auto-focusing algorithms and compares their performances. 
Section 3 briefly describes our high magnification imaging system.  In section 4, an 
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auto-focusing algorithm for high magnification imaging systems is proposed and its 
efficiency is validated via both offline and real-time image sequences in section 5.  
Section 6 concludes this paper. 

2   Literature Review 

Among the existing auto-focusing methods, we are interested in image-based passive 
auto-focusing approaches primarily because of their simple configuration in hard-
ware.  Within this category, one major area is the estimation of depth by analyzing the 
degree of focus in a sequence of images [5].  In our application a considerable amount 
of blur comes from high magnification rather than improper focus.  The simple rela-
tion between blur and depth is not entirely valid.  For this reason, the use of this type 
of methods in high magnification systems remains questionable. 

In the second main branch of image-based passive auto-focusing algorithms, opti-
mum focus is found by searching for the focus location which yields an image with 
the highest sharpness measure.  Various search strategies have been developed.  The 
Fibonacci search is the best-known algorithm [4], which guarantees that the maxi-
mum of the criterion function is found within a known number of iterations depending 
only on the dynamic focus range.  The hill-climbing search divides the procedure into 
two stages: out-of-focus region (coarse) search and focused region (fine) search.  
Given a heuristic choice of step magnitudes, the hill-climbing search is able to con-
verge to the optimal focus.  A number of hill-climbing algorithms have been proposed 
with modifications regarding step size selection, termination criteria, search window, 
etc [6, 7]. 

Variations are introduced to these basic algorithms for a better performance.  In the 
fine search stage, the image sharpness is evaluated at three focus locations and the 
samples are fitted to a quadratic or a Gaussian function, the maximum of which is the 
estimated focused position [8].  To avoid the back and forth motor motion required by 
the Fibonacci search, Kehtarnavaz et al. proposed a sequential search algorithm, re-
ferred to as the rule-based search (RS), where the step size is varied according to the 
distance from the best focus location [9]. 

A detailed review and comparison of relevant search algorithms can be found in 
[10].  Their performances in conjunction with different sharpness measures are 
examined using both low and high magnification image sequences based on three 
criteria: accuracy, speed of convergence described by the number of iterations and 
the number of motor steps traveled before the optimal focus is obtained, and  
robustness to image degradations and parameter selection. In general, the hill-
climbing search is sensitive to parameter selection. With the Fibonacci search, the 
number of iterations for a given focus range is usually fixed.  However, the Fibo-
nacci search involves the most back-and-forth motion and therefore the most motor 
steps.  The RS algorithm involves only unidirectional movements and hence re-
quires fewer motor steps.  The use of function approximation avoids unnecessary 
iterations during the fine search stage, thereby reducing the total number of itera-
tions and motor steps.  Overall, the RS and the Fibonacci search with function  
fitting (FF) outperform other tested algorithms. 
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3   System Description 

Our high magnification imaging system, equipped with high speed and automatic 
pan/tilt and focus control abilities, is shown in Fig. 2.  To fully explore the optical 
capabilities of both the Celestron lens and the Sony camcorder, an afocal coupling is 
selected.  The Celestron lens is connected to the Sony camcorder via a Celestron 
Plössl 40mm eyepiece or a Meade 26mm eyepiece.  The focal length of the Celestron 
lens is 2800mm and the Sony camcorder has a 47mm~846mm zoom capability.  The 
achievable system magnification is approximately 70× to 1800×. 
 

    

Fig. 2.  System hardware setup: Fully motorized pan/tilt/zoom control and auto-focusing capa-
bility facilitate remote and automatic control.  The resulting system can perform object tracking 
and monitoring in the same fashion as commercial PTZ cameras. 

The Celestron lens’s existing focus control features a manually operated control 
knob requiring 40 full turns to cover the complete focus range.   To automate it, we 
coupled the control to an Animatics SmartMotor through a gear drive of our own 
design.  The main requirement was that the system be precise enough to give repeat-
able control positioning with increments as fine as the smallest resolution which starts 
to produce noticeable degradation in the resulting images.  The empirical minimum 
resolution is less than 40 degrees of knob rotation.  When converted to motor steps 
and normalized to the minimum resolution, the dynamic range is -200 to 200 steps. 

4   Auto-focusing with High Magnification 

In light of the system limitations – i.e. wide focus dynamic range and noisy sharpness 
measures – and the performance comparisons among various search algorithms [10], 
sequential search algorithms with variable step sizes appear to be the most promising 
techniques.  The remaining questions are: (1) when and how to change the step  
size and (2) how to evaluate image sharpness accurately.   The derivation of the tran-
sition criteria and the selection of sharpness measures answer the above questions, 
respectively.   

Lens
Camera

Pan/tilt 
platform  Auto-focusing 

control  
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Compared with other sequential search algorithms, the proposed transition criteria 
are designed based on ML estimation and have the potential to employ maximum a 
posteriori (MAP) estimation.  The advantage becomes evident for high magnification 
imaging systems, where the resulting sharpness measures are considerably noisy.  
Simple thresholding is insufficient and leads to false detection or detection failure (no 
peak is detected).  The high system noise level justifies and calls for the use of ML or 
MAP estimation.   

A typical sharpness measure curve can be divided into three regions: peak, ramp, 
and saturation.  For a rapid convergence, a gradual ramp region and a sharp peak 
region are preferred.  Based on their responses to camera focus, two types of sharp-
ness measures are recommended.  Autocorrelation and gradient based measures are 
well suited for the search in the ramp and peak regions, respectively.  The use of dif-
ferent sharpness measures alternates in the same fashion as the step size, depending 
on the current search region. 

4.1   Transition Criteria Derivation 

The step sizes are adjusted adaptively throughout the search process according to the 
current focus location.  Small, medium, and large step sizes are used in the peak, 
ramp, and saturation regions, respectively.  From the viewpoint of a state transition 
machine (STM), three distinctive states can be defined accordingly.  The state transi-
tion representation associates the search process with an estimation process, where an 
optimal sequence of state transitions is retrieved given a sequence of noisy observa-
tions and a pre-defined structure (states and transition hypothesis).  Consequently, 
MAP and ML estimation can be applied.  Most of the sequential search algorithms 
use empirical thresholds to govern the step size transitions.  Based on the STM repre-
sentation, these thresholds can be indeed derived from ML estimation. 

To build probabilistic models for state transitions, the statistical behavior of the 
sharpness measures is studied.  The search process is divided into two stages: the pre-
peak stage where no peak is detected and the post-peak stage where a possible peak is 
detected.  In the pre-peak stage, the determinant variable is SΔ , the difference be-
tween consecutive sharpness measures, while in the post-peak stage, the focus is 
shifted to S.  In our implementation, Smax, the recorded maximum sharpness measure, 
is used as a reference.  We examine the statistical behavior of max/ SSΔ and S/Smax and 
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obtain the thresholds assuming that both variables obey a Gaussian distribution.  In 
practice, to avoid back-and-forth switches caused by noise, some state transitions are 
issued only when the corresponding transition criteria are satisfied Cth times.  The 
threshold Cth is obtained empirically.  The following counters, Cdown and Cflat, are  
defined for the ramp region in the post-peak stage and the saturation region, respec-
tively.  Table 1 summarizes the major transition criteria.   

4.2   Sharpness Measure Selection 

The proper use of sharpness measures is also of great importance to the overall sys-
tem performance.  Different sharpness measures respond to the changes in camera 
focus in quite different ways.  Variance based sharpness measures produce gradual 
slopes while gradient based sharpness measures produce sharp peaks [11].  However, 
the performance of variance based sharpness measures deteriorates for high magnifi-
cation images.  In some cases, they could not even preserve the desired unimodal 
shape of an appropriate sharpness measure [10]. 

From the analysis of their properties [10], we observe that autocorrelation based 
measures (ACF) [12] generate responses with varying slopes depending on the win-
dow sizes used, as shown in Fig. 3(a).  Measures with large window sizes produce 
wide peaks and gradual slopes, which can be used for the coarse search stages (satura-
tion and ramp regions).  Gradient based measures are used in the fine search stage 
(peak region).   

In practice, the combination of two types of sharpness measures can be used to im-
prove the response shape and to suppress noise.  The summation of the Tenengrad [4] 
and ACF with a widow size of 10 (ACF10) produces an improved slop in the ramp 
region, corrects for local extrema in the responses of individual measures, and reduces 
noise, as shown in Fig. 3(b).  Another approach is to use different sharpness measures 
in different regions.  When a state transition is issued based on the criteria listed in 
Table 1, the sharpness measure suitable for the next state is computed.  In comparison 
with the summation method, the computational complexity per iteration is reduced at 
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Fig. 3. (a) ACF sharpness measure with various window sizes n for the license plate (LP) se-
quence (shown in Fig. 4 with a system magnification of 2.28×).  (b) Comparison of the Tenen-
grad (Ten) measure and a linear combination of this measure and the ACF10 for the man’s face 
high magnification (MFH) sequence (shown in Fig. 4 with a system magnification of 70×). 
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the cost of degraded rectification capabilities.  The choice of these two methods is ap-
plication dependent.  In our implementation, the summation of two sharpness measures 
is used for imaging systems with higher magnifications (250×~500×) to make full use 
of its rectification capabilities while the second approach is employed for imaging sys-
tems with lower magnifications (50×~250×) for its lower computational complexity. 

5   Experimental Results 

To evaluate the performance of various search algorithms, each in conjunction with 
different sharpness measures, we carried out the following experiments.  Images are 
collected at uniformly distributed camera focus positions and their sharpness meas-
ures are computed.  A search algorithm is then applied to locate the best focus posi-
tion.  Ideally, the estimated focused position should correspond to the maximum 
sharpness value.  Any difference between them is the estimation error and is ex-
pressed in motor steps.  The size of the estimation error is translated into the accuracy 
of the search algorithm.  Another performance criterion, the speed of convergence, is 
described by the number of iterations and the number of motor steps traveled before 
the optimal focus is obtained.   

Four low magnification image sequences (2.28×), resolution chart (RC), Hello-
Kitty doll (HD), license plate (LP), and man’s face (MFL), are collected by a Canon 
A80 camera at an interval of 3 focus motor steps covering the 0.2m to infinity focus 
range with a total of 60 images per sequence.  The RC and LP sequences exemplify 
images with strong and clustered edges.  The high magnification image sequences 
(70×~1500×) are collected by the Sony TRV730 and the Celestron scope.  Various 
system magnifications are used: 70×, 100×, 245×, 500×, and 1500×.  At each sampled 
magnification, two sequences (400 frames per sequence) are collected, one of a scene 
with strong and clustered edges such as the brick wall (BW) sequence and the other 
with scattered and low contrast edges such as the man’s face (MFH) sequence.  Fig. 4 
shows sample images from the LP and MFH (70×) sequences, collected at the best 
focus position and at the end points of the focus range. 

Three types of sharpness measures are used: gradient based (Sum Modulus Differ-
ence (SMD) [13], Tenengrad (Ten), and Laplacian (Lap)), autocorrelation based 
(ACF), and frequency domain based (Fast Fourier Transform (FFT) [14] and Fre-
quency Entropy (FE) [15]).  Considering accuracy, computational complexity, and 
invariance to image noise and blur, the RS and FF algorithms present the best per-
formance and are selected as references in comparison with the proposed algorithm.  
In our implementation, the increments for the peak, ramp, and saturation regions, 
obtained empirically, are 4, 16, and 32, respectively.   

In the interest of space, only the experimental results for the MFH sequence with a 
magnification of 70× are presented in Fig. 5.  Our algorithm achieves accuracy com-
parable to the RS algorithm.  In addition, our algorithm requires a smaller number of 
both iterations and motor steps.  Overall, our algorithm provides a better balance 
between accuracy and complexity. 

Fig. 6(a)-(c) show the sampled frames from a real-time auto-focusing se- 
quence collected at a system magnification of 70×.  Fig. 6(d) depicts the sampled  
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(a) (b) (c) 

   
(d) (e) (f) 

Fig. 4. Sample images from the LP (system magnification: 2.28×, target distance: 1m) and the 
MFH sequence (system magnification: 70×, target distance: 65m): (a)/(d) far focus end, (b)/(e) 
near focus end, and (c)/(f) best focus 
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Fig. 5. Comparison across sharpness measures and search algorithms including RS, FF, and our 
auto-focusing algorithm at 70× magnification.  (a) Estimation error.  (b) Total number of itera-
tions/motor steps. 

focus positions and the corresponding sharpness measures.  Given a starting point 
within ±100 motor steps of the peak region and with a frame rate of 7.2 frames/sec, 
our algorithm can precisely detect the optimal focus position within 2 seconds. 

Exhaustive experiments with various system magnifications and observation dis-
tances are conducted to test the effectiveness of our auto-focusing algorithm.  Based 
on raw images, our auto-focusing algorithm works properly for a system magnifica-
tion of up to 250×.  Further increases in magnification result in severely blurred im-
ages which undermine the ability of the sharpness measures to produce a smooth and 
unimodal curve and in consequence lead to possible malfunction of the search algo-
rithm.  Image pre-processing and the use of a summation of two types of sharpness 
measures are possible solutions. 
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Fig. 6. Sample frames (magnification: 70×, distance: 65m) collected at:  (a) Initial focus posi-
tion, (b) last evaluated focus position, and (c) best focus position.  (d) Sampled focus positions.  
Starting position: -50.  Estimated optimal focus position: -102.  Motor steps: 106. Time: 1.9s.  
Dashed lines: direction initialization.  Solid lines: search process. 

6   Conclusions 

For the purpose of long range near-ground surveillance and video tracking, a high 
magnification imaging system (zoom capability of 70× to 1800×) was built.  An im-
age-based passive auto-focusing mechanism, including hardware design and algo-
rithm development, was introduced and applied to long range and high magnification 
imaging systems.  Two strategies, the derivation of the transition criteria and the se-
lection of sharpness measures, were studied to resolve the problems unique to such 
systems: severe magnification blur and large dynamic focus range.  Different from the 
conventional search algorithms, the transition criteria were derived using ML estima-
tion and well suited to noisy applications.  For a faster convergence, autocorrelation 
and gradient based sharpness measures or their summations were used in different 
search stages.  Experiments based on real-time image sequences verified the effec-
tiveness and overall superiority of our proposed system. 
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Abstract. In trifocal transfer based novel view synthesis, matched pix-
els of both input views are projected in the novel view. The angle of
view of this latest is usually narrow, i.e. the novel view is very close to
input ones. In this paper we improve the method to get a large angle of
view. A simplex approach is used to compute the model of the virtual
views pose. This model allows the computation of the novel view at any
desired angle of view. We also show that those results are very useful in
micromanipulation tasks where transfer of edges is enough instead of the
entire pixels of input views.

1 Introduction

Novel View Synthesis (NVS) is a part of computer vision introduced by [1].
It deals with the obtaining of a maximum of views of an environment from a
minimum of real data on it. For example, a lateral view of an object can be
synthesized with only two real top views. There are two classes of methods in
NVS: the model-based rendering and the image-based rendering.

In model-based rendering (MBR), virtual environments are created from
mathematical models. A typical example is 3D characters synthesis in movies
and video games by modeler softwares. In image-based rendering (IBR), a set of
real images of the scene is used to build a novel view. According to the knowledge
about scene geometry, [2] proposes the following classification: rendering with no
geometry, rendering with explicit geometry and rendering with implicit geome-
try. Rendering with no geometry i.e. no calibration is used to create a mosaic
from a set of local views that leads to a novel global view [3], [4]. Rendering with
explicit geometry i.e. with strong calibration is close to MBR. Its purpose is the
reconstruction of a 3D view from real views of the scene [5]. This technique needs
a strong calibration and is computationally expensive. Rendering with implicit
geometry only needs a weak calibration. Ref. [6], presents three techniques of
NVS of this type: the line of sight, the epipolar transfer and the trifocal transfer.
The line of sight approach is based on ray-tracing [7]. Its drawback is the fact
that at least ten images are required to obtain a synthetic view. The epipolar
transfer approach is introduced by [8], it is based on epipolar geometry where
the epipolar constraint defines the point-line duality in pair of images: one point

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 411–420, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



412 J. Bert, S. Dembélé, and N. Lefort-Piat

in the left view corresponds to a line in the right view. This concept is used to
create a virtual view from two real views. Each point of the virtual view is the
intersection of the lines of the points from the real views. The trifocal transfer
approach first proposed by [9] is based on the trifocal constraint between three
views. The later is defined by a tensor. With two real images and a tensor, all
the points of the images are transferred into a novel view. The control of that
corresponding virtual view pose is performed through a transformation matrix.

This virtual view can be very useful in micromanipulation which concerns the
manipulation of parts at the microscale, i.e. in the range from 1 μm to 1 mm.
The main applications of micromanipulation are assembly, sorting and testing
of microparts. In addition to biomicroparts like cells and pollen seeds, artificial
microparts are chemically or mechanically synthetized, or micromachined. Clas-
sical examples of the first and second types are respectively grains of powder
like drugs or cosmetics, and optomechatronic components like balls, pegs, pins,
threads, membranes, lenses, shutters and fibres. In some cases these microparts
define final products (MEMS), otherwise they must be assembly to lead to the
final products. For that purpose some automated microassembly systems have
been developed by [10], [11], [12] and [13]. From those results it can be noticed
that a microimaging system is always required, and the most used is a photon
microscope connected to a camera. The images and their processing and anal-
ysis allow the task surveillance, system control or microparts recognition. The
field-of-view of the microscope is very narrow that leads to the use of multiple
views imaging : global view (usually at the top), left and right lateral views.
The second reason of multiple views use is the fact that top view only allows the
access to the xy position of the microgripper. Lateral view is required to get the
z position. The third reason is the occurrence of components occlusions during
assembly, the microgripper can hide the microparts to pick. However multiple
views imaging has a drawback, the microimaging component cannot be posi-
tioned anywhere, so some views are not accessible. Sometimes, it is also useful
to set free the work field. A view from a virtual imaging system using a novel
view synthesis method can overcome that problem.

In this paper we use a trifocal approach without explicit 3D data to synthesize
a virtual view that can be very useful in micromanipulation. In Image Based
Rendering (IBR) literature, the novel view is close to real views, but in this paper
we extrapolate the angle of view up to 85o. Section 2 summarizes the trifocal
geometry and describes it use to generate a novel view. Section 3 presents a new
method to automatically obtain the angle of view wanted. Section 4 presents
experimental results.

2 Trifocal Transfer

The trifocal transfer is the method of IBR with implicit geometry. It only requires
a weak calibration which implies the estimation of the fundamental matrix.
Trifocal transfer is based on the geometry of three views, named the trifocal
geometry.
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Fig. 1. Trifocal geometry

2.1 Trifocal Geometry and Trilinear Tensor

Trifocal geometry is the extension of epipolar geometry to three views. Let us
consider three views of P2 ψ, ψ′ and ψ′′ (Fig. 1). A point P ∈ P3 is projected
onto the point p = (x, y, 1)T in ψ, p′ = (x′, y′, 1)T in ψ′ and p′′ = (x′′, y′′, 1)T in
ψ′′. Let us note:

– A and B the collineation matrixes corresponding respectively to the projec-
tive transformations ψ → ψ′ and ψ → ψ′′,

– v′ and v′′ the epipoles i.e. the projection of the optic center O on respectively
ψ′ and ψ′′.

The trilinearity defines the constraint between three views [14]: p, p′ and p′′

are linked by the same projected point P . The epipolar geometry of (ψ, ψ′) and
(ψ, ψ′′) allow to write the following equations:

p′ ∼= Ap+ δv′

p′′ ∼= Bp+ δv′′ (1)

where δ is the relative affine structure of P . The coefficient δ is independent
of ψ′, i.e., is invariant according to the choice of the second view [15]. Then δ
can be isolated from both (1) to obtain a set of equalities. From those equalities
trilinear equations linking p, p′ and p′′ can be recovered: four linearly independent
equations with 27 distinct coefficients are obtained. Each of these is an element
of the trilinear tensor T jk

i i, j, k ∈ [1, 3]:

T jk
i = v′jbki − v′′kaj

i (2)

where aj
i and bki are the elements of the collineation matrix A and B with

i, j, k ∈ [1, 3] (i is the index of the column, j is the index of the rows and k is
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Fig. 2. The principe of novel view synthesis from two input views

the index of the layer). The trilinear tensor T jk
i is a 3 × 3 × 3 array of the 27

trilinear coefficients. Then the four trilinear equations, can be written with the
tensor:

x′′T 13
i pi − x′′x′T 33

i pi + x′T 31
i pi − T 11

i pi = 0
y′′T 13

i pi − y′′x′T 33
i pi + x′T 32

i pi − T 12
i pi = 0

x′′T 23
i pi − x′′y′T 33

i pi + y′T 31
i pi − T 21

i pi = 0
y′′T 23

i pi − y′′y′T 33
i pi + y′T 32

i pi − T 22
i pi = 0

(3)

2.2 Novel View Synthesis by Trilinear Tensor

The first application of trilinear tensor to NVS is reported in [9] where three real
views are used to compute the trifocal tensor and the virtual view: three real
views lead to a virtual view. Later the authors proposed in [16] a more subtle
approach that consists in merging two of the three input views: as a result, a
novel view (virtual) is obtained from two real views.

Let us consider three views ψ, ψ′ and ψ′′. As explained above the trilinear
tensor T (ψ, ψ′, ψ′′) can be calculated by (2). Now suppose ψ′′ is merged with
ψ′ (Fig. 2). That means the collineation matrixes A (ψ → ψ′) and B (ψ → ψ′′)
and the epipoles v′ and v′′ are identical. Thus (2) becomes:

T jk
i = v′jak

i − v′kaj
i (4)

This latest defines what is called the seed tensor. Let us suppose the view
ψ′′ becomes the view ψ′′′ by a collineation matrix D, then a collineation ma-
trix C links ψ and ψ′′′. As the same, the seed tensor T (ψ, ψ′, ψ′′) changes to
G(ψ, ψ′, ψ′′′). As C = DB the new tensor G can be computed from (2) and (4):

Gjk
i = dk

l T
jl

i + tkaj
i (5)

where tk = dk
l v

′′k − v′′′k is the element of the translation vector t that changes
v′′ → v′′′ and dk

l is the element of collineation matrix of D, with i, j, k, l ∈ [1, 3].
Every point p′′′ of ψ′′′ can be calculated by (3):
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Fig. 3. The angle of view of ψ′′′ according to the translation tx

x′′′ = x′G31
i pi−G11

i pi

x′G33
i pi−G13

i pi y′′′ = x′G32
i pi−G12

i pi

x′G33
i pi−G13

i pi (6)

The process requires the weak calibration of the imagers and the points cor-
respondence between both input views.

2.3 Computation of the Angle of View

We have exposed above how to synthesize a virtual view using trilinear tensor
approach. In practice, the view ψ′′′ does not exist. It synthesis from ψ and ψ′

requires the computation of the tensor element Gjk
i which is a function of two

sets of parameters dk
l and tk. In order to simplify the synthesis D will be set

equal to the identity matrix I3×3. The translation vector is a function of the
angle of view, t = f(θ), defined by the angle between the lines [PO′] and [PO′′′]
in the trifocal plane. We only use the component tx and suppose it depends on
θx. Thus the problem is to find the value of tx for a given value of θx.

The value of θx is approximated by θ∗x, the angle between the lines [P ∗v′]
and [P ∗v′′′] where [PP ∗] is parallel to [OO′] and [P ∗v′]is perpendicular to [OO′]
(Fig. 3). Then tx can be written:

tx = h0 tan θ∗x (7)

In order to estimate h0 we create a dummy segment in a plane of P3 parallel
to ψ′ which we project in the view ψ′′′. At θ∗x = 0 and then tx = 0, the length
of the pattern in ψ′′′ is L0, and at θ∗x �= 0 then tx �= 0 the length become L(tx).
We can write:

L0 cos θ∗x = L(tx) (8)

That equation can be solved using a Nelder-Mead simplex method [17]. That
optimization method compares the values of the objective function with zero
and does not require the use of any derivatives. A simplex in Rn is a set of n+1
points that do not lie in a hyperplane. For example a triangle is a simplex of
2 dimensions. In the Nelder-Mead method, the simplex can vary in shape from
iteration to iteration following reflect, expand, contract and shrink. The simplex
finds the minimal of (8) according to tx. As soon as tx and θ∗x are known, h0
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Fig. 4. Our stereo images

can be computed according to (7). Thus the model of displacement is entirely
defined and can be used for the computation of the tensor and then the novel
view.

3 Experimental Results

The principles exposed above are used to compute a novel view, a lateral one,
from two front views (Fig. 4).

3.1 Making the Dummy Pattern

This process requires the calculation of the disparity interval i.e. the displace-
ment between every (left and right) couple of points. A Canny [18] is used to
compute the edges and the matching is achieved by Zhang method [19] with a
Sum of Squared Differences (SSD) correlation criterion. Usually the correspon-
dent of the point p of the left image in the right one (p′) is searched along the
epipolar line. The edges transfer is enough for our experiment since our applica-
tion is the surveillance and control of micromanipulation task. Complete images

Fig. 5. Left, the layer representation of the disparity edge map between images. Right,
distribution of disparity.
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Fig. 6. Left, the master layer with the dummy pattern for tx = 0. Right, the same
with tx = 900000.

with texture and color are not necessary. At the end the correspondence of every
point of the edges is achieved and the edge-map disparity is computed (Fig. 5).
As exposed above the dummy pattern is inlayed in the virtual view and allows
the computation of the displacement vector of the view. All the points of the
pattern must be on the same plane i.e. at the same layer. For the later we choose
the one for which the number of points is maximal.

Let us note Ω the set of points. Since the novel view displacement is reduced
to θx (see above) Ω can be divided perpendicularly to x axis into left ΩL and
right ΩR sets of points. The centroid of the three sets are computed and they
coordinates are used to define the following points: (xL, y), (x, y) and (xR, y)
where x, xL and xR correspond respectively to the x coordinate of the centroid
of Ω, ΩL and ΩR and y corresponds to the y coordinate of Ω. Those points
define the dummy pattern (Fig. 6).

3.2 Computing the View

It is impossible to compute the view for θx = 90o, in is this case tx trends toward
infinity according to (7). So, for the lateral view we choose a maximum angle
of view of 85o. For an arbitrary angle of view of θ∗x = 70o, the simplex method
leads to a tx of 255943.

Figure 7 shows the length of the pattern versus tx and the angle of view
(model and result) versus tx. According to (7), the value of h0 is 68580. Finally,
for the view at 85o, the displacement vector is tx = 68580 tan(θx). Where the
value of tx is known, the lateral view is computed in real time with the two input
views using (6).

But, that is not sufficient to ensure the quality of the view. The points are
also rectified by minimizing their shift and maintaining the center of the pattern
at the center of the view. Figure 8 shows eight lateral views from 0o to 85o angle
of view.

3.3 Application to Micromanipulation

We apply above principles to a microassembly scene: the picking up of a mi-
crogear by a microgripper. The lateral view, at 85o angle of view, allows the
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Fig. 7. Left, the size of the dummy pattern according to tx. Right, comparison between
model and experimental measures of the angle of view according to tx.

Fig. 8. Lateral views where the angle of view increases from 0o to 85o

Fig. 9. Top, stereo top images and lateral image of the scene with the microgear outside
the gripper tips. Bottom, the same scene with the microgear inside the gripper tips.
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Fig. 10. The views at 85o according to views of Fig. 9. Left corresponds to top views,
right to bottom views.

access to the z position of the gripper according to the microgear. Two cases
are considered: the part is not between the tips and the part is between the tips
(Fig. 9).

Figure 10 shows the views at an angle view of 85o for the two configurations.
In spite the weak number of layers, it is possible to evaluate the distance between
the gripper and the microgear. Then it is possible to know if the gear can be
picked up or not.

4 Conclusion

We summarized trifocal geometry and explained how it allows the expression of
trifocal constraints through trilinear tensor. This latest is required to transfer
matched pixels in both input views into the virtual one. We quickly computed
from the measure of the length of a dummy segment in a novel view and the
Nelder-Mead simplex method, the model of the novel views pose. That model
allows the computation of novel views with very large angle of view.

We applied that approach to images from a micromanipulation scene and
showed that the obtained image of edges is enough to ensure the surveillance of
the task.

Future work will deal with the deepening of the modelisation of the views
pose and it application to synthesize virtual imagers in micromanipulation. The
great merit of that idea is it will set free the work field.
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Abstract. Diabetic retinopathy (DR) has been identified as a leading cause of 
blindness. One type of lesion, neovascularization (NV), indicates that the 
disease has entered a vision-threatening phase. Early detection of NV is thus 
clinically significant. Efforts have been devoted to use computer-aided analyses 
of digital retina images to detect DR. However, developing reliable NV 
detection algorithms requires large numbers of digital retinal images to test and 
refine approaches. Computer simulation of NV offers the potential of 
developing lesion detection algorithms without the need for large image 
databases of real pathology. In this paper, we propose a systematic approach to 
simulating NV. Specifically, we propose two algorithms based on fractal 
models to simulate the main structure of NV and an adaptive color generation 
method to assign photorealistic pixel values to the structure. Moreover, we 
develop an interactive system that provides instant visual feedback to support 
NV simulation guided by an ophthalmologist. This enables us to combine the 
low level algorithms with high-level human feedback to simulate realistic 
lesions. Experiments suggest that our method is able to produce simulated NVs 
that are indistinguishable from real lesions. 

1   Introduction 

Diabetic retinopathy (DR) has been identified as a leading cause of blindness [1]. 
Studies have shown that early detection and treatment significantly reduces the risk of 
severe vision loss [2]. Diabetic retinopathy evaluation programs typically rely on 
experts to review large numbers of retinal images from diabetic patients. Researches 
are underway to use computers to assist or automatically detect/diagnose DR by 
analyzing color digital fundus images [3-7]. While computer-assisted approaches 
offer the possibility of more cost-effective or timelier evaluation, they also present 
new challenges. For example, how algorithms are affected by differences in digital 
imaging factors such as resolution, contrast or color is not well understood. Testing 
detection/diagnostic algorithms also requires what may be prohibitively large image 
databases of real DR lesions. Computer-generated lesions offer the possibility of 
testing DR detection/diagnostic algorithms on large simulated datasets and tuning 
approaches to account for differences in digital imaging factors.  



422 X. Xu et al. 

In this paper, we develop techniques to simulate neovascularization (NV), a 
common DR lesion that signifies the disease has reached a vision-threatening phase. 
NV is a growth of new blood vessels on the surface of the retina [8] (Fig. 2 left). A 
review of literature indicates that little work has been done in simulating human tissue 
in digital imagery. The few examples include the work done by Landini for 
simulating corneal neovascularization [9] and by Hoe for liver lesion simulation [10]. 

In our work, we propose a systematic approach to simulating NV. Two algorithms 
based on local fractal growth models are proposed to simulate the geometrical 
structure of an NV lesion. A color generation method, which is adaptive to the region 
to which the simulated NV is inserted, is then proposed for assigning photorealistic 
pixel values to the structure. Moreover, an interactive system is developed for 
providing instant visual feedback to support NV simulation guided by an 
ophthalmologist. This enables us to combine the low level simulation algorithms with 
high-level human feedback to generate realistic NVs. Our current experiments on 
non-proliferative DR images have generated NVs that are deemed realistic by 
ophthalmologists. The complete system is under deployment for ophthalmologists’ 
formal evaluation of its performance including the acceptance rate (see Sect. 3). 

2   Proposed Method 

2.1   Methodology Overview  

Fractal geometry is commonly encountered in nature, e.g., branching patterns in trees, 
blood vessels patterns and shape of tumors studied in pathology. Fractals are based on 
the concept of self-similarity of spatial geometrical patterns despite a change in scale 
or magnification so that small parts of the pattern exhibit the pattern’s overall 
structure [17]. The concept of fractals as mathematical entities to describe complex 
natural branching patterns was first considered by Mandelbrot [12]. The fractal 
dimension (D), typically a non-integer value between 1 and 2, describes how 
thoroughly the pattern fills two-dimensional spaces [11]. 

The applications of fractals to biology and medicine cover a wide range of scale: 
molecules, cells, tissues, and organs [18]. Masters and Platt [19] and Family et al. [20] 
were the first to introduce the use of fractal analysis to retinal vascular branching 
patterns. One common goal of these studies is to determine the fractal dimension of 
those structures and then to use this number as an index to discriminate the class of 
normal structures from abnormal and pathological structures [13].  

Inspired by the work on fractal-based analysis, we propose to do fractal-based 
synthesis, NV simulation. Our objective is to create by simulation NVs that conform 
to bio-physical growth mechanism of real NVs and are consistent with the observed 
appearance of real NVs. This is a challenging task. Some of the key challenges that 
affect the morphology and appearance of NV and our corresponding strategies are 
discussed in the following: 

1. NV could present various patterns, which are mostly like random winding vessels 
and some may be like flowers, sea coral or other complicated structures. While 
there is no proven optimal way of simulating these patterns, inspired by the success 
of fractal-based analysis of retina vessels, we employ three fractal models to create 
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the structure of NV: random walk [21] (self-avoiding and self-intersecting), 
invasion percolation (IP) [14] and spreading percolation (SP) [14]. The random 
walk models are chosen with the consideration that the NVs are random in nature 
and thus no models with strong structural constraint should be used. We will 
present in detail the random walk fractal model. 

2. The caliber of NVs is much smaller than the natural retinal veins from which NVs 
originate. In our simulation, the caliber of NV is a function of the width of the 
retinal vein branch.  

3. The colors of NV in most cases are reddish varying with different degree of 
saturation and brightness. We generate colors by sampling the empirical 
hue/saturation/value (HSV) color density defined by local normal vessel segments. 

4. NVs are usually located at the connection of branches of natural retinal veins or at 
arterial-venous crossing sites. In our simulation, an ophthalmologist specifies 
optimal locations where simulated NV should be inserted using a graphic user 
interface. This interface also allows other parameters, such as coverage and 
complexity of the simulated NV, to be configured. 

The key steps of the approaches are illustrated in Fig. 1, with the details of the 
algorithms presented in subsequent sections. 
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Fig. 1. DR NV simulation architecture 

2.2   NV Shape Generation 

Generate Binary NV Structure Using Fractals. Our first algorithm for NV 
structure simulation is based on the following observation: NVs are thin, long, 
connected, winding vessels with variable degrees of random curvature. To 
simulate these vessels, we designed an algorithm whose core is a self-intersecting 
random walk. 

ALGORITHM 1:  

1. Create a square lattice with side length 2L+1 and spacing 1, initialize the center of 
the lattice, O, to be occupied by a particle. 
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2. The first position the particle jumps to (x1) is randomly chosen on a circle with 
radius r and centered at O. Suppose the angle at position x1 is 1, then 1= 
2*pi*rand. 
Loop for t =2:TIMES 

3. Along the direction pointed out by t-1, we create a circular sector centered at xt-1 
with the central angle 2  and radius r (  denotes the value of half central angle). The 
position of the walking particle at time t, xt, is randomly chosen on this circular 
sector given by  
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where xh
t

 and xv
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 denote the respective horizontal and vertical coordinate of the 

walking particle at time t.  
4. Set lattice position xt to 1indicating that this site has been occupied. 
5. Record the path and the order. 
End loop 
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Fig. 2. Left: A DR image with natural NV (thin vague vessels). Right: NV structure generation 
using ALGORITHM 1. The red (dark grey) circle indicates the seed particle at the center of 
lattice. The green (light grey) circles denote the position of the walking particle at different 
times. The solid line linking the circles illustrates the growth path of the particle. The dotted 
lines illustrate the restriction of the growth direction within [ t-1+  t-1+ ]. 

Fig. 2(right) graphically illustrates ALGORITHM 1. The entire process is a 
Markovian self-intersecting random walk [21] since the position at time t only 
depends on the position at time t-1. The path may intersect with itself, which entails 
some complex patterns. The curvature of the path is controlled by the central angle 2  
of the circular sector. The greater the central angle, the more likely the path is 
convoluted. Because the pixels of real NV are connected and continuous, the jump 
distance at each time instance, r, is set to 1 to prevent holes or discontinuity in the 
generated vessel. In the algorithm, the parameter TIMES and the lattice side length L 
control how much area the NV will cover. Two NV paths generated by this algorithm 
are shown in Fig. 3 (a). 
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Our second algorithm is based on the observation that some NVs appear to have the 
following pattern: (1) from a single seed point located on retinal veins grows one or 
multiple vessels (we call the major vessel the first level); (2) from major vessels grow 
one or multiple ramifications that could intersect with each other (we call these 
ramifications the second level; there could be additional levels); (3) each vessel 
branch could be a simple curve or very convoluted. 

To generate NVs with the above characteristics, we proposed the following self-
avoiding random walk algorithms. 

ALGORITHM 2:  

1. Initialize the center of a lattice (side length 2L+1) to be occupied by a seed particle. 
2. The 2-D area surrounding the seed particle is divided into 8 sectors, each 

representing a possible area the walking particle will grow into (from ( /4)*(j-1) to 
( /4)*j, j = 1, 2, 3,…8).  

3. An 8 dimensional probability vector p={p1, p2, p3, …, p8} is generated where pi 
denotes the probability of growing into sector i. p is calculated to have one 
dominant entry pj which is larger than other probability members so that the particle 
will more likely grow into area  j.  
Loop for t = 1 : TIMES 

4. By sampling the cumulative probability of vector p, an angle t is calculated to 
determine the position of the walking particle at time t. t is uniformly distributed 
within [ *(j-1)/4  *j/4]. 
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5. The position of the walking particle at time t, xt, is given by: 
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End loop 
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Fig. 3. (a) NVs generated by self-intersecting random walk (ALGORITHM 1). (b) NVs 
generated by multi-level self-avoiding random walk (ALGORITHM 2). 

Since one entry of the probability vector p, pj, is larger than other entries, the vessel 
usually grows toward one dominant direction with certain local randomness and 
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intersections along the path. Therefore globally this single vessel branch is a self-
avoiding random walk. Note that the above steps can only generate one branch. To 
produce NV with multiple levels and branches that intersect with one another, the 
algorithm is recursively called with a different p for different branches such that the 
orientations of branches are randomly distributed. Examples of NV structures 
generated by recursively executing ALGORITHM 2 are illustrated in Fig. 3 (b). 

Path Smoothing. The vessels in Fig. 3 (b) may be too jagged, and thus a smoothing 
filter is applied to make the path more natural. This is achieved by a moving average 
along individual paths. Fig. 4 shows results corresponding to Fig. 3 (b) after path 
smoothing.  

 

   

Fig. 4. Random walk fractals after path smoothing 

   

Fig. 5. Binary NV structure after caliber enlargement 

Caliber Enlargement. The path generated from the above algorithms may be too thin 
as the width of path is only one-pixel. To obtain vessels of different calibers, we 
perform caliber enlargement. The first step is to decide the enlargement scale for each 
pixel. In the real NV, we found that the wider the normal retina vessel where NV 
sprouts out, the wider the newly grown NV vessel. Therefore, the enlargement scale is 
determined by measuring the width of normal vessels where simulated NV will be 
inserted. Based on the measured width of normal vessel, empirical rules are set to 
define the enlargement scale of simulated NV vessels: if the width of normal vessel is 
larger than 10 pixels, the enlargement scale is set to 2 or 3; if the width of normal 
vessel is larger than 5 but less than 10, the enlargement scale is set to 1 or 2; in other 
cases, the enlargement scale is 1. Only three scales are used as real NV vessels are 
usually very thin. Next, for each pixel on a branch, a “disk” is created with the center 
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at the current pixel and a radius equal to the enlargement scale wi. The values of all 
pixels within this disk are set to 1, denoting that the pixels have been added to the 
original NV structure. The disk is then added to the original binary NV using logic 
operation OR. Using a disk gives us smooth vessels. Fig. 5 illustrates the results of 
caliber enlargement. 

2.3   Photorealistic Color Generation 

The binary NV structure such as those in Fig. 5 needs to be ‘painted’ with appropriate 
colors based on the context of the background. As colors of real NV are similar to the 
colors of nearby normal vessels, the colors of the simulated NV are generated 
adaptively by sampling color densities of nearby normal vessel segments.  

 

   

Fig. 6. NV with color overlaid on the background image 

Extract Normal Vessel. The extraction algorithm starts from a pixel on a normal 
vessel where the simulated NV is to be inserted. This pixel may be randomly selected 
after automatic vessel detection, or more preferably, specified by a user (see Section 
3). Then through breadth-first search we find all the pixels with colors similar to the 
chosen pixel within a square region centered at the chosen pixel. This yields normal 
vessel pixels in the local region. After extraction, the width of normal vessels is 
calculated by scanning the width in four directions (horizontal, vertical, two 
diagonals) and setting the width to the minimum of the four values. A joint histogram 
of HSV is computed from the detected normal vessel pixels and used as the desired 
color density for the specified region. Because the colors of most extracted vessel 
pixels are reddish, this joint density can be further restricted to a sub-region of the 
original color space. 
 

Generate NV Color. The color of simulated NV pixels is generated one by one by 
sampling the HSV color distribution of normal vessel segment. Theoretically, this 
may create inhomogeneity of color on the NV since we do not consider the spatial 
correlation of the pixels. This is not a practical concern as the density is highly peaked 
and thus colors are mostly similar. Fig. 6 shows the appearance of simulated NVs 
with sampled colors. 
 

Blending NV with Background. Fig. 6 shows that the simulated NVs are too salient 
to be natural due to the clear-cut boundaries. True NVs have the following important 
appearance characteristics which have not been considered yet: real NVs look well 
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“blended” with surroundings; real NV may become progressively invisible as the 
vessel extends; also, the color of central vessel pixels are typically more visible than 
that of the NV boundary pixels; color is not uniform along the branch. 

We developed the following strategies to simulate these characteristics: 

1. The color of NV pixels (for H, S and V) belonging to the first 70% of one branch is 
computed as the weighted average of sampling color of this pixel and the color of 
corresponding pixel underneath, as in Eq. 4, where  is a weight. The larger the 
weight, the more visible the simulated color with respect to the background color. 

_ _ (1 )* _NV Color Sampling Color BG Colorα α= + −  (4) 

2. To make the color of the central vessel pixels more visible than that of the NV 
boundary pixels, we create a bending matrix whose entry corresponds to the weight 

 that controls how much the sampled NV color contributes to the final color. And 
more importantly the weights of interior matrix elements decrease linearly to the 
weights of periphery elements. Note that the color of those background pixels not 
located on the binary NV structure should not be modified by the blending matrix, 
so we make the size of the blending matrix be equal to that of the enlargement disk 
discussed in caliber enlargement. A blending matrix with radius 2 is illustrated 
below. The weights decrease from inner (maxbld =0.6) to outer (minbld =0.2).                  

0 0.2 0.3333 0.2 0

0.2 0.4667 0.6 0.4667 0.2

0.3333 0.6 0.6 0.6 0.3333

0.2 0.4667 0.6 0.4667 0.2

0 0.2 0.3333 0.2 0

 

.

 

(5) 

3. For the last 30% pixels on a branch, a blending matrix is also created using the 
above method but with varying minbld and maxbld for different pixels: they both 
decrease linearly to 0 as the path reaches its end. 

This approach leads to results shown in Fig. 7 where considerable improvement 
comparing to Fig. 6 can be observed.   

 

   

Fig. 7. Neovascularization after color blending 

3   An Interactive GUI 

If positions to insert simulated NVs were determined by randomly selecting pixels 
from normal vessels which are automatically detected (e.g., by methods of [15, 16]), 
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our simulation algorithms would have formed a fully automatic system. However, 
fully automatic approaches have two drawbacks: (1) Point randomly picked on the 
detected vessel may not be the location preferred by ophthalmologists; (2) More 
severely, existing vessel detection approaches are not perfect, possibly entailing 
clinically meaningless results if the point is located on false detections. To address 
these issues, we propose an interactive approach: normal lesion detection is initialized 
by an ophthalmologist selecting a point on the vessel (as in Extract Normal Vessel). 
This greatly improves the performance of vessel detection. Moreover, the approach 
provides instant visual feedback to allow immediately rejection of the unrealistic 
simulations. Implementing the approach as an interactive GUI also enables the user to 
adaptively configure many of the algorithmic parameters if the default setting does 
not generate satisfactory results. A screen shot of the current GUI is shown in Fig. 8. 
 

 

Fig. 8. An interactive GUI for NV simulations 

There are three parameter panels in the GUI: Complexity, Visibility and Coverage.  
Complexity ranges from 1 to 5. This parameter allows a user to create simple to 

complex NVs. NV may be sinuous and random in shape (Complexity = 5) or simple 
(Complexity = 1). 

Visibility: Two parameters, minimum blending factor and maximum blending factor, 
are associated with visibility. Minimum and maximum blending factors correspond 
respectively to the minimum and maximum value in the blending matrix.  

Coverage: Two parameters, length of vessel branch and size of NV square lattice, are 
associated with NV coverage. The length of the NV branch is measured in terms of 
the number of random walk steps. The size of NV square lattice gives the area that an 
NV covers. 

In a typical run, once all the parameters are set, the user clicks the button “Run 
Experiments” to start NV simulation for a set of input images. The system reads one 
background image and displays it on the screen. Then the user selects one or more 
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locations to add NV. Next the system performs the NV simulation algorithm listed in 
Fig. 1 and displays simulated NVs on the screen. At this time, the user can examine 
the simulated NV to see if it is realistic. If unsatisfactory, the user can adjust the 
blending slider to improve the blending effect. The image with satisfying simulated 
NVs is stored by clicking the “Save Image” button. This can be repeated for different 
background images. 

It must be noted that, although the system is interactive, a large portion of the 
process is automatic, and ideally, the user will only need to select the points without 
further adjusting. Thus a performance factor of the system is the acceptance rate, i.e., 
the percentage of the simulated NVs that do not need further adjustment. 

4   Experiments and Evaluation 

We have tested the system on natural human retina images. Since NV occurs during 
the stage of proliferative DR, some non-proliferative DR lesions such as 
microaneurysm or hemorrhages are usually present at that time. So images with non-
proliferative lesions are selected from a database to serve as the background images 
into which the simulated NVs are inserted. Some simulated NVs are shown in Fig. 9, 
where background images with different pigments are used, illustrating that the 
proposed approach is able to adapt to the appearance of background images. In Fig. 
10, images with simulated NVs are intentionally mixed with real NV images, 
illustrating that the system is able to generate NVs that are indistinguishable from the 
real ones. Since the image of the entire retina is too large (1024*768), only the area of 
retina with simulated NV is shown here.  

  

 

Fig. 9. Examples of photorealistic simulated NV. Here, the width of the simulated vessel varies 
along the path. Color also presents various degree of saturation. 
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                         (a)                                          (b)                                                  (c)  

 
                    (d)                                            (e)                  (f) 

Fig. 10. Images with either simulated or real NVs (but not both). Would you be able to tell the 
difference? See1 for answer. 

The complete system is under deployment for ophthalmologists’ formal evaluation 
of its performance, including the acceptance rate, in a clinic setting. The initial results 
suggest that this is a promising method. 

5   Conclusion and Future Work 

In this paper we present a diabetic retinopathy neovascularization simulation system. 
The shape of NV is generated by self-avoiding random walk and self-intersecting 
random walk (spreading percolation and invasion percolation have also been tested, 
but not discussed here). The color of NV is generated by sampling the color 
distribution of normal retina vessel. In addition we have developed an interactive 
system to provide user feedback for optimal performance of the automated 
algorithms. Experiments on images with non-proliferative DR lesions show that the 
system is able to simulate NVs indistinguishable to the real ones. 

There exist known limitations in the current system, i.e., it cannot create some 
particular NV patterns such as flower-like NVs, which will be addressed in our future 
work. Another challenging problem is, currently the performance of the system relies 
on subjective judgment of ophthalmologists, and thus it is difficult to obtain statistics 
from a large pool of ophthalmologists to study possible bias/variance of the subjects. 

                                                           
1 In Fig. 10,  (a), (d) and (e) are real NVs, others are simulated. 
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It is likely that the fractal dimension might be the quantitative index of measuring the 
similarity between simulated NVs and real NVs, which is one possible working 
direction for our future research. 
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Abstract. One of the most challenging and fundamental problems in
computer vision is to reconstruct a surfacemodel given a set of uncalibrated
2D images. Well-established Structure from Motion (SfM) algorithms of-
ten result in a sparse set of 3D surface points, but surface modelling based
on sparse 3D points is not easy. In this paper, we present a new method
to refine and optimise surface meshes using edge information in the 2D im-
ages. We design a meshing – edge point detection – re-meshing scheme that
can gradually refine the surface mesh until it best fits the true physical sur-
face of the object being modelled. Our method is tested on real images and
satisfactory results are obtained.

1 Introduction

Much attention has been paid to the task of obtaining a surface representation
from 3D data points on an unknown surface. Early work has been focused on
the data acquired with a laser range scanner, with the characteristics that the
obtained 3D point cloud is dense and well-distributed [1, 2, 3, 4]. Although
these methods have been reported to be successful, the nature of the range
scanning technique greatly limits its usefulness in real-world applications: it is
an “invasive” technique in that the ray emitted by the scanner may damage the
object being scanned; the scanning device is often very expensive; the scanning
process is very slow even for a moderately sized object, and thus not suitable for
modelling large scenes such as buildings.

The advances in computer vision technologies provide an exciting alterna-
tive for surface reconstruction. One of the most challenging and fundamental
problems in computer vision is reconstruction of a surface model given a set of
uncalibrated 2D images captured by a hand-held camera. Although this is not
a solved problem, progress has been made in the last decade and a few working
systems have been built. The first steps usually involve Structure from Motion
(SfM) [5] and camera auto-calibration [6], delivering camera pose information as
well as a sparse 3D point reconstruction based on image feature points. Pollefeys
et al. [7] then applied dense stereo matching techniques on the images which re-
sults in a per-pixel density reconstruction of the scene. Lhuillier and Quan [8, 9]
adopted a different approach by propagating points on the images to obtain a
“quasi-dense” reconstruction.
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Even with “dense” stereo matching, the 3D data from multiple images are
sparse, noisy, and irregularly distributed compared to those from range scanners,
therefore traditional 3D surface reconstruction techniques used with range data
cannot be used with the data from passive computer vision systems. Fortunately,
the extra 2D image information is still available which can be used to facilitate
surface reconstruction. Lhuillier and Quan [8] proposed a variational approach
integrating 3D stereo data with 2D image information; Solem and Heyden [10]
addressed the problem based on methods for region tracking on surfaces and
moving implicit curves; Paris et al. [11] used global graph cut optimisation to
find optimal surface patches.

An interesting divergence from dense-stereo-data-based surface reconstruction
is “feature-based surface reconstruction” [12, 13]: the sparse 3D points obtained
with SfM techniques are directly fed into the surface reconstruction algorithm.
This is based on the observation that the human vision system tends to recognise
objects by salient features such as edges and points. Feature-based surface recon-
struction has the advantage that it represents the scene models in a more efficient
way:meshes are greatly simplified, thus the cost of computation andvisualisation is
greatly reduced. It also has the advantage over dense-stereo-basedmethods in that
feature based surface reconstruction allows for much wider base lines in the input
images, which often prevents the dense stereo matching algorithms from working.
However, finding meshes that correspond to the true shape of scenes being mod-
elled based on sparse 3D points is very difficult. This is probably the reason why
feature-based surface reconstruction remains largely unpopular.

This paper addresses the mesh optimisation problem in feature-based surface
reconstruction. The remainder of the paper is organised as follows: Section 2
discusses the limitations of previous work and briefly states the advantages of
our method; Section 3 formally specifies the problem; Section 4 presents a robust
method to detect points lying on the image edges; Section 5 presents a method to
search for the correct 3D positions for the identified edge points; Section 6 shows
some experimental results and Section 7 concludes our work with suggestions for
future work.

2 Related Work

The problem of mesh optimisation in feature-based surface reconstruction was
first addressed by Morris and Kanade [14]. In their pioneering work an initial
mesh based on Delaunay triangulation is first obtained. An edge swapping tech-
nique is then applied to traverse possible topologies of the 3D feature points.
They use a greedy algorithm to search for the best triangulation correspond-
ing to the most consistent topology across multiple views. Vogiatzis et al. [15]
extended this work by using simulated annealing instead of a greedy algorithm
to search for the best triangulation, making the optimisation less susceptible to
local minima. Most recently Nakatuji et al. [16] detect texture discontinuities
in the images and swap the edges to minimise the overall discontinuity of the
triangulation.
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In general, previous methods suffer from several problems:

1. They are heavily dependent on a judicious selection of feature points on edges
and corners. If no feature points are found (or cannot be reliably tracked) on
edges and corners, then edge swapping will not return a triangulation that
reflects the true surface of the object.

2. Finding the optimal triangulation by edge swapping can easily get stuck in
local minima. Statistical methods such as simulated annealing are computa-
tionally expensive, and their convergence cannot be guaranteed. Therefore,
the previous methods can only work with a small set of 3D points.

Our Contribution. We present a new method for mesh optimisation in feature-
based surface reconstruction by directly incorporating edge information in the
triangulation process. Our method is different from previous work in that we
do not rely on an edge swapping technique, whose complexity is exponential
to the number of input 3D points. Instead, we adopt a meshing – edge point
detection – re-meshing scheme. Our method has several advantages over the
previous methods:

1. No edge swapping is involved. We only rely on the well-established 2D De-
launay triangulation algorithm. Our algorithm is readily extensible to large
sets of 3D feature points.

2. Contrary to previous methods, triangle splitting is permitted (and is essen-
tial) in our method, allowing for a more general distribution of features on
the object surface, i.e. features do not need to lie strictly on the corners.

3. Our method can be iterated multiple times to further refine the quality of
the resultant surface mesh.

3 Problem Statement

Given a set of 3D points lying on the surface of an object, there exist many pos-
sible surface triangulations passing through all these points. A simple example
is shown in Figure 1. Although both triangulations in Figure 1 are valid configu-
rations in 2D as well as in 3D, only triangulation (a) is consistent with the true
object surface. In practice we do not know the true surface but instead have a
set of images of the object. The goal is to resolve this ambiguity by selecting a
triangulation based on its consistency with this set of images of the object.

The problem can be mathematically formulated as follows: we have as input a
set of n images I = {I1, ..., In}, a set of m 3D points X = {X1, ..., Xm} obtained
with a SfM algorithm, and n projection matrices P = {P1, ..., Pn} which define
the transformation from 3D points to 2D points for each image. We define our
triangular mesh model as M = {V,E} where V is a set of 3D points and E is
a set of edges connecting members of V. Our goal is to find a mesh model M
that maximises the conditional likelihood Pr

argmax
M

Pr(M | I,X,P) (1)
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(a) (b)

Fig. 1. Two of the many possible triangulation from 3D points on a cube. (a) Tri-
angulation that corresponds to the true physical surface; (b) Triangulation that does
not corresponds to the true physical surface: points from different planar surfaces are
triangulated.

Note that V and X are different in our formulation. Unlike previous methods
[14, 15, 16], where no new 3D points are added and only edges are swapped, we
add new 3D points in X to refine the mesh topology. Hence, X is a subset of V
in our formulation.

4 Edge Point Detection

One of the methods to create an initial mesh model is to perform a Delaunay
triangulation on the 2D feature points from one of the images and project it into
3D space [17, 7]. This method works well for dense stereo reconstruction but for
feature-based surface reconstruction, it often triangulates points from different
planar surfaces (as shown in Figure 1(b)), leading to artifacts when the object
is viewed from different angles.

Since edges in the images are natural indicators of surface discontinuities, it
is advisable to include edge information in the triangulation process. However,
points on edges are difficult to track across the images and hence many feature
detection algorithms such as SIFT [18, 19] deliberately discard points lying on
edges. Furthermore, traditional edge detectors such as the Canny edge detector
[20] and other gradient-based techniques, although successful in many applica-
tion areas, tend to give false positive responses in the presence of highly textured
objects. All these factors pose difficulties in applying the edge information in
guiding the triangulation process.

Fortunately, in this particular problem, we are only interested in finding the
intersection of images edge with edges in mesh triangles rather than the integral
edges as a whole. This observation leads us to designing a specific “edge point
detection” algorithm.

4.1 Problem Re-formulation

Consider that after Delaunay triangulation on the feature points on a reference
image, as shown in Figure 2(a), the goal is to find a point e on the triangle edge
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Fig. 2. (a) Naive Delaunay triangulation inevitably connects points from different areas
(areas A1 and A2) together. The goal is to find the intersection point e lying on
the discontinuity along the edge a → c. (b) Multiple view geometry. The 3D point
corresponding to image point m lies in the ray passing through m from the image centre
C. When only one view is available, there is not enough information to determine the
3D location: any point lying on the ray is a possible candidate. However, when more
views are available, the location can be identified by computing the reprojection on
another image by camera C′: if Mk is the correct 3D point, then its reprojected 2D
point mk should have similar appearance with m.

a→ c that lies on the discontinuity (image edge separating areas A1 and A2). If
we travel along the edge a→ c and record the pixels in a vector S = {p1, ...,pn},
then we need to find a pixel pk where 1 < k < n such that

argmax
k

Pr(Sk−1
1 | A1) Pr(Sn

k+1 | A2) (2)

where Sk−1
1 = {p1, ...,pk−1} and Sn

k+1 = {pk+1, ...,pn}.

4.2 Maximum-Likelihood Estimation and KL Divergence

In practice the distribution models of A1 and A2 are not known a priori unless
some texture segmentation techniques are used. Therefore the formulation in
Equation 2 is not readily applicable to our problem. However, we do know a priori
that A1 and A2 are different from each other. If we can define an appropriate
distance functionD(Si,Sj) to measure the (dis-)similarity of the two segments Si

and Sj , then we can formulate our problem in a maximum-likelihood estimation
(MLE) framework

argmax
k

D(Sk−1
1 ,Sn

k+1) (3)

In other words, we want to find a k such that Sk−1
1 and Sn

k+1 are most different
from each other.

It is safe to assume that the pixel set sampled from area A follows a Gaussian
distribution N with mean μ and standard deviation σ. If the pixels are sampled
from different areas, then they follow a mixture of Gaussian distribution N with
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mean μ and covariance matrix Σ. Kullback-Leibler (KL) divergence can be used
to measure the cross-entropy (i.e. dis-similarity) between two Gaussian mixtures
f and g:

Dkl(f ‖ g) =
∫
f ln

f

g
(4)

where f ∼ N (μf , Σf ) and g ∼ N (μg , Σg).
Since there is no closed-form expression for KL-divergence between two mix-

ture of Gaussians, computing this distance measure is usually done using Monte-
Carlo simulation, which causes a significant increase in computational complex-
ity. An approximation is proposed by Goldberger et al. [21] which leads to a
closed-form solution:

Dkl(f ‖ g) =
1
2

(
ln

|Σf |
|Σg|

− d+ tr(Σ−1
f Σg) + (μg − μf )TΣ−1

f (μg − μf )
)

(5)

where d is the dimensionality of the Gaussian mixtures. In our problem d = 3
because we model the RGB plane of each image pixel separately.

4.3 Algorithm Description

It is sensible to combine gradient-based edge detection with maximum-likelihood
estimation. For each edge in the triangle, we travel through the pixels and find
intensity discontinuities by computing the first-order derivative in the travelling
direction. Suppose we record n pixels in one triangle edge S = {p1, ...,pn}, a
good approximation to measure discontinuity d for pixel pk is

d(pk) = |pk − pk−1| + |pk − pk+1| (6)

Gradient-based edge detection doesn’t work well for highly textured areas.
Imagine that in Figure 2(a), A1 is highly textured and has repetitive pattern
while A2 is texture-less, then gradient-based edge detection will return many
positive responses in A1, which is not desirable for finding true discontinuities.
In this case, maximum-likelihood estimation can be used to discard false posi-
tive responses: the positive responses from gradient-based detection can be used
as candidates in maximum-likelihood estimation framework, and the true dis-
continuity corresponds to the pixel pk that maximises the KL-divergence Dkl

between Sk−1
1 and Sn

k+1.

5 3D Position Identification

The detected edge points described in Section 4 do not provide any extra infor-
mation to facilitate surface reconstruction unless their corresponding positions
in 3D space are identified. Estimating 3D positions of feature points lying on
edges in the SfM stage is not easy, as points along the edge usually have similar
appearance, and hence they are difficult to identify and track across the images.
However, camera poses and sparse reconstructed features are available after SfM.
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This information can help constrain the search-space of the 3D positions of the
detected 2D edge points.

Ideally, the corresponding 3D point of a 2D image point lies on the back-
projected ray from the camera centre passing through the 2D image point (see
Figure 2(b)). If we can identify the true location of the 3D point, then its repro-
jected point in each image should have similar appearances as they correspond to
the same feature. Therefore, the 3D point identification problem can be viewed
as an inverse problem of SfM.

In practice, however, inevitably there will be noise in SfM and camera auto-
calibration processes. Therefore, the position of 3D point may show slight devi-
ation from the ray. We propose to propagate the search-space such that it can
take noise into account, as shown in Figure 3. m1 and m2 are two vertices of a
triangle (obtained from Delaunay triangulation on the feature points) and M1

and M2 are the corresponding 3D points respectively (as after SfM their 3D
locations are already known). An edge point e is detected with the method de-
scribed in Section 4. The search-space for its 3D location is a uniformly sampled
3D grid centred at E. E is the mid-point of projections of M1 and M2 on the
viewing ray l which passes through e from C. The 3D grid is positioned in such
a way that it has larger search-space along the ray l and smaller search-space in
the direction perpendicular to l. Note that when the search-space perpendicu-
lar to l is zero, it reduces to search-space along the ray, ignoring the deviation
caused by noise.

We evaluate each 3D point sample Ek from the grid by computing its repro-
jected 2D point ei on each image Ii and compare their similarity to the edge
point e. If Ek is the correct 3D point, then its projection in other images should

Fig. 3. Search-space propagation. m1 and m2 are two vertices of a triangle and M1

and M2 are the corresponding 3D points respectively. An edge point e is detected. The
search-space for its 3D location is a uniformly sampled 3D grid centred at E. E is the
mid-point of projections of M1 and M2 on the viewing ray l which passes through e
from C. The 3D grid is positioned in such a way that it has larger search-space along
the ray l and smaller search-space in the direction perpendicular to l.
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have similar appearance to e. The problem can be formulated as finding an Ek

that minimises the cost function

min
Ek

∑
i

C(e, ei) (7)

where C(e, ei) is the cost function measuring the dis-similarity between e and ei.
Two common criteria are Sum of the Squared Difference (SSD) and Normalised
Cross-Correlation (NCC) between pixels in a small window centred at ei in each
image. In our experiment we use NCC because it is less sensitive to illumination
change between the views. We select the window size to be 7 × 7, as a trade-off
between performance and speed.

One problem still remains. The visibility property VEk
of the 3D point Ek

is not known beforehand: we have no knowledge about in which images the 3D
point Ek is seen. Fortunately, the neighbouring feature points can provide a
reasonable approximation for VEk

. As is shown in Figure 3, if e is closer to m1

than to m2, then we assign the visibility property VM1 to Ek; otherwise we
assign the visibility property VM2 to Ek.

6 Experimental Results

We begin by performing a Delaunay triangulation on the feature points of a
reference image. Edge points are detected as described in Section 4 and their
3D locations are identified as described in Section 5. The surface mesh can be
optimised by re-meshing the new feature set on the image. Note that this process
can be iterated multiple times until no triangle edge cuts through an image edge.

(a)

(b) (c)

Fig. 4. Test case 1: Arch sequence. (a) 5 of the input images; (b) Close-up view of
the original surface model from a very different angle from where the input images are
captured. Notice that the artifacts in the area of arch are caused by poor meshing; (c)
Enhanced surface model with our method. The curved surface in the arch is correctly
modelled.
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(a)

(b) (c)

(d) (e)

Fig. 5. Test case 2 : Monument sequence. (a) 5 of the input images; (b) Original mesh
super-imposed onto the reference image: notice that triangles cut through image edges;
(c) Refined mesh, triangulation is well-conditioned and very few triangles cut through
image edges; (d) Original surface model viewed from very different angle from where
the image is captured: the artifacts along the edge are caused by triangular meshes
connecting points from different surfaces; (e) Refined surface model: edge points are
detected and their 3D locations are correctly determined. The surface model refined
by our method is very consistent with the true physical surface of the object.

3D feature points and camera information are obtained based on our previous
work [13]. The reconstruction process is fully automatic and requires no infor-
mation other than the images alone. Figure 4 shows the reconstructed surface
model of an arch. Notice that the fine details of the curved surface are correctly
reconstructed, which would be impossible if we use edge swapping techniques.
Figure 5 shows another example demonstrating the result of our method. Our
method is very efficient: both test cases involve detection and 3D position iden-
tification of around 10,000 edge points and it finishes within 10 seconds on a
2GHz processor.

7 Conclusion and Future Work

We presented a new method for mesh optimisation in feature-based surface re-
construction by directly incorporating edge information in the triangulation pro-
cess. Our method is different from previous ones in that we do not rely on an
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edge swapping technique. Instead, we adopt a meshing – edge point detection –
re-meshing scheme. Experiments on real images show satisfactory results.

Our method still has limitations: it assumes that edges do not change across
the images. Although it is true for most occasions, it may not hold when the
object has a smoothly curved surface, in which case the edges change accord-
ing to the viewpoint. Moreover, our method works less well when the edges
lie on the epipolar line (See Figure 2(b)): re-projected 2D points are more
difficult to distinguish and hence the identified 3D positions are less reliable.
In our future work, we plan to solve the above problems by combining our
method with the edge swapping method and use a more robust descriptor (such
as a SIFT-like descriptor [18, 19]) rather than NCC to match reprojected 2D
points.
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Abstract. In computer vision applications of robust estimation techniques, it is
usually assumed that a large number of data samples are available. As a result, the
finite sample bias of estimation processes has been overlooked. This is despite the
fact that many asymptotically unbiased estimators have substantial bias in cases
where a moderate number of data samples are available. Such cases are frequently
encountered in computer vision practice, therefore, it is important to choose the
right estimator for a given task by virtue of knowing its finite sample bias. This
paper investigates the finite sample bias of robust scale estimation and analyses
the finite sample performance of three modern robust scale estimators (Modified
Statistical Scale Estimator, Residual Consensus estimator and Two-Step Scale
Estimator) that have been used in computer vision applications. Simulations and
real data experiments are used to verify the results.

1 Introduction

Robust estimation techniques have been extensively used in computer vision applica-
tions including optic flow computation [1], structure from motion, range and motion
segmentation, etc [2]. In those applications, it is often assumed (sometimes implicitly)
that a large number of data samples are available for the estimation process. Scrutiny of
common computer vision applications reveals that this assumption is not always justi-
fied. For instance, in the well-known problem of structure from motion, corresponding
features of various objects seen by a pair of cameras are used to calculate the fundamen-
tal matrix [3]. In a typical scene, moving objects would only have a small number of
matching features and therefore, the parameter estimates will be significantly affected
by the finite sample bias of the applied estimators.

A similar problem arises in many parametric range segmentation schemes. As robust
estimators are increasingly used to segment objects with a small number of data points
[4,5,6], the finite sample bias of the applied estimators is of significance. An example is
shown in Fig. 1 where the door of a lift is scanned by a SICK laser range scanner for an
indoor map building exercise. The scanner device produces 201 data samples (0-100◦

with the resolution 0.5◦) in each scan. When the door is scanned from a distance, a small
number of the 201 samples represent the door of the lift. Figures 2(a) and 2(b) show the
measured range data in two scenarios: In Fig. 2(a), the door is near and more than 90
range data samples belong to the lift door. The robust estimators can easily distinguish
the door from its side walls. In Fig. 2(b), the door is far from the measuring device
and a small number (around 20) of data samples belong to the door. In this case, the

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 445–454, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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Fig. 1. A lift door to be modelled in a range segmentation application

(a) (b)

Fig. 2. Range scan from (a) short distance (b) far distance

bias of the estimators is too large to distinguish the target structure from its surrounding
walls. As a result, the final map wrongly indicates that the front wall is a planar surface.
Stewart’s work [7] appears to be the only attempt in the computer vision literature to

analyse the bias of robust estimators. That analysis only includes asymptotic bias of the
estimators and does not investigate the finite sample bias.

It is important to note that an asymptotically unbiased (consistent) estimator is not
necessarily unbiased if it is applied to a finite number of samples. Thus, in practice,
one needs to know the minimum number of data samples that guarantees the robust
estimator to be unbiased (or almost unbiased). Such a knowledge is required to choose
an appropriate estimator for a particular problem or to find ways to correct the finite
sample bias of a preferred estimator.

Modern high breakdown robust estimators [6, 4, 5] include a robust scale estimator
at their core that calculates the noise scale for any given fit. The best fit is then found
by minimising a cost function that is either the noise scale itself, or a function of the
estimated noise scale. Scale estimation is therefore the critical part of such estimators
and if the scale is wrongly calculated, a proper fit will not be found, particularly in
scenarios involving multiple close structures. Thus, the performance of these estimators
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largely depends on their scale estimation part. This paper investigates the finite sample
bias of robust scale estimators developed to solve computer vision applications. As
such, we study the limitations incurred by: 1) finiteness of the number of samples 2) the
mutual distances of multiple structures in a given data set.

2 Finite Sample Bias of Scale Estimators: Definition

Before presenting our approach, some notations and assumptions are introduced. The
residuals of a hypothesised fit θ∗ (the closest fit to the true fit θ that can be found
through a search scheme like random sampling) are the only data samples utilised by a
scale estimator to calculate the scale. In practice, the residuals are a finite ensemble of
a statistical population whose characteristics mainly depend on the distribution of the
data points (denoted by H). For example if there is only one structure in the data with
no outliers, then the residuals are usually assumed to have a normal distribution with its
standard deviation equal to the noise scale (yet to be estimated). The probability density
function (pdf) of the absolute residuals are denoted by fa(r|θ∗, H). More information
on calculation of this function from data distributions can be found in [7]. In this paper,
we assume that the hypothesised fit is close to the true fit and the residuals are inde-
pendently and identically distributed (iid). Thus, the joint pdf of all absolute residuals
is equal to

∏n
i=1 f

a(ri|θ∗, H) where n is the total number of data samples. We define
the following normalised measure for the finite sample bias of a scale estimator:

Definition 1. If σ is the true scale and E[σ̂2
n|θ∗, H ] is the statistical mean of an esti-

mated scale for a given hypothesised fit θ∗ and a specific data distribution H , then the
bias of the estimator is:

ξ(n, θ∗, H) � 100% ×
∣∣E[σ̂2

n|θ∗, H ] − σ2
∣∣ /σ2. (1)

The argumentsn, θ∗ andH emphasise that the bias depends on the number of data sam-
ples, the hypothesised fit and the data population, but not on the scale itself. Indeed, the
above is a scale invariant definition of bias. To calculate the bias of a scale estimator as
defined in equation (1), the statistical mean of the scale estimateE[σ̂2

n|θ∗, H ] should be
derived first. Depending on complexity of the scale estimation procedure, such a deriva-
tion could be very complicated. An alternative approach to calculate the theoretical bias
of the scale estimator is to use Monte Carlo simulation.

3 Calculation of Finite Sample Bias for Particular Robust Scale
Estimators

3.1 Modified Selective Statistical Estimator (MSSE)

Bab-Hadiashar and Suter [6] have introduced a way of determining inliers that relies on
finding the last reliable scale estimate as larger (sorted) residuals are added to the scale
estimation. MSSE searches for the smallest sorted residual r(k+1) that is T times larger
than the least square scale estimate given by r(1), r(2), . . . , r(k). By selecting T = 2.5,
98.76% of the inliers are expected to be detected in this scheme. In addition to T , there is
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another parameter in MSSE (denoted here by kmin) which is the hypothesised minimum
number of data samples in each single structure. MSSE scale estimate is formulated as
below:

σ̂2
MSSE = 1.14

k∑
i=1

r2(i)/k ; k ≥ kmin (2)

where k is the number of detected inliers and will be called the cutting point in this
paper. The cutting point satisfies the following conditions:

r2(j + 1) ≤ T 2
∑j

i=1 r
2(i)/j (kmin ≤ j ≤ k − 1)

r2(k + 1) > T 2
∑k

i=1 r
2(i)/k.

(3)

The constant factor 1.14 has been added to the original formulation of MSSE [6] to
guarantee the consistency of the estimator when there is only one structure in the data
samples.

The cutting point k depends on the residual values and the statistical mean of the
scale estimate is given by:

E[σ̂2
MSSE] =

n∑
k=kmin

pkE[σ̂2
MSSE|k] (4)

where E[σ̂2
MSSE|k] is the conditional mean of the scale estimate for a known cutting

point, and pk is the probability of k being the cutting point and satisfying the conditions
given in (3). Using equation (2), the conditional mean of the scale estimate can be
derived as follows:

E[σ̂2
MSSE|k] = 1.14 E

[
k∑

i=1

r2(i) |k
]
/k. (5)

The expectation term E
[∑k

i=1 r
2(i) |k

]
can be calculated by direct integration:

E
[∑k

i=1 r
2(i) |k

]
= n

(
n−1
k−1

) ∫∞
rk=0

∫ rk

r1=0 · · ·
∫ rk

rk−1=0

∫∞
rk+1=rk

∫∞
rk+2=rk

· · ·
∫∞

rn=rk(∑k
i=1 r

2
i

)∏n
i=1 f

a(ri) drn · · · drk+1drk−1 · · ·dr1drk
= n

(
n−1
k−1

) ∫∞
rk=0

[1 − F a(rk)]n−k ∫ rk

r1=0
· · ·

∫ rk

rk−1=0(∑k
i=1 r

2
i

)∏k
i=1 f

a(ri)drk−1 · · · dr1drk
= n

(
n−1
k−1

) ∫∞
r=0

[1 − F a(r)]n−k [F a(r)]k−2{
r2F a(r) + (k − 1)

(∫ r

0 ρ
2fa(ρ)dρ

)}
fa(r)dr.

(6)
Finding the cutting point among the sorted absolute residuals {rkmin , . . . , rn} includes
a search process to satisfy the conditions described in equation (3). Having n residuals,
there are n choices to select a residual as rk,

(
n−1
k−1

)
choices to select the k− 1 residuals

that are less than it, (k−1)! ways to order them in ascending order, and n−k choices to
select the residual that is immediately after rk , called rk+1. Thus, pk is equal to n(n−
k)(k−1)!

(
n−1
k−1

)
= n!/(n−k−1)! times the integral of the joint pdf of residuals, over the
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subspace of residuals (D) in which the conditions described in equation (3) are satisfied.
The probabilities pk in equation (4) can be calculated by numerical computation of the
following integral for each k:

pk =
n!

(n− k − 1)!

∫
· · ·

∫
D

n∏
i=1

fa(ri) drn · · · dr1. (7)

Based on the conditions given in (3), the subspaceD is the set of residual values within
the following intervals:

rj ∈ [rk+1,+∞] ; j > k + 1

rk+1 ∈
[
max

(
rk,

√
T 2

∑k
i=1 r

2
i /k

)
,+∞

]
rj+1 ∈

[
rj ,

√
T 2

∑j
i=1 r

2
i /j

]
; j = kmin, . . . , k − 1

rkmin ∈
[
rkmin−1,

√
T 2

∑kmin−1
i=1 r2i /(kmin − T 2)

]
...

rkmin−l+1 ∈
[
rkmin−l, T

2
∑kmin−l

i=1 r2i /(kmin − lT 2)
]

rkmin−l ∈ [rkmin−l−1,+∞]
...

r2 ∈ [r1,+∞]
r1 ∈ [0,+∞]

(8)

where l = �kmin
T 2 �− 1. Knowing the number of samples n, kmin and the pdf of absolute

residuals fa(r), the bias of MSSE can be calculated using equations (6) and (7). The
residual density function fa(r) depends on the distribution of the different structures
and outliers in any given problem. We will elaborate more on formulating the residual
density in section 4.

3.2 Residual Consensus (RESC) Estimator

In RESC technique, the scale of the inliers is estimated by directly calculating [4]:

σ̂2
RESC = ξ

ν∑
i=1

(ihc
iδ − h

c
)2/ (

ν∑
i=1

hc
i − 1) (9)

where h
c

is the mean of all residuals included in the compressed histogram, δ is the
bin size of the compressed histogram, ξ is a correction factor for the approximation
introduced by rounding the residuals in a bin of histogram to iδ, and ν is the number
of bins. Wang and Suter [5] have reported that this method overestimates the scale and
have proposed the following alternative formulae:

σ̂2
RESC =

nc∑
i=1

(
ri − h

c
)2

/(
ν∑

i=1

hc
i − 1) (10)
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where nc is the number of data points in the compressed histogram (detected inliers).
In [4], the residual of each inlier is assumed to belong to one of the first ν bins in the
histogram, {hc

i ; i = 1, · · · , ν}, for which the ratio hc
i/h

c
1 is greater than or equal to

exp(−γ2/2). The bin size of the histogram is automatically determined by the ordered
statistics of the residuals: δ = r(ρn�) where ρ is a fixed parameter. The inputs of the
algorithm are the residuals and the parameter ρ (0.12 in [4]).

Because of the complication involved in mathematical formulation of the statistical
distribution of the detected residuals and the statistical mean of the scale estimate, direct
calculation of the bias of RESC (unlike MSSE) is not straightforward. Instead, we use
Monte Carlo simulation as explained in section 4.

3.3 Two-Step Scale Estimator (TSSE)

Wang and Suter [5] have devised a technique to estimate the scale of noise based on
mean shift method and its modified form called “mean shift valley algorithm”. In the
first step, TSSE uses mean shift (with initial centre zero) to find a local peak close to
zero on the residual density curve, then uses the mean shift valley algorithm to find
the valley (local minimum) next to that peak. The residuals of structures other than the
target structure are disregarded as they lie outside the obtained valley [5]. In the sec-
ond step, the scale of noise is estimated by a median scale estimator using the points
within the band centred at the local peak extending to the valley. Similar to RESC, the
statistical mean of the scale estimate given by TSSE is too complicated to be mathe-
matically formulated. In this paper, finite sample bias of TSSE is evaluated by Monte
Carlo simulations.

4 Numerical Simulation

In our numerical analysis, we consider various data scenarios each including two paral-
lel hyper-planes in p-dimensional space (forming one step in two and three-dimensional
cases). For MSSE, the theoretical bias of the estimator can be numerically calculated
by using equations (1) and (4)-(7). If σ is the true scale of noise and the height of the
p-dimensional step (the algebraic distance between the two hyper-plane) is μσ, then the
pdf of absolute residuals (corresponding with the hypothesised fit θ∗) is given by:

fa(r) =
2√
2πσ

[
ε exp(− r2

2σ2
) + (1 − ε) exp(− (r − μσ)2

2σ2
)
]

; r ≥ 0 (11)

where ε is the ratio of inlier samples (target structure) and the inlier noise is assumed
to be normally distributed. It is important to note that the above distribution does not
depend on the dimension of data samples p because as long as the two structures are
parallel, the residual distribution comprises two normal populations linearly combined
with each other.

The bias of estimator, as defined in (1), is scale-invariant and the only parameter
in equation (11) to be set for calculating the bias is the relative step height μ. In our
simulations, we examine different cases with μ = 3, · · · , or 10. Each case is examined
with 30% inliers included in data (ε = 0.3). In our previous work, we have shown that
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Fig. 3. Theoretical finite sample bias of MSSE

MSSE, RESC and TSSE are asymptotically unbiased (consistent) for μ =10, both in
theory and practice [8]. To focus on the effect of inlier ratio on finite sample bias, we
examine the other cases ε =0.5, 0.8 both with μ =10 in this paper. A minimum number
of kmin = 10 inlier samples are assumed to exist in each structure in our simulation
studies.

Fig. 3 shows the results for the bias of MSSE applied in each case with different
number of data samples. As a robust estimator, MSSE is expected to detect outliers
and only incorporates the inliers in its scale estimation process. Therefore, the finite
sample bias of the estimator depends on the number of inliers (not on the total number
of data samples) and in Fig. 3 the bias measures are plotted versus the number of inliers
ni = �εn�.

To study the finite sample bias of RESC and TSSE in similar data scenarios, we have
utilised Monte Carlo method. For each data scenario (with the same μ and ε parameters
as chosen for MSSE) we generate 106 vectors of residuals, each in the following form:

r = [rT
1 rT

2 ]T ; r1 ∼ N (0, σ2Ini) ; r2 ∼ N (μσ, σ2Ino) (12)

where no = n − ni and for each vector, r1 and r2 are generated by a random number
generator. Thus, 106 numerical instances of the residuals are generated with their ab-
solute values distributed according to equation (11). Each vector of residuals is given
as an input to the RESC and TSSE scale estimation schemes (described in subsections
3.2 and 3.3) and a scale estimate is calculated by each estimator. The average of all
106 scale estimates is a close approximation to the statistical mean of the scale estimate
E[σ̂2

n|θ∗, H ] and by substituting it in equation (1), the finite sample bias of the RESC
and TSSE are numerically calculated in the given scenario. Figures 4 and 5 show the
results of Monte Carlo simulation for the bias of RESC and TSSE, respectively, in the
same data scenarios studied for MSSE. Figures 3, 4 and 5 show a number of impor-
tant differences in the performance of MSSE, RESC and TSSE when a limited number
of data samples belonging to the target structure are available. These differences are
mainly related to how the estimator detects the outliers and extracts the scale of noise
from the inliers.

Fig. 3 shows that MSSE is heavily biased when the relative distance of the two
parallel structures, μ, is less than five. For μ > 5, MSSE is asymptotically unbiased
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Fig. 4. Bias of RESC with: (a) close and (b) Very close parallel hyper-planes

and its finite sample bias is always less than 20%, and if n > 45 its bias is less than
10%. Surprisingly, with μ = 5 the bias is smaller than the cases with larger distances
between the structures. The main reason is that the cutting point k in equation (2) is
usually lower than the true number of inliers and the MSSE scale is underestimated.
But, when two structures with an algebraic distance of 5σ are considered, some of the
data samples belonging to the second structure are mixed with the data from the target
structure (note that the cutting threshold T in (3) is 2.5) and the cutting point is closer
to the true number of inliers. Therefore, the estimator is less biased compared to other
cases with larger μ values.

0  0 50 100 150 200
0  

10

20

40 

60 

80 

100

Number of Inliers (n
i
)

F
in

ite
 S

am
pl

e 
B

ia
s 

(%
)

 

 

ε=0.3 μ=10
ε=0.5 μ=10
ε=0.8 μ=10
ε=0.3 μ=7

0 50 100 150 200
0

100

200

300

400

500

600

Number of Inliers (n
i
)

F
in

ite
 S

am
pl

e 
B

ia
s 

(%
)

 

 

ε=0.3 μ=6
ε=0.3 μ=5
ε=0.3 μ=4
ε=0.3 μ=3

(a) (b)

Fig. 5. Bias of TSSE with: (a) close and (b) very close parallel hyper-planes

Figures 4 and 5 show that RESC and TSSE are asymptotically unbiased for μ > 6
and their finite sample biases are larger than MSSE. More precisely, while the bias of
MSSE does not exceed 20%, the bias of RESC and TSSE can be as large as 68% and
83% respectively. Indeed, at least 72 and 105 inlier samples are required for the bias of
RESC and TSSE to be less than 20%, respectively, and more than 200 inlier samples for
their bias to be less than 10%. The main reason for the poor performance of RESC and
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TSSE in terms of their finite sample bias (compared to MSSE) is that they detect the
outliers based on an estimate of the density of residuals (histogram technique in RESC
and kernel density estimation in TSSE), while MSSE directly uses the least square
scale estimate of the hypothesised inliers to find the cutting point. Therefore, due to the
finite sample errors involved in density estimation, RESC and TSSE are more likely to
underestimate or overestimate the cutting point and the resulting scale estimate.

5 Experimental Results

To study the finite sample bias of robust estimators in practice, an indoor range segmen-
tation experiment was conducted using a SICK laser measurement system (LMS200-
30106). Fig. 6(a) shows a picture of the experimental setup where two boxes in front
of the laser scanner constitute two parallel surfaces to be segmented in the experiment.
One of the two boxes was considered the target structure, true scale of measurement
noise was 4.3mm and the distance between the parallel surfaces of the two boxes was
around 5cm (corresponding with μ = 11.6). Our previous study [8] has shown that
MSSE, RESC and TSSE are asymptotically unbiased for this ratio of distance to the
scale of noise. Setting the measurement range to 0-180◦ with 0.5◦ resolution, each scan
provided 361 data samples which is large enough for the purpose of this study.

Several data sets were built from the 361 range data samples. The first data set con-
tains all samples and corresponds with a resolution of 0.5◦ and n = 361. The second
data set contains one every two of the samples, corresponding with a resolution of 1.0◦

and n = 181. The third data set contains one every three of the samples, corresponding
with a resolution of 1.5◦ and n = 121. Similarly, smaller data sets were realised for
bias analysis. For each scale estimator, the empirical bias was calculated using equation
(1) with E[σ̂2

n|θ∗, H ] replaced with the estimated squared scale σ̂2 and σ = 4.3mm.
The results are plotted versus the number of data samples in Fig. 6(b). MSSE appears
to perform better than RESC and TSSE, as its bias is no more than 6% for n ≥ 73,
while for RESC at least 180 samples are required to have a bias of 5% or less, and the
bias of TSSE is under 25% only when all 360 data samples are applied. These results

Scan Line 

(a) (b)

Fig. 6. (a) Experimental setup (b) Finite sample bias of MSSE, RESC and TSSE
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are in line with the theoretical results presented in section 4. The slight difference is
mainly because the actual distribution of the inlier noise is not exactly normal as as-
sumed in our analysis and simulations. In addition, the single scan contains only one
instance of the underlying population of possible measurements. The analytical results,
on the other hand, are based on the statistical average of the noise scale over all possible
measurements.

6 Conclusions

We have introduced a scale invariant performance measure that signifies the finite sam-
ple bias of an estimator. We have also either formulated or numerically evaluated (using
Monte Carlo simulations) this measure for three state-of-the-art high breakdown robust
estimators: RESC, MSSE and TSSE. As the estimators are mainly developed to assist
the segmentation task, the main emphasis has been on evaluating the finite sample bias
of those estimators for data sets containing at least two near but distinct structures for
various inlier ratios and different normalised distances between the two structures. Our
results show that MSSE outperforms RESC and TSSE in terms of its small sample bias
as it directly processes the residuals and detects the outliers. The other two estimators
use the distribution of the data which can’t be reliably recovered for small samples and
their finite sample bias performances appear to be similar.
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Abstract. We present a novel structure tensor for matrix-valued im-
ages. It allows for user defined parameters that add flexibility to a num-
ber of image processing algorithms for the segmentation and smoothing
of tensor fields. We provide a thorough theoretical derivation of the new
structure tensor, including a proof of the equivalence of its unweighted
version to the existing structure tensor from the literature. Finally, we
demonstrate its advantages for segmentation and smoothing, both on
synthetic tensor fields and on real DT-MRI data.

1 Introduction

In recent years, second-order tensor fields have received increasing attention.
This is partly due to the now widely-used diffusion tensor magnetic resonance
imaging (DT-MRI) modality that uses a diffusion tensor in each voxel to describe
the self-diffusion of water molecules [1]. The methods presented in this paper
have been developed with an eye on the processing of DT-MRI data, but can be
used wherever real-valued, symmetric 3 × 3 matrix fields arise.

To approach the smoothing and segmentation of such fields, Feddern et al. [2,3]
have proposed an extension of some well-known curvature-based partial differen-
tial equations (PDEs), like mean curvature motion and active contour models, to
the tensor case. Other methods for tensor image regularization [4,5,6,7] and seg-
mentation [8,9,10,11]have been suggested. However, all of themuse afixeddistance
measure on the tensors. Therefore, none of the existing approaches allow the user to
emphasize the relevance of particular properties of the diffusion tensor (i.e., overall
diffusivity, anisotropy, and orientation) for a given application.

Feddern et al. derive a structure tensor for tensor-valued images. Subsequently,
they define generalized level lines as integral lines of its minor eigenvector field
and generalized gradient magnitude as the structure tensor trace.

Our present work uses a decomposition of the tensor field gradient which
has been suggested by Kindlmann [12] to replace this structure tensor with a
new formulation that has user defined parameters. When they are all set to
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one, the new formulation is equivalent to the previous one. However, we will
show that the option to weight its individual terms is crucial for some specific
applications.

The paper is organized as follows: Section 2 revises the previous work by
Kindlmann which serves as the basis of our re-formulation, presented in Sec-
tion 3. A proof of the equivalence to the previous structure tensor is given in
Section 4. In Section 5, example applications on synthetic and real DT-MRI data
follow, before Section 6 concludes the paper.

2 Projected Tensor Gradients

Let Sym3 denote the six-dimensional vector space of symmetric, real-valued
3×3 matrices and let D be a field of Sym3 matrices over R3. Then, the gradient
∇D of the field is a 3 × 3 × 3 third-order tensor which we will index such that
(∇D)ijk = ∂Djk

∂xi
. Thus, ∇D can be thought of as a three-vector of second-order

tensors, expressing the partial derivatives of D in each image direction.
Kindlmann’s contribution in [12] is to decompose ∇D into parts that corre-

spond to changes in three tensor invariants which cover changes in shape, as well
as the parts of ∇D that correspond to rotations around each eigenvector.

The invariants he uses to describe tensor shape are derived from the moments
of the eigenvalues λ1, λ2, and λ3. In the context of DT-MRI, μ1 := 1

3

∑
i λi,

the eigenvalue mean, is a measure of bulk diffusivity. The eigenvalue variance
μ2 := 1

3

∑
i(λi − μ1)2 measures diffusion anisotropy. The eigenvalue skewness

α3 := μ3/
√

μ3
2 (with μ3 := 1

3

∑
i(λi −μ1)3) reflects the type of anisotropy. It is a

dimensionless quantity with range
[
−1/

√
2, 1/

√
2
]
, where α3 = −1/

√
2 indicates

a perfectly planar tensor and α3 = 1/
√

2 a perfectly linear one.
If we consider these invariants as scalar-valued functions over Sym3, their

gradient is a map from Sym3 to Sym3. We will denote this gradient of an
invariant J as the invariant gradient ∇J , marked by a boldface ∇.

Kindlmann decomposes the tensor field gradient ∇D by projecting it onto
the invariant gradients. In order to avoid undesired scaling in this step, he first
normalizes ∇J with respect to the tensor scalar product A : B :=

∑
i,j aijbij .

Let ‖D‖ :=
√

D : D denote the associated Frobenius norm. If ‖∇J‖ > 0, its
normalized version is ∇̂J := ∇J/‖∇J‖. However, ∇μ2 vanishes when μ2 = 0,
and ∇α3 vanishes when α3 reaches one of its extrema as well as in the isotropic
case (μ2 = 0), for which α3 is undefined.

Kindlmann derives expressions for the invariant gradients1 and suggests aux-
illary constructs to ensure that ∇̂μ1, ∇̂μ2 and ∇̂α3 are always orthonormal
and span the space of changes in tensor shape, even if some of the underlying
invariant gradients are undefined. As a consequence, the directions of ∇̂μ2 and
∇̂α3 are arbitrary and exchangeable when μ2 = 0.

1 The exact formulas are not required to understand this paper. The interested reader
can find them in [12, p. 73].
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The projected gradient ∇̂J is obtained by taking the tensor scalar product of
∇̂J with each of the three Sym3 tensors within ∇D:

(∇̂J)i :=
∑
j,k

(∇̂J)jk(∇D)ijk (1)

∇̂J is a vector in R3, expressing for each of the three spatial directions the
amount of tensor change that corresponds to changes in the invariant J .

To cover changes in orientation, Kindlmann calculates rotation tangents (Φ1,
Φ2,Φ3 ∈ Sym3) as the changes in D caused by infinitesimal rotations around
its eigenvectors. Subsequently, the effect of finite rotations is approximated by
adding some scalar multiple of the normalized tangents Φ̂i [12, p. 87].

Kindlmann shows that the rotation tangents are orthogonal both to each other
and to the invariant gradients defined above. The rotation tangents are used in
the same manner as before to define projected tensor field gradients ∇̂φi.

3 The New Structure Tensor

The structure tensor used by Feddern et al. [3] is defined as follows:

Jorig(∇Dσ) :=
3∑

i=1

3∑
j=1

∇(Dσ)i,j ∇T (Dσ)i,j (2)

The indexing with σ indicates that the gradient is calculated from a Gaussian-
smoothed version of the original tensor field, to allow noise-scale pre-processing.
This definition can be considered an extension of Di Zenzo’s approach for vector-
valued images [13]. Its advantages are that it makes use of the full tensor infor-
mation, it is rotationally invariant, and it has proven to work well in practice.

Equation (2) is based on the gradients of the nine tensor channels. Our alter-
native approach uses the six projected gradients from Section 2 instead. As these
are physically meaningful, their individual influence can reasonably be weighted
via user coefficients w∗2.

However, we now need to handle cases in which the invariant gradients become
ill-defined. We will tackle this problem with functions ψ∗ that calculate effective
weights from the user-controlled parameters w∗.

For isotropic tensors (μ2 = 0), ∇̂μ2 and ∇̂α3 are arbitrary and exchangeable.
We reason that in the case of perfect isotropy, it does not make sense to speak
of changes in the type of anisotropy, so all tensor change that gets projected on
the span of ∇̂μ2 and ∇̂α3 should be attributed to changes in variance.

To make a smooth transition towards this case, we use the fractional aniso-
tropy (FA), a common anisotropy measure in the context of DT-MRI [14]:

FA :=

√
3
2
‖D − μ1I‖

‖D‖ =
3√
2

√
μ2

‖D‖ (3)

2 With the asterisk ∗, we refer to all possible indices of a variable.
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where I is the unit matrix. It is clear from Equation (3) that FA = 0 if μ2 = 0,
so we define ψα3 such that it tends to wμ2 as FA → 0:

ψα3(FA; wμ2 , wα3) :=

{
wα3 if FA > ε(

FA
ε − 1

)2
wμ2 +

[
1 −

(
FA
ε − 1

)2]
wα3 else

Making a smooth transition requires to introduce a parameter ε that defines the
threshold starting from which we fully rely on the gradient direction ∇̂α3. In
our experiments, a value of ε = 0.1 worked well.

Further singularities occur when dealing with changes in orientation. Since
the two ill-defined eigenvectors of a perfectly linear (α3 = 1/

√
2) or planar

(α3 = −1/
√

2) tensor are exchangeable, the effect of rotating the tensor around
any of them may just as well be attributed to the other one. Thus, the ψφi are
designed to let them share the total amount of rotation around any of them by
averaging their weights in the limit case:

ψφ1(FA, α3; wφ1 , wφ2) =

{
wφ1 if FA = 0 or α3 > 0(
1 − α2

3

)
wφ1 + α2

3wφ2 else

ψφ2(FA, α3; wφ1 , wφ2 , wφ3) =

⎧⎪⎨⎪⎩
wφ2 if FA = 0(
1 − α2

3

)
wφ2 + α2

3wφ1 if FA > 0 and α3 < 0(
1 − α2

3

)
wφ2 + α2

3wφ3 else

ψφ3(FA, α3; wφ2 , wφ3) =

{
wφ3 if FA = 0 or α3 < 0(
1 − α2

3

)
wφ3 + α2

3wφ2 else

With these definitions, the new structure tensor reads:

Jnew(∇̂μ1,∇̂μ2, ∇̂α3, ∇̂φ1, ∇̂φ2, ∇̂φ3; FA, α3) :=

wμ1∇̂μ1,σ∇̂μT
1,σ + wμ2∇̂μ2,σ∇̂μT

2,σ+

ψα3(FA; wμ2 , wα3)∇̂α3,σ∇̂αT
3,σ+

3∑
i=1

ψφi(FA, α3; wφ1 , wφ2 , wφ3)∇̂φi,σ∇̂φT
i,σ

(4)

It is rotationally invariant for arbitrary sets of weights and uses the full tensor
information when all weights are non-zero.

4 Equivalence to the Previous Structure Tensor

In its unweighted form (w∗ = 1), the new structure tensor Jnew is equivalent to
the one used by Feddern et al., Jorig. This fact ensures that our new structure
tensor has all the desirable properties of the established one.
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Proof. We can write element (i, j) of the original structure tensor Jorig (2) in
terms of the tensor scalar product:

(Jorig)ij = ∇Di : ∇Dj (5)

Note that the normalized invariant gradients and rotation tangents defined by
Kindlmann form an orthonormal basis of Sym3. If we denote the kth of these
basis vectors by Bk, we can write element (i, j) of the new structure tensor Jnew

(4) correspondingly as

(Jnew)ij =
∑

k

(
∇Di : Bk

) (
∇Dj : Bk

)
(6)

For the sake of simplicity, we are going to embed the tensors isometrically in R6.
This can be done by using the six non-redundant tensor channels as components
of the vector, where non-diagonal elements are multiplied by

√
2.

Let ∇di and bk be the embedded versions of ∇Di and Bk, respectively. Then,
we can re-write Equation (6) and reorder the terms as follows:

(Jnew)ij =
∑

k

(
∇di · bk

) (
∇dj · bk

)
=
∑

l

(∑
k

(bk
l )2

)
∇dil∇djl +

∑
l,m
l �=m

(∑
k

bk
l bk

m

)
∇dil∇djm (7)

If we arrange the bk as rows of a matrix, the resulting matrix is orthogonal,
because the Bk were orthonormal and our mapping preserved the scalar product.
Thus, the column vectors of the matrix will also be orthonormal:

∑
k bk

l bk
m = δlm.

With this result, Equation (7) reduces to ∇di ·∇dj , which is by our definition
equivalent to Equation (5). ��

5 Applications

5.1 Application to Segmentation

We will now demonstrate the advantages of the weightable structure tensor in the
context of a geodesic active contour model [15,16] for interactive segmentation.
This model allows the user to provide the approximate position and shape of the
object that is to be segmented. Consequently, the contour moves to the exact
boundary of the object, based on edge information from the image.

For tensor-valued images f , Feddern et al. [3] suggest to use the structure
tensor trace as an edge detector. A simple implementation of the segmentation
model is then given by embedding the initial contour as a zero level set into a
function u0 (via a distance transformation) and evolving it under the PDE

∂tu = |∇u| div
(

g(trJ(∇fσ))
∇u

|∇u|

)
(8)
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(a) Initialization of the
active surface, between
two edges

(b) Without weight-
ing, the inner box gets
segmented

(c) Setting wμ1 := 10
leads to a segmentation of
the outer box

Fig. 1. Active surface segmentation of a synthetic data set (t = 500). Varying the
weights draws the segmentation towards specific types of edges in the data.

which simultaneously regularizes the surface and draws it towards edges in the
image f . g is a non-increasing stopping function. In our experiments, we used
the following diffusivity [17, p. 114]:

g(s2) :=

{
1 if s2 = 0

1 − exp
(

−3.31488
(s2/λ2)4

)
if s2 > 0

(9)

The evolution of Equation (8) is stopped at a time t, when u no longer changes
significantly. The segmentation result is extracted as the zero level set of u. Unlike
the version presented in [3], our implementation of (8) works in 3D, so we will
refer to it as an active surface model.

We first applied this method to the synthetic dataset shown in Figure 1. It
consists of two nested boxes of different materials: The tensors in the outer box
are isotropic, but have the same trace as the linear ones in the inner box. Thus,
two types of edges arise: A change of tensor trace between air and the outer box
and a change of anisotropy between the outer and the inner box.

Figure 1 shows the setup using superquadric glyphs [18] on three orthogonal
slices. When we initialize the active surface to a sphere that lies between the two
boundaries (Figure 1(a)), the unweighted structure tensor leads to a segmenta-
tion of the inner box (Figure 1(b)). By increasing the weight of changes in trace
(wμ1 := 10), we can guide the segmentation to the outer box.

We also segmented the corpus callosum (CC), a major white-matter struc-
ture, in a real DT-MRI dataset. Figure 2(a) shows the initialization of the active
surface to an ellipsoid, superimposed on a sagittal slice of the data in the stan-
dard xyz-RGB eigenvector color coding. It encompasses the structure of interest,
which appears as red in the color image, or as dark in halftones.

The original, unweighted structure tensor basically leads to a segmentation
of the ventricle (Figure 2(b), the ventricle is shown in white). The CC is distin-
guished from its neighborhood by its anisotropy (wμ2 := 1) and major
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(a) Initialization of the
active surface

(b) The unweighted struc-
ture tensor segments the
ventricle

(c) The weights allow to
capture the corpus callo-
sum

Fig. 2. Active surface segmentation of a DT-MRI data set (t = 1200). Weighting the
new structure tensor allows to specify the structure of interest.

eigenvector orientation (wφ2 := wφ3 := 0.2). Setting all other weights zero allows
for a plausible segmentation of this structure, shown in Figure 2(c).

A small structure inferior to the CC also got segmented. Although it differs
from the CC by its global orientation, we cannot differentiate it in our model,
which only considers local variations in tensor value. In practice, a simple con-
nected component analysis would be sufficient to remove the undesired island.

For the numerical implementation, we have used the additive operator split-
ting (AOS) scheme as described by Weickert and Kühne [19]. It allowed us to
solve Equation (8) on the real DT-MRI dataset (grid size 74 × 95 × 80) for
t = 1200 in 40 seconds on a 2 GHz dual-core Athlon 64 processor; the synthetic
examples took two seconds each.

5.2 Application to Smoothing

Feddern et al. [3] also generalize the self-snakes smoothing process initially pro-
posed by Sapiro [20] to the tensor-valued case. In 3D, it can be written as a
system of six coupled PDEs for the individual tensor channels,

∂tui,j = g(trJ(∇uσ)) (∂vvui,j + ∂wwui,j) + ∇T (g(trJ(∇uσ)))∇ui,j (10)

with ui,j(x, y, z, 0) = fi,j(x, y, z) as the initial condition. The vectors v and w
denote the minor and medium eigenvectors of the structure tensor J, respec-
tively. Equation (10) leads to a smoothing along the plane spanned by v and
w; this is analogous to the smoothing along level surfaces in scalar-valued mean
curvature motion (MCM). The diffusivity function g stops the smoothing process
at important image features.

Our new structure tensor allows to steer this process. We first demonstrate
this with the synthetic dataset from Figure 3(a), in which the tensors vary con-
tinuously in shape (from linear to planar) and orientation (rotation by 90◦). In
this example, we set g := 1 to obtain purely MCM-like smoothing.

Setting the weights of Jnew allows to specify which features we would like to
preserve. If we set wφ∗ := 1 (all other weights zero), the result in Figure 3(b)
shows that the shapes are completely averaged at t = 250, while the orientation
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(a) A tensor field that
varies in shape and orien-
tation

(b) Result of orientation-
preserving smoothing

(c) Result of shape-
preserving smoothing

Fig. 3. Mean Curvature Motion-like smoothing of a synthetic data set (t = 250).
Customizing the structure tensor allows to select which features should be preserved.

has been preserved. On the other hand, we can set only wμ2 := wα3 := 1 to
preserve shape and average the orientation, as shown in Figure 3(c).

In our experiments on real DT-MRI data, we found that for many smoothing
tasks, Jorig already works well in its default configuration. Figure 4 presents a
situation in which its behaviour can still be improved by changing the weights.

Figure 4(a) shows two touching fiber tracts. One of them lies in the depicted
sagittal plane, the other one (shown by an integral curve of major eigenvectors,
started at the position marked by the ball) touches the plane almost tangentially.
It is a delicate task to smooth the dataset without mixing these two tracts.

Figure 4(b) shows that after applying self-snakes with Jorig, the tangentially
touching tract has been lost at t = 5. To preserve the directions of both tracts,
we configured Jnew to concentrate on orientation (wφ∗ := 1) and to prevent
influence of the nearby ventricle (wμ1 := 0.1, all other weights zero). Figure 4(c)
shows that this configuration makes it possible to preserve both tracts.

In this experiment, we set g to the diffusivity function (9). As the trace of
different structure tensors does not in general lie on the same order of magnitude,
we select the contrast parameter λ2 as 0.01 times the maximum structure tensor
trace in the first iteration and then keep it constant.

(a) The original tensor
field with a tracked fiber

(b) Smoothing with Jorig

changes the fiber signifi-
cantly

(c) Weighting Jnew allows
to preserve the fiber

Fig. 4. Emphasizing orientation using the new structure tensor can help to preserve
the direction of fibers. Here, the glyphs are shaded to indicate the degree of linearity.
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Solving Equation (10) with a simple explicit scheme took 30 seconds on the
real dataset (t = 5) and four seconds in the synthetic case (t = 250).

6 Conclusion

We have presented methods for flexible smoothing and segmentation of matrix-
valued images. User-controllable options to concentrate on specific features in
the high-dimensional data are introduced by integrating Kindlmann’s decompo-
sition of the tensor field gradient [12] into the PDE framework of Feddern et
al. [3]. We found solutions for cases in which Kindlmann’s invariant gradients
become ill-defined and proved that the new structure tensor in its unweighted
form is equivalent to the previous one. Finally, we successfully demonstrated the
advantages of our re-formulation, both on synthetic and on real data.

Future work may use diffusion processes to preprocess DT-MRI data for fiber
tracking.
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Abstract. We present a visualization system that helps designers concep-
tualise interactions in a virtual environment (VE).Weuse event-condition-
action triads (triggersets) for specifying interactions, and provide multiple
visualizations: sequence diagrams, floorplans and timelines. We present
a two part study: sequencing VE interactions accurately and debugging
mistakes. Subjects were divided into two groups: one received visualiza-
tions and triggersets and the other (a control group) received triggersets
only. The visualization group described 72.5% of the sequence correctly
on average, compared to 56.4% by the non-visualization group. The vi-
sualization group also detected more than twice as many errors as the
control group. The visualization group worked well with multiple, linked
windows to create an understanding of the design. Floorplans were most
useful for an overview, timelines for understanding specific sequences and
sequence diagrams for sequencing and finding mistakes.

1 Introduction

The field of Virtual Reality (VR) has all of the complexities of 3D world creation
as well as the difficulties of providing interactions within each world, which are
compounded because VR presupposes an independent user. Interactions are the
relationships set up between the user of a VE, its objects and the environment
itself. The design of interactions is difficult for several reasons: (1) They happen
over time for an indeterminate duration, so the design cannot be viewed stati-
cally. (2) They happen for various entities, so that each entity or group of entities
may participate in a different set of interactions. This leads to a combinatorial
escalation of possibilities for interaction. (3) At least some of the interactions
will be determined by what the user does, which cannot be pre-specified. There-
fore, the designer must deal with a significant amount of uncertainty about how
the end result will be experienced. (4) Interactions include actions that are so
commonplace to us that we do not naturally think about them, like avoiding
obstacles and facing the person to whom we are talking. They require significant
detail to define completely. (5) Very often the VE will have a purpose or tell
a story, which means that the user must be guided by the interactions and the
environment to achieve a goal. (6) The VE must be sufficiently reactive to the
user’s interactions to make the experience enjoyable and interesting.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 465–474, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In this paper, we describe the use of visualizations to support the design
and debugging of interactions within a VE. We accomplish this principally by
providing multiple visualizations: a floorplan, timelines and a sequence diagram
of the flow of interactions for narrative sequencing. We also describe a study
designed to test the effectiveness of these visualizations. In software visualization,
which is related to our work, the outstanding questions include: with which
problems are diagrams better than text, how do individuals differ in how they
work with diagrams and what are the benefits of using multiple representations
[1]? These underlie our research and motivate the study. We begin by providing
some background in Section 2. In Section 3, our visualizations are described
within their context, and in Section 4 we present our study and its results. We
conclude in Section 5 with a discussion of the implications of our work.

2 Background

In this section we discuss previous research on program visualization and using
visualizations for design and debugging. We also focus on the use of multiple
visualizations. Visualization research has a long history, particularly in scientific
and information visualization [2,3]. In recent years, research has increasingly
been conducted into the use of visualizations for a greater variety of problems
[4]. For example, the use of visualizations to support programming tasks, such as
debugging and control structure creation [5,6]. Program visualization helps the
designer to see the flow of control through a program[5]. To assist in the debug-
ging task, Ko and Myers [7] developed Whyline, which provides visualizations
of a program’s runtime states in response to questions about what went wrong.

Visualizations can be used by experts during various design processes. General
research on external representations suggests that they are useful in promoting
reflexivity and a deeper understanding of their subjects [8,1,9,3]. Eastman [9],
in a survey of representations used in design, suggests that novices learn from
viewing and working with external representations, so that in time these are
internalised and become part of the designer’s reasoning tools. Petre and Black-
well [10] found that during program design, expert programmers used various
forms of mental imagery to think about a task. Commonalities in the imagery
used included the fact that they were dynamic, but could be stopped and re-
versed; they had adjustable granularity; and they included simultaneous multiple
images. Baldonado et al. provide guidelines for the use of multiple views in infor-
mation visualization: they should be used when there is diversity of information,
when different views elicit correlations or disparity in the information, or when
complex data can be decomposed into manageable chunks. Providing multiple
views fosters a deeper understanding of a problem when the distinct represen-
tations are understood as describing facets of the same idea [11].

3 A Linked, Multi-view Visualization System

There are various aspects to VE interaction design: the use of space, time and
possible sequencing of interactions. These must all be considered in addition
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to the complexity added by the VE user’s freedom of movement. We provide
visualizations to help designers understand interactions. The use of multiple
visualizations is intended to break up the complexity of interaction design by
focusing on different aspects of it. Three visualizations are used: (1) a floorplan
visualization of the space of the VE (see the left side of Figure 1a); (2) time-
lines, which are both a construction and a visualization tool (see Figure 2); (3)
a sequence diagram for visualizing and debugging the sequence of interactions
(see Figure 1b). The visualizations and how they link together are described fur-
ther below. For programming the interactions, we use an event-action paradigm.
Trigger-condition-action triads, which we refer to as triggersets, are used. The
visualization system is embedded in this authoring system. A typical process
of using our visualizations is as follows: The designer specifies objects and the
environment. Time-based sequences of actions can be entered using timelines.
The system generates a floorplan from the object positions and locations in the
environment that have been specified. As soon as the designer has entered a few
triggersets and object details into the system, she can view the sequence dia-
gram generated by these interactions. Thus, the system allows for incremental
programming, as the status and consequences of what has been programmed can
be checked at any point by examining the visualizations.

Floorplan. Floorplans have been shown by our own and other experiments to
be very useful in the design of 3D worlds [12,13]. They are also used successfully
in engineering and architecture to represent space. Floorplans are essentially
maps, which allow complex 3D worlds to be viewed in a more simple 2D way
[3,14]. In particular, lines of sight, locations and object positions can be easily
viewed. In our floorplan, the VE space may be divided into rectangular regions
called locations, which can be used in triggers or conditions without specific coor-
dinates. The floorplan automatically displays the positioning of any object that
has been given spatial coordinates and indicates its orientation. Any proximity
triggers set up in relation to objects are shown on the floorplan. The floorplan is
marked with a grid in the units of the world so that distances can be estimated.
A compass is used to indicate direction and assist the designer in understanding
the rotation system for objects. Designers can interact with the floorplan using
direct manipulation. When an object’s icon is selected, it is highlighted and the
object details are displayed. The floorplan can also be layered to reduce com-
plexity and to show different levels of a 3D world, if necessary. Figure 1a is an
example of a floorplan used in the system.

Sequence Diagram. Our sequence diagrams are inspired by Harel’s state-
charts [15], which were developed for designing complex reactive systems. They
are generated directly from the triggersets and follow the flow of data through
the VE. States are identified where specific interaction possibilities exist. Each
state specifies the current conditions in the environment that allow triggersets
to execute. The states are linked by arrows, which correspond to triggersets’
execution. If a triggerset does not change the current interaction possibilities,
its arrow leads back to the same state. When the user clicks on a state, the
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Fig. 1. Floorplan and Sequence Diagram. (a) is a floorplan of a VE. The position and
orientation of each object is indicated by an icon and directional arrow, respectively;
circles around each object correspond to proximity triggers that have been set up. (b)
is a corresponding sequence diagram showing states and links. A state is a point from
which user interactions will have consequences, and a link is a triggerset that can be
executed from its originating state.

arrows that leave it and the states to which they connect are highlighted. A
description of the state also pops up. When the user clicks on an arrow, all other
arrows referring to the same triggerset are highlighted and a description of the
triggerset pops up. In this way, designers can step through their interactions
and think about how the sequence fits together. For debugging interactions, the
sequence diagram allows designers to see the effects of the triggersets; where
triggersets have unexpected consequences and which triggersets never execute.
A sparse diagram will indicate a lack of interactions provided in the VE. Because
the sequence diagram itself is not linear, designers are encouraged to view the
interactions in a non-linear way. Figure 1b provides an example of a sequence
diagram.

Timelines. Timelines are a well understood formalism and have been shown
to reduce errors in temporal ordering [11,12]. Because VE authoring depends on
user interactions, our timelines do not represent VE time from start to finish.
Instead, they represent parts of the VE where a sequence of actions will happen
in known time. The actions are grouped on the timeline and then treated as a
single action. For example, if a story is told in a VE, the sound file and actions
of storyteller and listeners must all be coordinated. The timeline can be used
to sequence the storytelling and reactions with precision and efficiency. The
story timeline can then be executed as a single action. Each row on the timeline
corresponds to an object and contains any actions that the object performs. The
length of the action is automatically calculated (e.g., an animation’s basic length
is read from its file and then multiplied by repetitions) and visualized on the
timeline. Any action on a timeline can be selected to uncover more details about
it. Figure 2 displays a typical timeline from the system.
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Fig. 2. Timeline showing objects involved and their actions. These can be selected to
elicit more detail about each action.

Linking Between Visualizations. All our visualizations are linked to each
other. The objects and locations referred to in each visualization connect them
to one other and to the triggersets, so that they can be cross-referenced. Time-
lines are described in the sequence diagram. For example, Figure 1b displays a
sequence diagram for a VE where the state, Sandra Timeline Sandra Distracts
Jailer, describes the state of the VE while the timeline, Sandra Distracts Jailer
is playing. From this diagram, one can see that the triggerset Sandra Says Yes
begins the timeline and that three triggersets can be activated by the timeline
or actions contained in it. If the designer selects this state, a detailed description
of the timeline is provided and if the designer selects any of the triggersets con-
nected to the state, a detailed description of each is given. The designer can use
the name of the state to open the actual timeline (Figure 2). The names of the
links can be used in a similar way to find the actual triggersets to which they
correspond. The names of objects and locations in the sequence diagram, time-
lines and triggersets can also be used to find objects on the floorplan (Figure 1a).
Therefore, by working through the visualizations in combination, the designer
can gain an overview of the sequence of triggersets and how they interact with
each other, as well as a detailed description of each.

4 Visualization Study

An exploratory study was conducted to test the effectiveness of our visualiza-
tions. For this initial study we wanted to find out how effectively the visual-
izations and triggersets were used by people in understanding a sequence of 3D
interactions and in debugging errors in a sequence. This aim has four parts: (1)
To assess how subjects were able to describe the possible sequence of interactions
in a VE. (2) To investigate the extent to which subjects could identify errors
in a second set of interactions. (3) To investigate which visualizations subjects
preferred to use in different contexts. (4) To assess how well subjects work with
multiple visualization windows. We included a control group, who did not re-
ceive visualizations, so that we could compare the performance of subjects who
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did receive visualizations with that of subjects who did not. Because of the ex-
ploratory nature of our work, we decided to use participant observation for our
study [16]. We observed subjects working on simple problems using our system.
After the tasks were finished, the researcher discussed the subjects’ experiences
with them in a structured interview.

Part of the study dealt with identifying problematic interactions. Most mis-
takes, in our experience, fall into one or more of four general categories: timing
errors arise from the time it takes the user or other objects to complete actions;
spatial errors arise from the way space is used, in terms of orientation and lo-
cation of objects; sequencing/logical errors arise from problematic ordering of
interactions and the way they interrelate; and implicit assumption errors arise
from the designer forgetting to state all behaviour explicitly. Examples of these
errors are shown in Table 1.

4.1 Description of the Study

Our study had two parts, each in a separate VE. Visualization subjects were
provided with a floorplan, timeline(s) and a sequence diagram of each. For the
Sequence part of the study, a simple VE entitled Bouncer Example was used. The
physical space of the Bouncer Example consisted of three locations. In addition
to the User avatar, the VE contained a Bouncer (or guard), a Door, a Bell and a
Chalice. The goal was to distract the Bouncer away from the Door that he was
guarding, so that the user could open the door and grab the chalice. Various
triggersets were set up to describe the possible interactions. The aim of this part
of the study was to see how well subjects could work out what might happen in
the VE. Therefore, the triggersets were set up so that some could not execute
without others having been triggered, so that there was a sequence.

For the Debug part of the study, a VE entitled Jail Example was conceptu-
alised. The space consisted of four locations. In addition to the User avatar, the
VE contained a Jailer, an object named Sandra, three Doors, a Push-Button
and a Chalice. The goal of the VE was to use Sandra to distract the Jailer, so
that the User could get into the location named Freedom. The floorplan and se-
quence diagram for this VE are shown in Figure 1. The Sandra Distracts Jailer
timeline shown in Figure 2 is also from this VE. As in the Sequence part of
the study, various triggersets had been set up describing the interactions that
could happen. However, in this case, several mistakes had been introduced into
the triggersets. The aim here was for each subject to identify as many potential
errors as possible. This was intended to test how well subjects could debug in-
correctly programmed interactions. The mistakes and the error categories from
which they draw are indicated in Table 1.

4.2 Procedure

A sample of eleven graduate students from different disciplines was recruited.
It was decided to use people with graduate degrees or equivalent working ex-
perience, as these corresponded to the target group of people who might work
with VR. None of the subjects had any experience with graphics programming,
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Table 1. Interaction Programming Mistakes Introduced into the Visualization Study

Mistake Description Error Category

Jmove Jailer does not move far enough and Spatial/Timing
so proximity trigger is not executed

Fopen No way specified to open a door Implicit Assumption /
behind which is a button to open the Spatial
door to Freedom location

CLcon Caught and Locked In triggersets Sequencing and Logical
both execute and conflict

YNcon Sandra Yes and Sandra No Sequencing and Logical
triggersets both execute and conflict

although they had experience with graphics packages ranging from none to Il-
lustrator and 3D Studio Max. Gender was evenly represented. Subjects were
volunteers within these constraints and were paid a small amount for their par-
ticipation. A control group of five subjects who would not receive visualizations
was randomly selected from the larger sample.

Each subject experienced the study individually and was then interviewed.
Before the study began, the subject was given an introduction in which interac-
tions, the triggerset formalism and the visualizations (only for the visualization
group) were introduced. Following this, subjects were given 20 minutes to exam-
ine the triggersets and visualizations for the Sequence part of the study. After
this they were asked to write down what might happen in the VE, indicating
any dependencies among the triggersets. Thereafter, the instructions and VE de-
scriptions for the Debug part of the study were provided. Subjects were asked to
specify any mistakes that they found and were also given 20 minutes to examine
the triggersets for this part. When subjects had finished with both parts of the
study, a structured interview was conducted. A code was developed for scoring
the accuracy of the sequence descriptions of the Sequence part of the study.
Points were given for correct sequencing, awareness of branches, awareness of
object locations and how these might change, and awareness of pre-conditions
on actions. An independent marker examined the scripts using the code, in order
to ensure that the marking was unbiased.

4.3 Results and Discussion

All of the subjects found the triggerset formalism easy to use and understood
how the triggersets worked. It was when they had to be ordered in a sequence
that subjects had difficulties. Visualization subjects achieved a 72.5% average on
correctly working out the Sequence part of the study, while the control group only
achieved a 54.6% average. The different between means was just not significant
(F = 6.32, p < 0.09 ). However, once an outlier in the control group was removed,
its average dropped to 48.5% and the difference became significant (F = 1.43, p
< 0.002 ). For the Debug part of the study, the visualization group noted twice
as many errors as the control group (37.5% vs. 15%), but overall the number of



472 C. Winterbottom, E. Blake, and J. Gain

errors noted was low. This result was not tested for significance, as most of the
control group(3 of 5)found zero errors, which skewed their results. Subjects were
limited to 20 minutes to debug the VE, which partially accounts for the poor
results. Only one (visualization) subject found Jmove and CLcon (see Table 1 for
a description of the errors). Two visualization subjects and one control subject
found Fopen. But five visualization subjects (and two control subjects) found
YNcon. We can examine the errors that were detected, broken into error types.
The visualizations seem most helpful for sequencing errors, probably because
the sequence diagram indicates possible sequences. Without this, the triggersets
must be manually connected to each other, based on the result of each one being
executed. Timing errors are almost impossible to find without some way to view
the final product or step through the events.

Subjects found the floorplan most useful: to orient, give a concrete sense
of the space and where the objects are in relation to each other: “Once you
coordinate between the physical locations, you can see how you need to move.”
In fact, half of the subjects stated that they could not have reconstructed the
sequence without the floorplan. Timelines were useful for noticing a predictable
sequence: “Used the timeline for Bouncer Move to see how he went away.” One
subject stated, “I did not use timelines much to examine interactions because
they were simple, but they would be very useful to make actions — work very
nicely. For design, I like the timeline. It is important as both a visualization and
a construction tool.” Mistakes in the Debug part of the study were made more
obvious by the sequence diagram: “The sequence diagram is useful for seeing
how the triggersets relate, their order and what activates what.” “Could walk
anywhere, but the VE only reacts like the sequence.” Even those who used the
sequence diagram less stated that it was useful to “check up after your own
analysis of the triggers”. Subjects did state that they wanted more interactivity
from the sequence diagram.

A typical method of working with the visualizations was to begin with the
floorplan in order to gain an overview of the VE and its interactions. Sub-
jects would then examine the triggersets and object descriptions, referencing
the names and positions of objects and locations on the floorplan. During this
process they would repeatedly go to the sequence diagram to find out how trig-
gersets sequenced, or confirm their own analyses. When timelines were referred
to, they would open them and check the objects and actions. In this way, sub-
jects used the linking between the visualizations effectively. Subjects all worked
in different ways with the visualizations and triggersets. This justifies the flexi-
bility of the tool in allowing for different work processes. There were similarities,
though: Subjects all looked at multiple visualizations and most cross-referenced
the visualizations constantly to work out what was happening in the VE. Only
one subject mentioned problems with switching between multiple windows. They
all found the visualizations clear and useful but found each one useful for dif-
ferent things, e.g. “I had all three (visualizations) open at the same time. Then,
if you don’t understand the sequence you can look at the timeline.” And “The
triggersets are basically just the details of the rest (the visualizations)”. They
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all felt that the tasks would have been much harder without the visualizations.
A few mentioned that the interactivity was very helpful.

Our study also indicated areas where we could improve the visualizations.
Subjects underused the timelines, as they were more difficult to access. This
means that ways to access the visualizations must be made highly visible and
simple. People need to be able to access each visualization from the others, so
that they do not overlook them and to make it easier to cross-reference. Subjects
did not often drill down into triggersets and object details to find out necessary
information, e.g., the angle of rotation for an accurate point of view. Therefore,
details that are not visualized must be made more obvious and easily accessible.
Subjects indicated that it would be helpful to group triggersets according to
various criteria, such as locations in which they might execute. Users also need
more help with working out the consequences of rotations and translations, in
terms of where an object will end up after a sequence. More support is needed
to help users understand certain parts of 3D interaction design, such as spatial
relationships. The visualizations can guide users more in this regard.

5 Conclusion

We have described our experiences in providing visualizations to support the
understanding of VE interaction design. In the study we conducted, visualiza-
tion subjects consistently out-performed the control group. They understood the
visualizations and worked well with them. They naturally used multiple inter-
acting visualizations to build a complete idea of a complex design. Floorplans
were used to gain an overview of the VE and interactions, timelines were used
to understand the consequences of predictable sequences of events, and sequence
diagrams were used to understand how the interactions worked together and to
find mistakes. The interactivity that was added was also very positively received,
although subjects would have preferred more. More work must be done on assist-
ing users with debugging tasks, especially in terms of highlighting inappropriate
or inconsistent interaction effects.

These results show that using visualizations to understand and debug VE
interactions improves the authoring process. This is a key finding in helping
to make VR more accessible as a creative medium. It also provides us with
validation of the efficacy of our visualizations, which creates a solid basis for
future work. Our next step is to add a 3D view of the VE to complement the
other visualizations. Then we will develop a run mode with a highlight which
moves through all of the visualizations, indicating where the action is taking
place. More interactivity will also be added between the 3D window and the
other visualizations.
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Abstract. Skeletons are often used as a framework for part-based shape analy-
sis. This paper describes some useful strategies that can be employed to im-
prove the performance of such shape matching algorithms. Four key strategies 
are proposed. The first is to incorporate ligature-sensitive information into the 
part decomposition and shape matching processes. The second is to treat part 
decomposition as a dynamic process in which the selection of the final decom-
position of a shape is deferred until the shape matching stage. The third is the 
need to combine both local and global measures when computing shape dis-
similarity. Finally, curvature error between skeletal segments must be weighted 
by the limb-width profile along the skeleton. Experimental results show that the 
incorporation of these strategies significantly improves the retrieval accuracy 
when applied to LEMS’s 99 and 216 silhouette database [10]. 

1   Introduction 

Medial or skeleton-based approaches to shape analysis have been widely used and 
proven to be very effective in representing and classifying 2D shapes [4], [12], [13]. 
Additionally, a recent paper by Kimia [9] provides a comprehensive discussion of the 
possible role of medial geometry in the human visual system. Neurophysiological 
experiments observe peak neural activity in the V1 cells at localities of medial axis 
and psychophysical experiments suggest that we may use medial points when encod-
ing shape information. We have been adopting a medial-based framework in our at-
tempt to develop robust algorithms for retrieving and classifying 2D silhouettes from 
shape databases. During the course of our research, several very important strategies 
were discovered that allowed us to improve the robustness of our shape-based image 
retrieval applications. This paper presents four of these strategies and described how 
they are implemented with the multiresolution gradient vector field (MGVF) skeleton 
framework presented in [5], [7]. An important feature of the MGVF framework that is 
relevant to this work is the availability of a vector field directional disparity map 
MR(x,y) given by equation (6) in [5]. The paper will also describe how this readily 
available disparity measure can be utilized in the implementation of the proposed 
strategies. Four strategies will be discussed in section 2 and experimental results will 
be presented in section 3. 
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2   Strategies for Robust Part-Based Shape Analysis 

2.1   Incorporation of Ligature-Sensitive Information 

Unstable ligatures and their effects on skeletal topology and visual saliency must be 
explicitly incorporated into the shape analysis process. Ligatures [1] are problematic 
because they can appear and disappear with non-visually salient changes in the shape. 
If not properly handled, such unstable skeletal features can alter skeletal topology and 
also skew the matching cost between visually similar shapes. Since the MGVF skele-
ton is used, a visual saliency measure based on the average vector field directional 
disparity measure MR(x,y) computed along the skeleton is proposed. This disparity-
based saliency correlates well with the measure of ligature stability (see Fig. 1a). 
Other measure for ligatures such as in [14] can also be used. During shape matching, 
the disparity saliency associated with each skeletal part is multiplied with its corre-
sponding part matching cost to appropriately weigh the contribution of the part’s 
mismatch to the overall shape dissimilarity (see Fig. 1b). Ligatures should also be 
taken into account during part decomposition, as is discussed in the next section. 
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Fig. 1. (a) Unstable ligatures are associated with the low disparity values MR (x,y) along skeletal 
segment (e.g. segment Y). (b) The application of the weak disparity saliency measure will 
reduce the mismatch cost associated with missing segment Y when matching shapes A and C.  

2.2   Dynamic Part Decomposition  

Traditionally, a shape’s skeleton is first decomposed into parts based of some set of 
rules [2], [11]. Dissimilarity between two shapes is then computed by finding the 
optimal combination of matches between these parts. However, part decomposition  
is a dynamic and adaptive process that depends on the two shapes being compared.  
Fig. 2a shows that the intuitive decomposition of shape A is different when it is forced 
to match different shapes B and C. In order to implement dynamic part decomposi-
tion, the skeleton of a shape is segmented into primary skeletal segments using vari-
ous segmentation criteria such as skeletal junction, skeletal curvature maxima-
minima, etc. A merging process is then employed to re-group these segmented pieces 
into visually continuous and coherent merged segments. The merging process follows 
after the notion of visual conductance that Katz and Pizer [8] used to derive natural 
parts-hierarchy. Like in [8], orientation continuity is adopted but more importantly, 
we also introduced another merging criterion based on the similarity of mean  
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disparity values (obtained from MR(x,y) in [5]) of each skeletal segment at the locality 
of the skeletal junction. The disparity continuity criterion is important as it prevents 
unstable ligatures from interfering with the decomposition process (see Fig. 2b). No-
tice in Fig. 2c, the principal components of the both horses’ structural skeletons were 
consistently re-grouped despite initial separation due to ligatures.  
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Fig. 2. (a) Part decomposition is dependent on the shape being matched. (b) Skeleton merging 
at Horse 1‘s head highlights how using disparity continuity (CD) avoids topological interfer-
ence by ligatures despite the strong orientation continuity (CO) at the junction [7]. (c) Appro-
priate disparity continuity emphasis (using γ=0.1) results in similar merged skeletons for 
Horses 1 and 2. (d) All possible secondary skeletons extracted from an ordered set of 3 merged 
primary skeletons and (e) their possible combinations to reconstitute the merged segment. 

A merged segment can be decomposed into various secondary skeletal segments 
(see Fig. 2d) and the permutations of these secondary segments that reconstructs the 
merged skeleton describe all permitted part decomposition options available for that 
merged segment (see Fig. 2e). The preferred option is not decided until during shape 
matching when similar information regarding the shape being matched is also avail-
able (see Fig. 3). Notice that appropriate merging of segmented skeletons serves to 
reduce the large combinatorial possibility of part decomposition. And a ligature-
sensitive visual continuity criterion encourages the selection of decomposition permu-
tations that are visually consistent over different shapes that share similar gross visual 
forms. Dynamic decomposition is similar in principle to graph topology altering algo-
rithms such as [4], [12], [13] that use insert, merge, contract operations to accommo-
date deformation arising from occlusion and limb growth. 
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Fig. 3. Overview of the shape matching algorithm. An over-complete saliency-weighted cost 
matrix OCM(i, j) is created from the sum of part and global distances (see section 2.3) com-
puted for every combination of secondary skeletons between shapes A and B. The least cost 
decomposition option for each merged skeleton is identified, leading to a cost matrix CM(i, j) 
that contains no repetition in skeletal segments. The Hungarian algorithm with appropriate 
dummy cost weighting as in [3] is used to identify the part match combinations between shapes 
A and B that yield the lowest total part matching cost. Further details can be found in [7]. 

2.3   Combination of Both Local and Global Shape Measures  

Part descriptors employing only local features cannot capture the coherent structure of 
a shape. Based on local measures alone, dissimilar shapes A and B in Fig. 4a are  
considered good matches as all parts in one have a local representation in the other. 
However, we can easily tell apart the two categories of spectacles and dumb-bells in 
Fig. 4b even though they share similar local parts. The observed categorization can 
only be realized by incorporating global measures that take into account the global 
part relationships within the shape. But purely global measures have drawbacks as 
they are sensitive to limb articulation (see Fig. 4c). A robust shape dissimilarity 
measure must combine both part distance (local) and global distance measures in 
adjustable proportions depending on the application or data set at hand (see Fig. 7g 
and 7h). In this work, the global distance is computed using a combination of a spatial 
and two angular relationships between skeletal segments and a reference point (see 
Fig. 4d and 4e). The part distance, on the other hand, is obtained by matching a com-
bination of local part descriptors comprising of orientation histograms [6], [7] skeletal  
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Fig. 4. (a) Two dissimilar shapes that share identical local part features. (b) Global geometry 
help group shapes sharing similar parts into different categories. (c) Part articulation is prob-
lematic for shape descriptors using only global geometry. (d) Shapes (A and B) whose limbs 
differ in their angular but not in their spatial global relationships. (e) The global angular dis-
tances used consist of the source node skeletal angle θi(1) and link angle ψ i that are measured 
relative to a selected global reference node. They are rotation-normalized by the skeletal angle 
θu(1) at the global reference node (see Appendix for details on finding global references). 

curvature and limb width profile. Implementation details are beyond the scope of this 
paper but using skeletal curvature requires the introduction of the next strategy. 

2.4   Application of Curvature Saliency to Curvature-Based Part Matching   

Fig. 5a and 5b suggest that the mismatch in skeletal curvature does not necessarily 
mean two shapes are dissimilar, implying that a part’s curvature-based visual sali-
ency is not constant along its skeleton. This saliency variation is essentially due to 
the limb’s width along the skeleton (i.e. radius of the maximal disk centered about a 
skeletal point). A perceptually meaningful measure of the skeletal curvature error 
between skeletons should incorporate curvature saliency weighting along its length 
(see Fig. 5c). A global normalization factor (e.g. square-root of query shape’s  
area) should be employed to ensure the limb-width weighting applied to the skeletal 
curvature error is proportional to the shape’s size and not the current skeletal  
segment. 
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Fig. 5. Contribution of skeletal curvature to shape dissimilarity is dependent on the limb width 
profile along the skeleton. (a) Two similar shapes with dissimilar skeletal curvature. (b) Two 
dissimilar shapes that are differentiate by their differing skeletal curvature. (c) The computed 
skeletal curvature error between skeletons is multiplied by the limb-width variation along the 
query shape’s skeleton in order to incorporate curvature saliency weighting.   

3   Experimental Results 

3.1   Silhouette Classification 

The proposed part-based shape analysis (PBSA) strategies that were implemented 
within the MGVF skeleton framework of [5] was tested on the 99-shape silhouette 
database used in [12] (available online at [10]). As can be seen in Fig. 6a, this is a 
difficult data set to classify due to the presence of large within-class variations 
(four-footed mammal, greeble), limb articulation (man, hand) and occlusions (hare, 
plane). Results using the proposed algorithm (labeled MGVF-PBSA) are summa-
rized in Fig. 6b with a precision-recall diagram similar to that used in [12]. The 
incorporation of the proposed strategies produced retrieval results that are better 
than those using Sebastian et. al’s shock graph edit-distance algorithm [12], which 
is probably the current state-of-the-art in 2D skeleton-based shape analysis.  
Comparison with shape context [3] is not entirely fair (it is not a part-based descrip-
tor) but is included to show the need for an adaptive part-based decomposition 
strategy when dealing with shape databases featuring significant occlusion and limb 
articulation.  
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Fig. 6. (a) The shapes (arranged in their respective categories) in the 99-shape database. (b) The 
precision-recall diagram showing the improved shape-based retrieval performance of the pro-
posed algorithm (MGVF-PBSA) compared to the shock graph edit-distance of [12] and the 
shape context of [3], both of whose results on the 99-shape database were replicated from [12].  

3.2   The Influence of Incorporating Ligature-Sensitive Saliency Weighting 

Fig. 7a shows a rapid fall-off in retrieval accuracy when skeletal segments were given 
equal weightage during the computation of the shape distance regardless of its forma-
tion stability. This result supports the fact that medial-based shape analysis algorithms 
must explicitly incorporate ligature-sensitive information to weigh the influence of 
part mismatches during shape matching. Mismatches observed in Fig. 7c suggest that 
the stable structural backbone of the greeble shape (which is straight) should be given 
more weightage during part-based shape matching so that it can be distinguished from 
very similar hare shapes (whose backbone is curved). Especially in the presence of 
large within-class variations in the form of different-shaped ‘ears’ and ‘limbs’. 

3.3   The Influence of Incorporating Global Distance 

The shape retrieval performance in Fig. 7d degraded when inter-part spatial and angu-
lar relationships (global distances) were not taken into account during shape match-
ing. The nature of the mismatches is clearly observed in Fig. 7f when only local part 
descriptors were employed. Many hand shapes were incorrectly retrieved as their 
fingers found good local part matches with the mammals’ legs. This result supports 
the use of global distance especially if large within-class variations exist in the data 
set. However, excessive global emphasis in not always favorable, especially if the 
objects within the same category have articulating parts (see Fig 7g). As global dis-
tance emphasis was reduced, perfect retrieval results were then obtained (see Fig. 7h). 

3.4   Incorporating Curvature Saliency Weighting 

Sample retrieval results in Fig. 8 highlights the importance of using the limb-width 
profile to weigh the skeletal curvature errors computed along the skeleton. Notice in 
Fig. 8b, the large curvature variations in the elephants’ trunks and the rays’ tails in-
creased misclassifications in the absence of curvature saliency weighting. 
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Fig. 7. (a) Precision-recall diagram showing the positive influence of using disparity-based 
saliency during shape matching. Sample retrieval results for the greeble category are shown (b) 
with and (c) without using disparity saliency weighting. For each query shape (topmost), the 10 
best shape matches from the 99-shape database are shown ordered from #1 (best) to #10. The 
retrieval of the query shape itself is excluded from the display. Incorrect classifications are 
shown shaded. (d) Precision-recall diagram showing the positive influence of using global 
geometry during part-based shape matching. Sample retrieval results for the 4-footed mammal 
category are shown (e) with and (f) without using global geometric information. (g) Ordered 
classification results obtained for a data set of articulating objects and another when (h) the 
global distance contribution was reduced by a factor of 0.3 relative to the part distance. 
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Fig. 8. Sample retrieval results from the 216-shape database [10] (a) with and (b) without cur-
vature saliency weighting 
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4   Conclusions 

Four strategies were proposed to improve the performance of skeleton-based shape 
analysis algorithms. Firstly, ligatures in skeletons must be explicitly accounted for in 
both shape matching and part decomposition. Additionally, part decomposition must 
be adaptive to the shape that is being compared to. In our implementation, this en-
tailed the computation of all visual coherent part decomposition options for a shape 
using skeletal segmentation and subsequent re-merging based on criteria that took into 
account ligatures. The selection of the decomposition option was done during shape 
matching. Both local and global measures must be used to compute shape dissimilar-
ity and skeletal curvature matching, if used, must be appropriately weighted with the 
skeleton’s limb-width profile. Emphasis between local and global distances is de-
pendent on the nature of the shape matching application and data set. Implemented 
within the MGVF skeleton framework of [5], the experimental results showed that 
adopting these strategies produced improved shape retrieval performances. Applica-
tion of these strategies on other skeleton-based shape analysis algorithms should yield 
similar benefits, albeit their implementations may be realized differently. 
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Appendix – Finding the Global Reference Nodes  

In order to compute the global distance between two shapes A and B, the global ref-
erence node pair given by (pu

A, pv
B) must first be determined as summarized in Fig. 9. 

 

 

 

 

 
Find merged segment SMw

A in shape A with highest saliency 

START 

END 
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A with lowest total part 
distances (use only local part matching cost)  
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For each secondary skeleton pair identified earlier, assume in 
turn, the start points of their skeletal segments (source nodes) 
are the global reference nodes. The pair of start points that 
gives the lowest total global distance error ξgs (see below) is 
the global reference node pair ( pu
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NA and NB are the total number of secondary skeletons (SSn) in shapes A and B respectively. And gs( ) is the normalized 
difference in the global distances (highlighted in Fig. 3d and 3e) between the two segments. To normalized global distances, 
the spatial distance for each skeleton is divided by the square root of the shape area and angular distances are divided by π.  

Fig. 9. Outline of procedure to determine the two global reference nodes for shapes A and B 



Automatic Learning of Articulated Skeletons

from 3D Marker Trajectories

Edilson de Aguiar, Christian Theobalt, and Hans-Peter Seidel

MPI Informatik, Saarbrücken, Germany
{edeaguia, theobalt, hpseidel}@mpi-inf.mpg.de

Abstract. We present a novel fully-automatic approach for estimating
an articulated skeleton of a moving subject and its motion from body
marker trajectories that have been measured with an optical motion
capture system. Our method does not require a priori information about
the shape and proportions of the tracked subject, can be applied to ar-
bitrary motion sequences, and renders dedicated initialization poses un-
necessary. To serve this purpose, our algorithm first identifies individual
rigid bodies by means of a variant of spectral clustering. Thereafter, it
determines joint positions at each time step of motion through numeri-
cal optimization, reconstructs the skeleton topology, and finally enforces
fixed bone length constraints. Through experiments, we demonstrate the
robustness and efficiency of our algorithm and show that it outperforms
related methods from the literature in terms of accuracy and speed.

1 Introduction

Marker-based optical motion capture (MOCAP) systems reconstruct the motion
of moving subjects by measuring the 3D trajectories of optical beacons attached
to the body [1,2,3]. In order to biomechanically analyze the motion of a person
or in order to map real world performances onto virtual characters, the cap-
tured marker-trajectories have to be transformed into the motion parameters of
a kinematic skeleton model. Although commercial tools exist that assist the mo-
tion capture professionals in performing this transformation, the estimation of
kinematic skeletons and their motion parameters is still a labor-intensive, error
prone and often inflexible process. Many commercial systems require the tracked
subject to strike a dedicated initialization pose (T-pose) prior to actual motion
recording or need specific initialization movements. Moreover, due to measure-
ment noise in the marker-trajectories and non-rigid deformations of the body
surface commercial software often fails to enforce fixed bone length constraints.

Despite the relevance of the skeleton reconstruction and joint parameter com-
putation problem, astonishingly few papers have been published that aim at
solving it in an automatic, robust, flexible and more efficient way than standard
software packages. We present a new algorithm to estimate a skeleton model
and its motion parameters that does not require a specific initialization pose,
that relies on a minimum of a priori knowledge about the kinematic structure,
and that reconstructs a model with fixed bone lengths from arbitrary motion
sequences. Our main contributions are:
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– A new method to identify individual rigid bodies from 3D marker trajectories.
– A method to determine joint positions at each time step of video, and to

extract the topology of a skeleton with fixed bone lengths that optimally
captures the true body pose at each time step.

The remainder of this paper is structured as follows: Sect. 2 reviews the most
relevant related work. Sect. 3 details our clustering procedure that is used to
identify individual rigid bodies from the markers’ 3D motion. Sect. 4 details how
correct joint positions are found for each time step of video and how the skeleton
topology is automatically inferred. An optimal skeleton with fixed bone lengths
is computed thereafter by the method described in Sect. 5. We have tested our
method on a large number of publicly available motion capture sequences and
compared it to most related methods from the literature. Furthermore, we have
validated our method on synthetic sequences which provides us with accurate
ground truth information about the model’s kinematic structure, Sect. 6. The
paper concludes in Sect. 7.

2 Related Work

Nowadays, marker-based motion capture systems have developed into a standard
tool within the technical repertoire of professionals in computer animation and
biomechanical analysis. Unfortunately, generating a moving kinematic skeleton
model from raw marker trajectories with commercial tools is often still a semi-
automatic procedure [1,2,3]. Commercial software frequently requires the use of
body models with predefined topology making it hard to capture subjects which
are not stored in the model database. Furthermore, many tools fall short of
providing skeletons with constant bone lengths and the IK-based joint parameter
estimation often does not produce satisfactory results.

Most algorithms from the literature aim at solving one particular sub-problem
in the overall motion capture pipeline. Biomechanics researchers have developed
several methods to accurately locate the joint of a subject from the motion of
bones or markers [4,5,6]. Other approaches are able to solve the skeleton recon-
struction problem by taking into account a priori information [7,8]. O’Brien et
al. [9] present a technique for determining the joint parameters of an articulated
skeleton hierarchy from magnetic tracking data. In their work, both position
and orientation information of the markers are available, which simplifies the
skeleton reconstruction procedure. In contrast, we present an automatic method
for jointly estimating an articulated skeleton and its motion from marker tra-
jectories. Our method does not impose any constraints on the type of motion or
type of subject being captured.

Most similar to our approach are the methods by Silaghi et al. [10] and Kirk et
al. [11]. Silaghi et al. describe a semi-automatic approach to locally find skeleton
structures. An optimal skeleton is then assembled by matching a template to
the different skeletons found over time. Although skeleton models can be recon-
structed reliably, their method requires a substantial amount of user interaction.
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Kirk et al. present an automatic approach for determining the kinematic struc-
ture of a subject when only a small number of markers have been attached to it.
Also with this method, articulation structures can be reconstructed. However,
the complexity of the involved optimization problem makes it hard to apply their
algorithm to long motion capture sequences with many body markers.

Our method builds on and improves ideas from the literature. It enables us to
automatically identify rigid bodies, to automatically compute joint positions and
skeleton topology, and to automatically enforce fixed bone length constraints. It
does not require any a priori information about the tracked subject, is computa-
tionally efficient, and the quality of the estimated skeletons matches the quality
of body models that have been generated with commercial tools.

3 Rigid Body Clustering

The input to our system is raw optical MOCAP data, i.e. 3D marker trajecto-
ries that can be acquired with all commercial optical MOCAP systems available
today. Although the positional marker tracking accuracy achievable today is
very high, some noise in the measurements is unavoidable. It is also a common
problem that, due to self-occlusions on the body, some of the markers are tem-
porarily invisible or even completely lost. In a pre-processing step, we eliminate
from the trajectory data all the markers that are not visible in all the frames.
In principle, these markers could still be used for improving the quality of the
skeleton reconstruction in a post-processing step (e.g. by the method proposed
in Kirk et al.[11]). However, our experiments have shown that a robust rigid
body identification is possible even if only a few complete marker trajectories
are at our disposition.

The first step in our processing pipeline is to cluster markers into groups, each
of them representing one rigid body part. To serve this purpose, we capitalize
on the fact that the distance between any two markers on the same body part
remains constant (within a measurement tolerance) over time, while it varies if
they lie on different parts. To robustly decide which markers lie on the same
body part, we employ a spectral clustering algorithm that examines the stan-
dard deviations of the mutual marker distances over time. We make use of a
fast variant of spectral clustering that has proven its robustness on many point
segmentation problems [12]. In our implementation we define the entries of the
affinity matrix A as follows:

Ai,j = exp(−ρi,j/(2 ∗ σ2)), (1)

where ρi,j is the standard deviation of the mutual distance between markers i
and j over all frames, and σ = 1/N2 ∗ Σf (distfi,j) is a scaling term controlling
the spectral clustering convergence. N is the number of frames and distfi,j is
the distance between markers i and j in frame f . Intuitively, the affinity ma-
trix encodes the likelihood of each pair of markers to belong to the same body
segment. Instead of grouping the markers directly based on the individual val-
ues Ai,j , spectral clustering uses the top eigenvectors of matrices derived from
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A to cluster the markers. This leads to a more robust and kinematically more
meaningful segmentation than, for instance, the application of simple K-means
clustering [13]. As an additional benefit, the optimal number of clusters N can
be automatically calculated based on the datasets eigen-gap. Fig. 2(left) shows
that our approach robustly identifies individual segments in the human body.

4 Estimation of Joint Positions and Skeleton Hierarchy

Given a list of body segments and their associated markers, we now estimate
the positions of interconnecting joints at each time step of a motion sequence,
and thereafter reconstruct the topology of the interconnecting bone skeleton.

The method to achieve the first goal makes use of a relatively straightforward
observation. If we assume that two rigid bodies are connected via a single three-
degree-of-freedom (DOF) ball joint then the distance between each marker on
either of the adjacent bodies and the common joint has to remain constant over
time. Taking measurement noise and subtle non-rigid body deformations into
account, a good estimate for the correct joint position sequence is the sequence
of points that minimizes the variance in joint-to-marker distance for all markers
of the adjacent parts at all frames.

Kirk et al. [11] put this criterion into practice by computing the joint posi-
tions between two interconnected segments at all time steps via solving a large
optimization problem. However, their approach is only feasible for sequences
where the number of frames N and the number of markers M are small, since
an energy minimization in N ∗M variables for each pair of segments is necessary.
In contrast, we have developed a faster scheme which efficiently finds optimal
skeletons even with sequences that are several thousand frames long and which
feature several hundred markers.

Fig. 1. Marker alignment: rigid body transformations are calculated (a) to align the
position of markers for both segments in time step T with the markers of body segment
A in the reference frame (b). After aligning the markers from all time steps the joint
position cR is found by minimizing (2).
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Our scheme works as follows: Let A and B be two body segments, and let
K be the set of the M body markers. Both body segments have associated sets
of markers MA = {a|a ∈ K} and MB = {b|b ∈ K}. At each time step f the
markers in MA and MB have respective 3D positions PMA(f) = {p(k, f)|k ∈
MA} and PMB (f) = {p(k, f)|k ∈MB}. It is our goal to find the set C = {cf |f ∈
{1, . . . , N}}, i.e. the set containing the 3D position cf of the interconnecting joint
at each time step. To this end, we define a reference frame number R which can
be any of the frames but usually is the first frame of the sequence. First, for each
time step t ∈ {0, . . . , N} we compute two rigid body transformsXPMA

(t)→PMA
(R)

and XPMB
(t)→PMA

(R) that align the positions of the markers in both marker sets
with the positions of the markers MA at the reference time step [14], as shown
in Fig. 1.

The positions of all markers at all time steps are now aligned with the marker
positions at the reference time step. We are now able to solve for the joint location
at the reference frame cR by minimizing the following energy functional:

CF (cR) = 1/2∗
∑

a∈MA

(σa(cR)+α∗da(cR))+1/2∗
∑

b∈MB

(σb(cR)+α∗db(cR)) (2)

where

σa(cR) = 1/N ∗
N∑

i=2

(‖cR −XPMA
(i)→PMA

(R) ∗ p(a, i)‖ − da(cR))2 (3)

and

da(cR) = 1/N ∗
N∑

i=2

‖cR −XPMA
(i)→PMA

(R) ∗ p(a, i)‖ . (4)

The definitions of σb(cR) and db(cR) correspond to (3) and (4). In (2), α is
the coefficient that controls the influence of a distance penalty term. We employ
the distance penalty term to prevent the algorithm from erroneously positioning
the joint far away from either segment (e.g. infinitely away), where the variance
σa(cR) and σb(cR) are minimal. Through experimental evaluation we have found
that a value of α = 1/5 leads to the best results. After finding cR, the joint
position at all other frames can be computed by cf = X−1

PMA
(f)→PMA

(R) ∗ cR.
Since we do not use a priori information about the topology of the subject,

we perform the above procedure for each possible pair of body segments. For-
tunately, the final values of the error term (2) enable us to automatically infer
the skeleton topology and to discard invalid pairings of segments. To do so, we
employ a graph-based method similar to the one presented in [9]. A skeleton
graph is constructed in which each body part represents a node, and joints form
the edges between them. Each edge is assigned a weight that corresponds to the
value of (2) that we obtained for the pair of nodes (segments) that it connects.
The topology of the skeleton can be determined by constructing the minimal
spanning tree [15] of the skeleton graph.

Our method efficiently and robustly computes joint positions even for very
long sequences with complex motion, as seen in Figs. 2 and 3.
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5 Enforcing Constant Bone Lengths

Up to now, the lengths of the bones in the skeleton can vary from time step to
time step. However, eventually one wants to express the motion parameters based
on a single skeleton with constant dimensions. To serve this purpose, we have
developed a simple and efficient way to enforce fixed bone length constraints
in a separate processing step. We employ a least-squares fitting technique to
appropriately adjust the joint positions that we have found by means of the
approach described in Sect. 4.

Our algorithm follows the hierarchy of the estimated skeleton from the root
down to the leaves (i.e hand/feet) and solves a least-squares problem for each
pair of subsequent joints in the kinematic chain. By this means it is more efficient
than related methods [10] that enforce fixed bone length constraints by solving
a least-squares problem for the whole model at once.

Let us assume that cf
i is the position of a joint i at frame f , and cf

i−1 is
the 3D location of its parent joint at frame f . The optimal fixed length of the
bone connecting joints i− 1 and i, li−1,i, as well as the new joint positions of i,
ocf

i, for all f can be found by minimizing the following cost function:

V (oc1
i, . . . ,ocN

i, li−1,i) =
N∑

f=0

‖cf
i − ocf

i‖2 + (‖ocf
i − cf

i−1‖ − li−1,i)2 (5)

In (5) the first term is used to keep the new optimal joint positions as close as
possible to the old positions, while the second term constrains the bone length
to be the same in all frames. The dimension of the parameter space in (5)
can be further reduced by expressing the new position of joint i in terms of
the normalized direction vector ei−1,i between i − 1 and i. Replacing ocf

i by
cf

i−1 + ei−1,i ∗ li−1,i in (5):

V (li−1,i) =
N∑

f=0

‖cf
i − (cf

i−1 + ei−1,i ∗ li−1,i)‖ (6)

Eq. (6) is independently solved for each pair of subsequent joints in the hierarchy.
The final result of our processing pipeline is a skeleton model of correct topology
that, at each time step of motion, stands in a correct pose.

6 Results

We have tested our algorithm on a large number of optical motion capture se-
quences from the CMU motion capture database [16]. They were recorded with
Vicon MX40 cameras. The motion sequences we used for testing comprise of
180-4000 frames and show, for example, simple gymnastic exercises, athletic
performances and dancing sequences. After pre-processing of the raw data, on
average around 110 non-interrupted marker trajectories were available for body
model estimation. Fig. 2(left) shows the automatic segmentation result for a
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Fig. 2. Gymnastics sequence: Segmentation into body parts - boxes drawn for illus-
tration purpose (left), two poses of the optimal skeleton shown together with the 3D
marker positions (middle), and the fixed bone length skeleton at a different time step
(right)

gymnastics sequence that was generated by our spectral clustering method de-
scribed in Sect. 3. Individual segments of the human body have been correctly
identified. Unfortunately, in the sequences that were at our disposition no sig-
nificant foot or hand motion relative to the legs and arms respectively can be
observed. In consequence, our algorithm cannot identify hand and feet as sepa-
rate body segments. However, this is by no means a limitation of our method,
but a general problem that is hard to solve for any learning-based approach.

Spectral clustering leads to much better segmentation results than, e.g., simple
k-means clustering, since the clustering is far less deteriorated by noise in the
data. While a purely distance based segmentation produces many kinematically
meaningless rigid bodies, our variance-based scheme in conjunction with spectral
clustering produces plausible body segmentations.

Fig. 2 shows different poses of the optimal kinematic skeleton reconstructed for
some frames of a gymnastics sequence. One can see that both the topology of the
bone skeleton and the positions of the joints have been faithfully estimated. The
body models exhibit a high level of detail that is comparable to the complexity
of skeletons usually used in animation and biomedical analysis. Fig. 3 shows
further reconstruction results that we obtained by applying our algorithm to a
dancing sequence.

Our method for estimating the joint locations and skeleton topology performs
better than the method proposed by Kirk et al. [11] which is the most closely

Fig. 3. Dancing sequence: The first three images show the markers and the estimated
skeleton in three different poses. The image on the right shows the skeleton with con-
stant bone length at another time step. Joint positions and skeleton topology have
been faithfully reconstructed.
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related approach from the literature (see also Sect. 4). As shown in Tab. 1, the
runtimes of our method on complete motion capture sequences are orders of
magnitude faster. We measured them on a Pentium IV with 3.0 GHz using the
L-BFGS-B method to solve the minimization problems [17]. The comparison
suggests that our approach is well-suited for processing long motion capture
sequences as they are commonly recorded for most computer game and movie
productions.

We have evaluated the accuracy of our system both visually and qualitatively.
Unfortunately, we do not have ground truth measurements of the skeleton struc-
tures at our disposition. We thus compared our estimation results against the
best possible reference data, which are the body models estimated with com-
mercial software and that are provided by CMU together with their data. Fig. 4
shows visual comparisons for two different time steps. Our algorithm has reliably
captured pose and dimension of the body. Please note that although our method
reconstructed the topology of the root/spine area in a different way, the overall
mobility is the same as in the reference model.

In order to get a qualitative error estimate, we have tested our method on
synthetic data. Both test sequences (a walking robot and a jumping snowman)
have been generated in 3D Studio Max by animating triangle meshes with hand-
crafted kinematic skeletons. In both test cases we use randomly selected vertices
of the triangle meshes as markers for the reconstruction. Fig. 5(a) shows the
robot in one pose and the respective skeleton reconstructed by our method.
Kinematic structure and pose have been correctly identified. Fig. 5(b) shows
that our approach correctly reconstructs model and pose in the case of the
jumping snowman, too. In either test cases, the joint positions estimated by our
method deviate on average by around 3% (relative to the model’s height) from
the true joint positions. This error is much lower than the position inaccuracy
that we obtain with the method by Kirk et al. [11] which is in the range of 7%.

Our approach is subject to a few limitations. If the accuracy of marker trajec-
tories is strongly deteriorated by noise or significant non-rigid body deformations
(e.g. of the skin) are observed, joint positions may be improperly estimated. How-
ever, this is a general problem that commercial systems often fail to handle as
well as the reference data provided by CMU suggest. Furthermore, it is impossi-
ble to distinguish two rigid body segments if at no time during a motion sequence
a relative motion between them is observed. This is not a limitation specific to
our approach but a general conceptual limitation of learning-based methods.

Table 1. Comparison of the runtime of our method to the runtime of the method
proposed by Kirk et al. [11] on 4 different MOCAP sequences

Sequence Number of Frames Kirk et al. [11] Our method (Sect. 4)

1 189 1649s 103s

2 307 2320s 175s

3 591 4515s 307s

4 1134 11247s 590s
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Fig. 4. Visual comparison of the skeletons that are provided with the MOCAP data
(two images on left) and our learned skeleton in the same poses (two images on right)

Fig. 5. Evaluation using synthetic data: (a) animated robot mesh (left) and recon-
structed kinematic skeleton (right). Ground truth joints are shown as white spheres.
(b) Animated snowman (left) and reconstructed skeleton with estimated joints (gray
spheres) and ground truth joints (white spheres). The method is able to estimate the
kinematic skeleton of general subjects accurately.

Despite these restrictions, our algorithm is an efficient and robust tool that
can greatly simplify the motion capture pipeline. As shown, our method can be
applied in the same way to motion data of arbitrary subjects including animals,
generating accurate skeleton reconstructions.

7 Conclusion

We have presented a fully-automatic system for learning an articulated skeleton
model with constant bone lengths and its poses from 3D marker trajectories.
Our approach does with no a priori information about the kinematics of the
captured individual and can be applied to arbitrary subjects including humans
and animals. Through experimental evaluation we have shown that it performs
better in terms of speed and accuracy than the most closely related methods
from the literature. The learned models are comparable to the ones obtained with
commercial software in terms of accuracy and detail. As future work, we plan
to integrate our method with an automatic non-intrusive surface reconstruction
approach in order to automatically learn complete virtual characters.
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Abstract. In this paper we present a system that performs automatic gesture 
recognition.  The system consists of two main components: (i) A unified tech-
nique for segmentation and tracking of face and hands using a skin detection al-
gorithm along with handling occlusion between skin objects to keep track of the 
status of the occluded parts. This is realized by combining 3 useful features, 
namely, color, motion and position.  (ii) A static and dynamic gesture recogni-
tion system. Static gesture recognition is achieved using a robust hand shape 
classification, based on PCA subspaces, that is invariant to scale along with 
small translation and rotation transformations.  Combining hand shape classifi-
cation with position information and using DHMMs allows us to accomplish 
dynamic gesture recognition. 

1   Introduction 

The primary goal of any automated gesture recognition system is to create an inter-
face that is natural for humans to operate or communicate with a computerized de-
vice.  Furthermore we aim to develop our system without using data gloves or colored 
gloves.  Such a system could be used in, virtual reality, robot manipulation or gaming.  
In fact gesture recognition could be used to improve the intuitiveness of any Human-
Computer Interaction (HCI). We routinely use hand gestures when communicating, 
describing and directing during our everyday activities.  Incorporating gestures with 
HCI could be an extremely beneficial development.  

In recent years various approaches to gesture recognition have been proposed, 
Gupta et al [1] presented a method of performing gesture recognition by tracking the 
sequence of contours of the hand using localized contour sequences.  Chen et al [2] 
developed a dynamic gesture recognition system using Hidden Markov Models 
(HMMs). Patwardhan et al [3] recently introduced a system based on a predictive 
eigentracker to track the changing appearance of a moving hand.  Kadir et al [4] de-
scribe a technique to recognize sign language gestures using a set of discrete features 
to describe position of the hands relative to each other, position of the hands relative 
to other body locations, movement of the hand, shape of the hand.  While some of 
these approaches display impressive results, many exploit controlled environments 
and a compromise between vocabulary size and recognition rate.  

To achieve accurate gesture recognition over a large vocabulary we need to extract 
information about the hand shape.  Accomplishing this entails detecting the hands, 
segmenting them, differentiating them and classifying them. This requires using skin 



496 T. Coogan et al. 

detection techniques and handling occlusion between skin objects to keep track of the 
status of the occluded parts.  We present a unified system for segmentation and track-
ing of the face and hands in a gesture recognition using a single camera. Unlike much 
related work that uses color gloves [5], we detect skin by combining 3 useful features: 
color, motion and position. These features together, represent the skin color pixels 
that are more likely to be foreground pixels and are within a predicted position range. 
Also, unlike other work that avoid occlusions entirely by choice of camera angle, sign 
vocabulary, or by performing unnatural signs [6,7], we handle occlusion between any 
of the skin objects using a Kalman filter based algorithm. 

Once the hand is segmented classification is required.  In hand shape recognition, 
transformation invariance is key for successful recognition.  We propose a system that 
is invariant to small scale, translation and shape variations.  This is achieved by using 
a-priori knowledge to create a transformation subspace for each hand shape.  Trans-
formation subspaces are created by performing Principal Component Analysis (PCA) 
on images produced using computer animation.  We introduce our method that en-
ables us to train this appearance based method using computer animation images. 
Also presented is the incorporation of this hand shape classifier into a dynamic ges-
ture recognition system.  Position information is combined with hand shape informa-
tion to construct a feature vector that is passed to a DHMM for dynamic gesture  
recognition. 

The remainder of this paper is organized as follows: The method used to segment 
the face and hands is reported in section 2. The gesture recognition technique includ-
ing hand shape recognition is described in section 3.  In section 4 we detail some 
experiments and finally we offer some conclusions in section 5.  

2   Segmentation and Tracking  

In gesture recognition we need to segment and track three objects of interest: the face 
and the two hands.  The skin segmentation module is responsible for segmentation of 
skin objects, similarly the object tracking module is responsible for matching the 
resulting skin blobs of the segmentation component to the previous frame blobs while 
keeping track of the occlusion status of the three objects. In the next sections we will 
explain the details of these two components. 

2.1   Skin Segmentation 

In order to robustly detect the skin objects, we combine three useful features: color, 
motion and position. Color cue is useful because the skin has a distinct color that 
helps to differentiate it from other colors. The motion cue is useful in discriminating 
foreground from background pixels. Finally, the predicted position of objects using 
Kalman filter helps to reduce the search space. 

2.1.1   Color Information 
In order to collect candidate skin pixels, we use two simple classifiers. First, a general 
skin model (color range) is applied on small search windows around the predicted 
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positions of skin objects. As the fixed color range can miss some skin pixels, we 
propose another color distance metric dist(Cskin, Xij ) to take advantage of the prior 
knowledge of the last segmented object. This metric is the Euclidean distance 
between the average skin color Cskin in the previously segmented skin object and the 
current pixel Xij in the search window at positions i and j. Finally, we normalize the 
values of the prior knowledge color metric Pcol 

2.1.2   Motion Information  
Finding the movement information takes two steps. Firstly, motion detection, then 
next step, finding candidate foreground pixels. The first step examines the local gray-
level changes between successive frames by frame differencing: 

(1)                             ),(),(),(                  1 yxWyxWyxD iii −−=  

Where iW  is the ith search window and iD  is the absolute difference image. We then 

normalize iD  to convert it to probability values. The second step assigns a probability 

value ),( yxPm  for each pixel in the search window to represent how likely this pixel 

belongs to a skin object. This is done by looking backward to the last segmented skin 
object binary image in the previous frame search window 1−iOBJ  and applying the 

following model on the pixels in iD : 
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In this way, small values (stationary pixels) in iD  that were previously segmented as 

object pixels will be assigned high probability values as they represent skin pixels that 
were not moved, and new background pixels with high iD  will be assigned small 

probability values. So simply, this model gives high probability values to candidate 
skin pixels and low values to candidate background values. 

2.1.3   Position Information  
To capture the dynamics of the skin objects, we assume that the movement is suffi-
ciently small between successive frames. Accordingly, a Kalman filter model can be 
used to describe the x and y coordinate of the center of the skin objects with a state 
vector Sk that indicates the position and velocity. The model can be described as: 
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Where kA  is a constant velocity model, kG , kV  represents the state and measure-

ment noise respectively and kZ  is the observation. This model is used to keep track 

of the position of the skin objects and predict the new position in the next frame. 
Given that the search window surrounds the predicted center, we translate a binary 
mask of the object from the previous frame to be centered on the new predicted cen-
ter. Then the distance transform is computed between all pixels in the search window 
and pixels of the mask. The inverse of this distance values assigns high values to 
pixels that are belonging to or near the mask and low values to far pixels. The dis-
tance values are then converted to probabilities posP  by normalization. 
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2.1.4   Information Combination 
After collecting the color, motion and position features, we combine them logically 
using an abstract fusion formula to obtain a binary decision image Fi(x,y): 
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Where colP , mP , and posP  is the decision probability values of the color metric, mo-

tion, and position respectively. Pg is the output of the general skin model, and τ , υ , 
and σ  are thresholds where σ  is determined adaptively by the following formula: 
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The threshold  determines the margin that we are searching into around the predicted 
object position. In Eq. (6) this is formulated by finding the overlapping between the 
predicted object position and the foreground pixels above certain threshold value. The 
other thresholds values are determined empirically. 

2.2   Tracking and Occlusion Detection 

2.2.1   Occlusion Detection 
In this paper, we propose a Kalman filter based algorithm to detect occlusion between 
any of the face and the two hands. In general, the algorithm uses the Kalman filter 
model to track the four corner points of the bounding box around the face and two 
hands.  This model can predict in the next frame the positions of these four corner 
points. Accordingly, we check to see if there is any overlap between any of the 
bounding boxes in the next frame. If there is an overlap, we raise an occlusion alarm 
corresponding to the two bounding boxes that will overlap.  

If in the next frame, the number of detected skin objects is less than the current 
frame objects and an occlusion alarm was raised previously, we conclude that 
occlusion happened. On the other hand, if the number of detected skin objects 
decreases and no occlusion alarms were raised, then one or more skin objects have 
left the frame. 

2.2.2   Tracking 
The tracking process starts by first constructing search windows around each of the 
predicted positions of the tracked objects. When two or more objects are occluded, 
they are treated as one object and one search window is constructed around their posi-
tion. Next, connected regions are labeled after removing noisy small regions. Using 
the number of detected skin objects and the occlusion alarms as discussed in section 
2.2.1, we maintain a high-level understanding of the status of the current frame with 
respect to the occlusion status. For example, if we detected 1 object and occlusion 
alarm between the face and left hand is raised, then we conclude that the face and left 
hand are occluded and the right hand is hiding. This technique can be extended to 
handle all 7 situations of occlusion status: separate face and two hands, face and 2 
hands occluded, separate hand with face and hand occluded, face and hiding hands, 
face and hands all occluded. 
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The final step in the tracking part is the blob matching where the previous frame 
blobs are matched against the new frame blobs using the knowledge of the high-level 
occlusions status we described above. The matching is done using the distance be-
tween the previous objects centers and the new objects centers. 

3   Gesture Recognition 

3.1   Hand Shape Recognition 

To date many approaches have been proposed for hand shape recognition.  These 
include: (i) Shamaie [8] introduced a PCA based approach. (ii) Just et al [9] intro-
duced a hand shape system based on the Modified Census Transform MCT. (iii) A 
method to classify hand postures against complex cluttered background was proposed 
by Triesch & von der Malsburg [10] using elastic graph matching. (iv) Yuan et al [11] 
developed their system by determining a new Active Shape Model (ASM) kernel 
based on the shape contours. (v) Chen et al [2] present a method of classifying the 
static hand poses by using the Fourier Descriptor to characterize the spatial features of 
the hands boundary.  

Many of these approaches for hand shape recognition display sub-optimal results 
due to the highly deformable nature of the hand.  Once again a compromise is deter-
mined between small vocabulary and accurate recognition.  Due to the complex tem-
perament of the hand, any hand shape classifier needs to be able to cope with small 
rotations and translation transformations. 

We propose a transformation subspace technique to combat these issues.  Our pro-
posed method creates the invariant subspaces from a sampled subset of all possible 
transformation images. These images are produced systematically using the commer-
cially available POSER computer animation (CA) software and includes 3D hand 
transformation.  Performing PCA on these images will generate a subspace that accu-
rately represents the complex transformation hyper-plane.   

Using this method of a-priori knowledge to construct the subspaces means we can 
eliminate the process of automatic subspace segmentation as proposed by [12].  It also 
allows us to dismiss the need for managing outliers or missing data in our subspaces 
[12]. This means we can create more accurate transformations subspaces to what was 
previously possible using the simple PCA method.   

PCA provides M orthogonal eigenvectors {u1, … ,uM} of the covariance matrix, 
that correspond to the first M largest eigenvalues, in order to maintain a minimum 
energy of the dataset.  In order to classify test images, a distance metric needs to be 
introduced.  We project the test image into the subspace and find the perpendicular 
distance of the projected point to the eigenvectors representing the subspace.  

We now have the backbone for hand shape recognition system.  ISL contains 28 
static fingerspelling gestures. The system is constructed as follows: 

Training – Generating a transformation subspace for each hand shape.  
Testing – Project the test image into each of the subspaces to find the subspace with 
the nearest perpendicular distance. This subspace will be representative of one par-
ticular hand shape. 
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3.2   Hand Image Pre-processing 

If this technique is to be worthwhile we need to be able to accurately classify images 
of real hands when we train with CA images.  In order to do these we need to neutral-
ize the differences between CA hand images and images of a human hand.  Such a 
system would inherently be multi-user as it would be trained and tested by different 
users. We have developed a detailed pre-processing step to counteract issues such as: 
skin color, illumination variation, hand size and distance from the camera.   

3.2.1   Hand Scaling and Alignment 
Once the hand has been identified and segmented it should be scaled and aligned to 
ensure the system can deal with users with different sized hands and users at differing 
distances from the camera.  We exploit a simple but effective custom of scaling the 
hand objects so that they occupy a predetermined area in a 32*32 resized image.  
Alignment is accomplished by repositioning the hand object so that the center of the 
bounding box lies in the center of the image. 

3.2.2   Skin Color and Illumination Variation   
Removing skin color and color variance due to illumination is essential in an appear-
ance based multi user hand shape recognition system.  First the hand image is con-
verted to grayscale, this reduces the space at which color can be represented. In order 
to color normalize each hand image in grayscale space we have incorporated a color 
histogram equalization approach into our system.  Color histograms are graphs that 
depict the color distribution of pixels in an image.  Histogram Equalization is the 
process of redistributing the color values in the image so that the image histogram 
takes a predetermined form. 

We know from the hand-scaling step that all hand objects are resized to occupy the 
same area within an image.  With this in mind, a common histogram can be defined 
that can represent all hand images.   It contains a large spike that represents the back-
ground of the image; this is located at the beginning of the color scale because the 
background pixels are set to 0. Then a gaussian-shaped pulse exists towards the end of 
the color scale represents object pixels. This positioning is important to maximize the 
contrast of the normalized hand image. 

3.2.3   Image Filtering 
We have found that it is useful to apply a simple gaussian filter to an image before 
classification.  This filter can help smooth out noise in an image.  The hand image is 
convolved with a 9*9 gaussian kernel with a small standard deviation to ensure the 
filtering doesn’t blur important information in the image. 

3.3   Dynamic Gesture Recognition 

Dynamic gesture recognition requires both temporal and spatial recognition of the 
hand movement and hand shape.  We have devised a simple system using Hidden 
Markov Models (HMMs) to recognize dynamic gestures. A HMM is a tool for repre-
senting probability distributions over a sequence of observations.  For our dynamic 
gesture recognition system the sequence of observations are feature vectors.  These 
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feature vectors consist of two elements, both of which are positive integers.  The first 
denotes the group to which the static hand shape has been classified.  It should be 
noted that 40 static hand shape groups are currently used to distinguish the gestures in 
this system.  The second defines the position of the hand in the image and will be in 
the range 1-9. The position of the hand is classified by determining the section of the 
image that the center of the hand lies in.  This center is calculated by finding the cen-
ter of the hands bounding box.  

The image is divided into 9 sections.  These sections are created by diving the im-
age vertically by drawing two lines either side of the head.  The 1st of the horizontal 
lines, H1, is located directly under the head.  The 2nd, H2, is placed M pixels below 
H1, where M is the length of the head object.  Using this technique position can be 
calculated invariantly to the distance of the user from the camera.  A gesture is then 
represented as a sequence of tuples, containing both shape and position information. 

A DHMM is trained for each possible gesture using many different examples.  A 
gesture is classified online, by manually identifying its start and stop point, then find-
ing the DHMM with the highest probability for the feature vector of the test sequence. 

4   Experiments 

4.1   Static Hand Shape Classification 

In order to classify real hand images we create a subspace for each hand shape as in 
section 3.1.  A subspace for each hand shape is now created by performing PCA on 
3969 images as depicted in equation 7.   

 . images 3969

direction rollin  rotations 3  directionpitch in  rotations 3 

direction yawin  rotations 9 ons translati49 imageOrigin  1   
54

321

=
××

××  
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1 Origin hand image that can be defined as being the perfect orientation of the hand shape. 
2 Origin hand shapes translated in all directions using combinations of 2, 4 and 6 pixels. 
3 9 rotations are used in the yaw direction as this is the direction that contains most significant deviation.  
These rotations are 3 degrees apart covering a total pitch of 24 degrees. 
4 3 rotations in the roll direction, each at 10 degrees covering a total pitch of 20 degrees. 
5 3 rotations in the roll direction, each at 10 degrees covering a total pitch of 20 degrees. 

All test and training images are pre-processed using the techniques described in  
section 3.2.  We developed a test set in order to test the amount of energy we need to 
retain in each of these subspaces.  This test set contained 560 images, 20 occurrences 
of each of the 28 hand shapes been used.  All these images were acquired from one 
trained user of the system over 4 separate sittings on 2 different days.  In theses im-
ages the assumption has been made that the user is wearing long sleeves covering the 
arms.  The first objective of our experiments was to identify the energy retention 
value that gives superior recognition.  We have found that when 80% of the energy is 
retained the lowest error rate is achieved.  One explanation for this is once we go over 
80% the subspaces attempt to retain information that is local to that of the individual 
user, i.e. local characteristics of the computer animation images.  It is important to 
find this balance between retaining as much information as possible without introduc-
ing noise in our subspaces.   80% energy retention entails keeping 12-16 of the most  
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Table 1. Confusion matrix for the 28 static handshapes  
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Fig. 1. Sample Static gestures 

significant eigenvectors, depending on the hand shape.  Having a low number of ei-
genvectors is also important to maintain efficiency. 

Preserving 80% energy in the subspace we achieve 94.5% recognition accuracy for 
our test set. The performance accuracy of each individual static gesture can be ob-
served in Table 1. This table exhibits the confusion matrix for the static gesture rec-
ognition vocabulary. Most confusion is caused where gestures are very similar. The 
two gestures that give highest confusion are U and R.  These gestures only differ 
slightly as can be seen in Fig 1. When performing U, the index and middle finger lay 
parallel, while performing R the index and middle finger are crossed.  These differ-
ences become particularly minute once the images are scaled to 32*32.   

4.2   Dynamic Gesture Recognition 

In order to test the accuracy of our dynamic gesture recognition system we have gen-
erated a vocabulary of 17 dynamic single-handed gestures.  This lexicon was created 
to ensure gestures exist that differ only in either hand shape or hand position.  20 
samples of each isolated gesture were recorded employing 2 different users, of differ-
ent racial origins, over 4 different days.  The videos are captured in an office envi-
ronment with additional lighting to the front of the user. In our experiments the  
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samples are divided into test and training sets by random sampling.  The proportion of 
test and training data was then varied over the recognition experiments.   A DHMM 
was trained for each gesture using the selected training data.  We then tested the rec-
ognition accuracy using the remaining unseen data.  Recognition accuracy was calcu-
lated by computing the average performance for different sampling of the training 
data.  Table 2 displays this performance for each of the different number of data sam-
ples used in training.  As expected the performance increases as the number of train-
ing samples increases.  It is also interesting to note that reasonably high classification 
rates can be achieved using only one training sample for the DHMM. 

This classification has been achieved on a standard PC using the matlab interpreter 
with non-optimized code in real time at 10 frames per second. 

Table 2. Illustrates the performance for each of the different number of data samples used for 
training 

No. Training 
samples 

1 2 3 4 5 6 7 8 9 10 

Average 
Performance 

83.0 88.9 91.9 94.2 94.6 95.3 95.9 97.1 98.5 98.6 

5   Conclusions 

In this paper a detailed framework is presented for accurate real time gesture recogni-
tion.  A unified approach for segmenting and tracking skin color objects has been 
described.  Tracking helps to reduce the search space for segmentation while accurate 
segmentation helps to accurately enhance the tracking performance.  Also accurate 
segmentation assists improving hand shape recognition using the subspace classifier 
described.  A novel approach of training a subspace classifier using images generated 
from computer animation is also illustrated.  Using image-processing techniques we 
have shown that accurate recognition is possible for human hands.  Combining this 
hand shape information with the position information a gesture recognition system 
was generated.  Successful classification was achieved for isolated gestures even with 
limited training.  To improve performance over a larger lexicon we intend to intro-
duce a more detailed position gauge, increase the bank of allowable hand shapes 
along with introducing new features such as hand motion. 
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Abstract. Diffraction, interference, dispersive refraction and scatter-
ing are four wavelength-dependent mechanisms that produce iridescent
colors. Wavelength-dependent functions need to be sampled at discrete
wavelengths in the visible spectrum, which increases the computational
intensity of rendering iridescence. Furthermore, diffraction requires care-
ful sampling since its response function varies at a higher frequency
variation with sharper peaks than interference or dispersive refraction.
Consequently, rendering physically accurate diffraction has previously
either been approximated using simplified color curves, or been limited
to offline rendering techniques such as ray tracing. We propose a tech-
nique for real-time rendering of physically accurate diffraction on pro-
grammable hardware. Our technique adaptively samples the diffraction
BRDF and precomputes it to Spherical Harmonic (SH) basis that pre-
serves the peak intensity of the reflected light. While previous work on
diffraction used low dynamic range lights, we preserve the full dynamic
range of the incident illumination and the diffractive response over the
entire hemisphere of incoming light directions. We defer conversion from
a wavelength representation to a tone mapped RGB triplet until display.

1 Introduction

Real-time iridescence: Iridescent surfaces exhibit different colors (shimmer) as
the view or incident light angles change. Diffraction (CD Roms), interference
(oil slicks), dispersive refraction (glass prism) and scattering (rainbow) are four
distinct optics mechanisms that cause iridescent colors. Iridescent colors are es-
pecially impressive when objects are moved interactively to fully demonstrate its
angle-dependent nature. For instance, rotating a CD-ROM in real time, walking
past an oil slick in a virtual world, or observing moving butterfly wings in real-
time all give stunning visual effects. Consequently, the rendering of iridescent
materials at interactive rates is attractive, but challenging.

Issues With Rendering Diffraction: Physically-accurate Bi-Directional Re-
flectance Functions (BRDFs) generate more photorealistic images since they
capture the intricate light-surface interactions of the underlying phenomena.
However, rendering physically-accurate wavelength-dependent iridescent BRDFs
is complex because they need to be sampled over at many discrete wavelengths

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 505–517, 2006.
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within the human visual range (380 - 700nm) [1]. Additionally, since the diffrac-
tion BRDF varies at a much higher frequency than interference, scattering and
dispersive refraction, more samples are required to capture its full response. Due
to these computational challenges, previous work has either rendered physically-
based diffraction in offline renderers or used less computationally-intense ap-
proximate models for real-time rendering of the diffraction BRDF [13].

Real-time Physically-based Diffraction: In this paper, we demonstrate a technique
to render physically-accurate diffraction at interactive rates. Our approach sam-
ples the high-frequency diffraction BRDF intelligently in order to preserve the
peak value intensities for each maxima. We factorize both the diffraction BRDF
and incident light using a low-order Spherical Harmonics (SH) basis such that
evaluating the BRDF response function is reduced to a dot product at each
sampled wavelength. Although Spherical Harmonics (SH) has traditionally been
used for low frequency lighting, we are able to use SH for diffraction because our
sampling approach aggressively reduces the required sampling frequency. Evalu-
ating the diffraction surface responses at many wavelengths requires significantly
more storage than traditional trichromatic (RGB) representations [15]. We re-
duce storage requirements on the GPU by using the Composite Model (CM) [14]
for compactly storing diffraction reflections.

Our technique also permits the use of a full hemisphere of incident light as op-
posed to previous work [1,2,16] that was limited to point or area light sources. It
is important to note that since diffractive response essentially separates incident
white light into its wavelength (color) components, the use of a full hemisphere
of light generates more realistic images.

The rest of the paper is as follows. Section 2 presents related work, section 3
gives some background that is necessary to understand our technique, section 4
describes our technique, section 5 presents our rendering results and section 6
concludes and describes future work.

2 Related Work

Diffraction: The majority of work on rendering physically accurate diffraction is
designed for use in ray tracers and other offline renderers. Stroke [5] derived the
geometric conditions for iridescence. Thorman [4] developed a computer graphics
model for diffraction based on the grating equation. Thorman [4] applied Stroke’s
grating equation to derive an illumination model for diffraction and resolves
specific issues with rendering iridescent colors. Nakamae et al [6] developed a
technique for rendering natural objects including diffraction with high intensity
light sources.

Agu [2], Stam [1] and Sun [16] have more recently developed shading models
for rendering diffraction. Stam uses Fourier optics to develop an anisotropic
reflection BRDF based on Kirchoff’s approximation for light scattering. Agu
developed a ray optics BRDF for rendering diffraction, which uniquely computes
the peak intensity at the maxima for each viewing angle. Sun’s model is based
on wave optics and was applied specifically to rendering optical disks. All three
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diffraction models generate photorealistic images and can be rendered in real-
time using today’s graphics hardware provided the lighting environment is
simple enough. However, as more complex lighting is used, achievable frame
rates drops quickly.

Spherical Harmonics: Recently, real-time rendering using Spherical Harmonics
(SH) has focused on environment irradiance, BRDF factorization, and radiance
transfer (such as inter-reflections, color bleeding, and caustics). Ramamoorthi
and Hanrahan [10] developed an efficient irradiance environment map using
Spherical harmonics that rendered diffuse surface reflection from an environ-
ment map. Westin, et al [12] developed a physically-based BRDF representation
in terms of matrices of Spherical Harmonic coefficients. Ramamoorthi and Han-
rahan improved on their previous model [9] to account for complex BRDFs using
a Frequency Space analysis that represented BRDF as Spherical Harmonic coeffi-
cients. Sloan simultaneously developed a technique [8] for precomputing radiance
transfer, which uses Spherical Harmonics for the lighting environment as well as
for the diffuse BRDF, self-shadowing, and inter-reflections. Kautz et al [11] im-
proved upon Sloan by generalizing the precomputation of radiance transfer for
rendering arbitrary BRDFs using SH.

Lindsay and Agu [7] developed a technique that used a full spectrum wave-
length color representation in conjunction with SH to develop a wavelength-
dependent BRDF model for rendering iridescence. This work is most related
to our work. However [7] renders interference not diffraction. The interference
BRDF varies at a much slower rate than diffraction (extremely spiky with sharp
peaks [14]) and requires less sampling. With the exception of [7], all SH work
listed above use a trichromatic color representation for rendering reflections while
our technique requires a wavelength representation.

3 Background

3.1 Physically-Based Diffraction BRDF

Stam [1], Agu [2] and Sun [16] have recently derived three alternative physically
accurate BRDFs for diffraction. We felt that Agu’s BRDF gave us adequate
control of variables during SH factorization. Hence we utilized the Agu model
for our technique. However, although we employ Agu’s model, we emphasize that
any of the three physically-based models can be used with our technique.

Agu’s model [2] derives a closed form BRDF by applying Huygens-Fresnel
principle for Fraunhofer Diffraction. Its main results are now summarized. In-
cident white light bounces off the CD-ROM grooves producing planar waves
with uniform intensities. Typically, thousands of grooves occur per square inch
on a CD-ROM with separations measuring about a wavelength of visible light.
The Agu model sums the planar waves emanating from N grooves to produce a
closed form expression. This closed form expression can easily be evaluated to
determine output diffraction intensities for any pair of incident light and view
angles.
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Fig. 1. Diagram of a measurement of similar locations in a single diffraction pit and
groove. This diagram shows the modes (dots locating points where the light waves add
together) and the measurement of d = a+b from eq. 3.

Figure 1 shows one of the N diffraction grooves. Each groove has a width of
dimension b followed by a gap of a distance a. Thus, d = a + b is the distance
between similar points on adjacent grooves. The incident light makes an angle θi
with the normal vector of the CD-ROM and after diffracting off the CD-ROM,
θ is the outgoing light angle. Equation 1 is the final expression for diffraction
derived in [2]. For the complete derivation, we refer the reader to [2].

f(Ω, λ) = Ambient+ diffuse+
∑
Ω

∑
λ

I0Ωλ
1
N2

(
sinβ
β

)2 ( sin2Nα

sin2 α

)
(1)

Where β = πb
(sin θ − sinθi)

λ
and α = π(a+ b)

(sin θ − sin θi)
λ

(2)

Since α =
πd

λ
(sin θ − sin θi) then d(sin θ − sinθi) = mλ (3)

where m = 0,±1,±2... are diffraction modes. The ambient and diffuse terms
of equation 1 are the same as for the Phong illumination model. Equation 3 is
widely known as the grating equation and gives the locations of maxima. Figure
2(a) is a plot of equation 1.

The Nature of the Diffraction BRDF: We shall now highlight some key char-
acteristics of the diffraction BRDF that makes it more challenging to render
in real time than other iridescent phenomena. Since our general approach is to
sample and factorize a physically accurate BRDF using SH, our main concern in
rendering diffraction lies with the fast-varying nature of the diffraction BRDF
function.

Figure 2(a) is a wavelength plot of the BRDF function in equation 1. In our
work, a typical value of N = 1500 was used. The

(
sin2 Nα
sin2 α

)
term causes the
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(b) Interference plot

Fig. 2. These two diagrams show the relative intensity plots of the diffraction and inter-
ference. The lines showing delta functions for the diffraction plot have been exaggerated
for demonstration and would normally be on the order nanometers or 1/100000th of
a degree. From this diagram you can see that sampling of interference is less complex
compared to diffraction.

function to vary very fast with extremely sharp narrow spikes. Sampling these
peaks is important since they contain a large fraction of the BRDF response.
These peaks are also contained within very narrow angular ranges such that
angle changes on the order of 1/100000th of a degree (for a typical CD-ROM)
can actually miss the location of the peak and result in erroneous intensity values.
Capturing these peaks is non-trivial since for N = 1500, the diffraction curve
can go from a minimum (0 response) to a maximum with a view angle change
of 10−5 degrees.

However, not all wavelength-dependent phenomena exhibit these fast varying
BRDFs. As a basis for comparison, we also plot the response of thin-film inter-
ference (soap bubbles) in fig 2(b). This slower varying interference function is
not as challenging to sample as diffraction and was rendered using SH in [7]. In
summary, accurate sampling, representation in terms of a wavelength basis and
the efficient storage of samples are core issues with rendering diffraction.

Adaptive sampling the Agu Diffraction BRDF: Our goal is to determine the
response intensity values for a given pair of incident light θi and view angles
θ. To reduce the number of wasted samples, we invert and solve equation 3 to
determine if there exists a diffraction peak for any mode m and wavelength λ.
The modes, m can take integer values from -2 to +2 and λ can take values in
the visible spectrum [380nm - 700nm]. If a valid combination of m and λ yields
a peak in the visible spectrum, we then plug their values into equation 1 to
determine the intensity of the peak. Sampling only areas which have maxima,
allows us to capture the narrow diffraction peaks using relatively few samples.
Without using this sampling technique, the diffraction response would vary too
fast for encoding using SH.
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Fig. 3. Effect adding lights when directly evaluating diffraction BRDF. The horizontal
axis shows the correlation between light complexity and frames per second (FPS).
Evaluating a full hemisphere of light contribution results in negative FPS or requiring
several seconds per frame to render.

Finally, it is important to compare rendering the physically-based diffraction
BRDF directly versus our technique. A limitation of directly rendering the BRDF
is that the frame rate is highly correlated with the number of lights used in the
evaluation. Having a scene bound by the number of light is undesirable for real-
time rendering and limits the light complexity. Figure 3 is a histogram showing
the results of FPS versus light complexity. The left side of the axis shows a
single light source and on the right a full hemisphere of light contributions.
The frame rate for direct rendering drops dramatically with the number of light
with a sampling rate of fifteen thousand stratified samples. As we mentioned
previously, our technique does not suffer from the limitations of light complexity
and runs at a constant frame rate due to our encoding the lighting in terms of
SH coefficients.

3.2 Spherical Harmonics

Spherical Harmonics (SH) are a set of basis functions that can approximate a
function in two dimensions defined over a sphere. In computer graphics and im-
age synthesis, a 2D signal can be approximated in spherical coordinates. In our
case, we approximate smooth distant lighting and diffraction BRDFs as a set
of low-frequency weights for the real values SH basis. In general diffraction is
considered a high-frequency reflection. As we describe in section 3.1 our sam-
pling technique allows for representing the diffraction as a medium-frequency
signal. This affords us the opportunity to approximate the diffraction with SH.
SH produces a finite or band-limited approximation of a function by truncat-
ing the infinite sum of an integrable function to a countable set of coefficients.
Equation 4 is a common form for real-valued Spherical Harmonics used in com-
puter graphics. For a more complete description of SH, we refer the reader
to [10, 11].
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3.3 Composite Model

An accurate, efficient and compact color model is needed to represent color
for real-time diffraction rendering such as the Composite Model (CM) [14]. CM
simply states that any wavelength-dependent function S(λ) (e.g. diffraction) can
be decomposed into a smooth and spiky. Since our diffraction function generates
a series of spikes, we found it useful to store them using the spiky part of the
CM. We do not use the smooth part of the CM. Each delta function is stored
as its intensity value along with their corresponding wavelength location in the
visible spectrum, resulting in a compact representation.

The behavior of reflections caused by diffraction result in intensity spikes in a
very narrow region on the visual spectrum [3]. Minima and non-maximal points
contribute almost nothing to the final output. The justification for employing
The CM for diffraction color representation is that if we ignore the smooth
decomposition for the spectral function because of its insignificance to the overall
reflection, we can represent diffraction as a series of delta functions (about 4 per
wavelength [3]). Each maximum of our diffraction calculation will result in a
single delta function or spike. Storing the necessary information to represent the
delta function consists of an intensity value and a single location on the visible
spectrum. The storage requirement for this spectral representation is constant
and therefore extremely compact.

4 Our Technique for Real-Time Diffraction

4.1 Overview

In this section, we describe our technique for real-time rendering of physically
based diffraction using SH. Our technique maintains an accurate representation
of physically based diffraction without sacrificing efficiency. To accomplish this,
we separate the rendering of diffraction into three phases: a precomputation,
rotation and upload, and rendering. A visual depiction of our pipeline is outlined
in Figure 4.

Precomputation begins with an offline process that samples and projects both
the lighting input and diffraction simulation. After projection, the resulting SH
coefficients are stored on the CPU, which is signified by the arrows spanning
the precomputation stage and CPU stage in Figure 4. The lighting coefficients
are then rotated to the tangent frame on the CPU, and uploaded to the GPU.
The texture map of SH coefficients is also uploaded to texture memory on GPU.
In a vertex shader, the view vector is transformed to tangent space and used
as texture coordinates to lookup the SH texture map. The dot product of the
texture map diffraction coefficients and the rotated lighting coefficients result in
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the final wavelength, which is converted to an RGB triplet and uploaded to the
framebuffer.

In the following sections, we describe in more detail our precomputation and
rendering steps for rendering diffraction. As mentioned in earlier sections, for
clarity of exposition, we focus on one specific diffraction BRDF, but our method
is general enough to be applied to other diffraction BRDFs.

4.2 BRDF and Lighting Precomputation

The primary goal of the precomputation stage is to generate a hemisphere of
light around a point on the diffraction surface and enumerate the diffraction re-
sponses for all valid incoming light and outgoing view directions. Separating the

Fig. 4. Block diagram outlining the complete rendering pipeline for our technique.
The pipeline is divided into three distinct stages: preprocessing, rotation and transfer,
and rendering. The first stage is responsible for sampling and projection of lighting and
BRDF to an SH basis. The second stage rotates the lighting coefficients and upload both
lighting and BRDF coefficients to the rendering context. The third stage is responsible
for the final output.

BRDF from the lighting until light integral calculation at run-time allows us to
dynamically change lighting values without having to run the computationally
expensive BRDF simulation. By varying the viewing direction, the SH approxi-
mation of the diffraction BRDF can be tabulated by view direction in a texture.
A small set of SH coefficients are calculated per view. In many cases, at most 25
SH coefficients per view direction are required for most arbitrary BRDFs [11].
The size of the texture depends on parameterization of the view vector, spheri-
cal samples on s, and the desired accuracy of approximation (coefficients/view).
Equation 5 outlines the projection of an arbitrary BRDF and the resultant set
of coefficients ci where f(s) can be an arbitrary diffraction BRDF and ym

l (s) is
a general form of the SH basis defined in section 3.2.

ci = f̃(s) =
∫

s

f(s)ym
l (s)ds (5)

Precomputing the lighting coefficients from different light sources L(s) has
been outlined in several previous papers [8, 11]. We improve on previous tech-
niques for precomputing lighting by using the CM for representing the spec-
tral power distribution instead of RGB triplets. The precomputed vector of
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coefficients li representing the lighting environment can also be used for the
non-diffraction part of the BRDF. The precomputation is done by projecting a
captured or simulated lighting environment into the SH basis (see equation 6).
In our case, we project an image-based lighting environment that was gener-
ated from a series of High Dynamic Range photos (light probe, courtesy of Paul
Debevec).

li = L̃(s) =
∫

s

L(s)ym
l (s)ds (6)

4.3 Rendering

The following section presents a detailed description of the steps to utilize the
precomputed lighting and BRDF coefficients generated in section 4.2, for real-
time rendering. The outlined rendering steps can be performed on a CPU or
GPU, and may be used in both hardware and software renderers including
shader-capable GPUs. One advantage of our technique is that the rendering
phase uses only standard graphics operations, such as texture mapping, trans-
formations, and simple mathematical operations. In fact, the presented technique
can be seamlessly integrated with other interactive rendering techniques to im-
prove overall photorealism. Figure 5 is our algorithm for rendering diffraction.

In step 1, for efficiency, the lighting is transformed once per vertex instead of
per fragment. For a thorough explanation of rotating Spherical Harmonic coeffi-
cients refer to the appendix in [11]. Steps 2,3 are standard shader programming
techniques for transforming and rotating vectors. Step 3 refers to a local tan-
gent frame in which the view vector needs to be transformed and rotated. The
surface normal and two orthogonal vectors in the texture direction define the
tangent frame. For efficiency, the tangent space basis is pre-calculated offline
and uploaded to the vertex shader at runtime. Once the view vector has been
transformed/rotated, it is used as texture coordinates to look up SH diffraction
coefficients.

The texture map of SH coefficients comprise the precomputation of the diffrac-
tion response to arbitrary distant lighting. A listing of view-dependent diffraction

Algorithm. Diffraction Rendering Steps

1. Rotate lighting coefficients, li, into appropriate frame on the host CPU.
2. Upload the lighting coefficients to the shader.
3. Transform and rotate the view vector to the tangent frame.
4. Look up the diffraction coefficients ci in a texture,
5. Scale and bias diffraction coefficients to the (0 ⇒ 1 to -1 ⇒ 1) range.
6. Apply the dot product of the coefficients.
7. Convert from wavelength to RGB, then upload to the framebuffer.
8. Tone map the framebuffer from high dynamic range to a displayable range.

Fig. 5. Step-by-Step algorithm for rendering diffraction
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responses encoded into SH coefficients is stored in an N × V texture , where N
is the number of SH coefficients used (we used 25), and V represents all poten-
tial view directions. Each texel in the texture map represents a portion of the
Spectral Power Distribution (SPD) that will eventually be converted to RGB
values. The SPD encoding method dictates the number of textures required. For
example, a CIE color representation may use only one texture for the X, Y, Z
values. For Agu’s diffraction model, the response in a given view direction is
essentially a delta function at a certain wavelength. The resulting texture map
utilizes only two values (wavelength and intensity) per texel.

The dot product of the SH coefficients approximates the lighting integral.
Evaluating this integral on the GPU when available, further enhances rendering
speed. The computed Spherical Harmonic approximation of lighting and diffrac-
tion have unbounded dynamic range. Therefore, the reflection calculations result
in color values outside the displayable range and need to be tone-mapped to the
range of the target viewing system. Figure 5 is the necessary steps for the ren-
dering algorithm on programmable GPUs.

5 Results

We achieved real-time frame rates with our technique without sacrificing image
quality. As mentioned earlier, our technique’s frame rate does not reduce as more
lights are added to the scene, unlike direct evaluation of the diffraction BRDF.
Figure 5 shows our final results, which were rendered on an Nvidia 6600 GT
graphics card with 128 Megs of RAM on a Pentium 4 2.8 GHz Personal Computer
with 1GB RAM. For our CD-ROM model that had 25 thousand vertices, we were
able to maintain a constant frame rate of 65 Frames Per Second (FPS). With
several additional effects such as environment mapping, blur, exposure control,
and vignette, our scene still ran at over 60 FPS (real-time frame rate).

Limitations of our work: Precomputation time is a factor to consider when em-
ploying our technique. Additional computation time is required for spectral con-
version making our diffraction BRDF significantly longer to precompute than
other BRDFs [9, 8, 11] that are not wavelength-dependent. We see this as an
area for considerable improvement as other wavelength-based phenomena may
require more time for precomputation.

Our use of SH made spherical mapping an obvious choice for parameterization
during precomputation but this resulted in too few samples at the equators.
Storing the precomputed diffraction response using parabolic mapping [17] would
produce more evenly distributed samples and result in fewer sampling errors.
Additionally, highlights in the lighting directions exhibit an exponential fall off as
the diffractive response moves away from the light direction. The high frequency
nature of the fall off requires higher sampling than SH can achieve with low
order coefficients (≤ 25) which can lead to approximation errors. In future,
different sampling techniques, factorization, or high order approximation with
compression (for example PCA) may be able to capture the fall off exhibited by
CDs with lower error.
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Fig. 6. Our final images: The top row of images are achieved by directly evaluating
our physically-based diffraction BRDF with a single light rendering on the left and
multi-light rendering on the right. The bottom set of images have been rendered with
our technique using a single light on the left and a multiple lights on the right. Each
of the SH approximated images (bottom) renderings run at the same frame rate even
though there are 5 more lights in the multi-light version. Since SH Lighting is not
affected by the number of light sources, a single light rendering runs at the same speed
as full hemisphere lighting. The scene frame rate reduces as more lights are added, if
the diffraction BRDF is evaluated directly.
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6 Conclusion and Future Work

We have demonstrated a real-time technique for rendering physically based
diffraction using Spherical Harmonics for compact and efficient representation.
Our technique preserves the accuracy of the diffraction for arbitrary surfaces,
including unique intensities for each response maximum, without suffering from
a slower render time as the number of light sources increase. We believe that
this technique can expand the range of complex materials currently rendered in
real-time and enrich experience in many interactive applications such as virtual
reality and video games.

In the future, we think that a normal progression of our technique would be
to expand it to other wavelength dependent phenomena beyond iridescence and
diffraction type reflection. Some techniques that may benefit from our technique
include dispersion, fluorescence, and wavelength dependent multiple scattering.
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Abstract. Three dimensional cell culture assays have emerged as the
basis of an improved model system for evaluating therapeutic agents,
molecular probes, and exogenous stimuli. However, there is a gap in ro-
bust computational techniques for segmentation of image data that are
collected through confocal or deconvolution microscopy. The main is-
sue is the volume of data, overlapping subcellular compartments, and
variation in scale and size of subcompartments of interest. A geometric
technique has been developed to bound the solution of the problem by
first localizing centers of mass for each cell and then partitioning clump
of cells along minimal intersecting surfaces. An approximate solution to
the center of mass is realized through iterative spatial voting, which is
tolerant to variation in shape morphologies and overlapping compart-
ments and is shown to have an excellent noise immunity. These centers
of mass are then used to partition a clump of cells along minimal in-
tersecting surfaces that are estimated by Radon transform. Examples
on real data and performance of the system over a large population of
data are evaluated. Although proposed strategies have been developed
and tested on data collected through fluorescence microscopy, they are
applicable to other problems in low level vision and medical imaging.

1 Introduction

Current models of high throughput and high content screening are based on
two dimensional cell culture assays that are grown either on plastic or glass.
Although such a model system may be appropriate as an initial step toward
discovery or certain aspect of biological studies, the knowledge may not readily
extensible to in vivo models. On the other hand, animal studies are expensive
and time consuming and as a result cannot scale for high throughput studies
that is necessary to build a space-time continuum of responses in the presence of
biological heterogeneity. An intermediate step is three-dimensional cell culture
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model systems that has been demonstrated to have some of functionalities of
the in vivo models [11]. However, such a model system introduces significant
computational challenges: (i) imaging is in 3D and not in projection space, (ii)
subcellular compartments often overlap and delineation is made difficult, and (iii)
variations in subcellular scale imposes a more complex segmentation problem at
the object level. In this paper, we present a series of unique geometric steps
for segmentation of 3D cell culture models, also known as acini, that enables
subsequent localization studies and protein-protein interactions.

Research in the analysis of subcellular structures spans texture-based features
for classifying patterns of protein expression [5], and geometric methods [12,8,9]
and surface evolution methods [4,6] for delineation of nuclear compartments. Seg-
mentation provides context for quantifying protein localization in fixed samples
with an antibody or a nucleic acid based probe in living cell studies [8]. To our
knowledge, previous techniques are not applicable for automated segmentation
mammospheres. Proposed solution is to bound an inherently ill-posed problem
through geometric constraints. A key observation is that nuclear regions are of-
ten convex and form a positive curvature maxima when they overlap each other.
This feature was used earlier in 2D segmentation of nuclear regions [9]. However,
evaluating 3D convexity and estimating 3D surface curvature is hindered with
a significant computational complexities. Convexity can be viewed as a salient
feature, which is an important perceptual cue for localization and segmentation
of subcellular regions. In biological image understanding, saliency can be driven
by continuity, symmetry, convexity, or closure. Among these, it is well known
that symmetry is a pre-attentive process [1] that improves recognition, provides
an efficient mechanism for scene representation, and aids in reconstruction and
description. Radial (spherical in 3D) symmetry is a special class of symmetry,
which persists in nature at multiple scales. Robust and efficient detection of in-
exact radial symmetries facilitates the semantic representation, interpretation,
and prioritization for higher level processes. Yet, the notion of radial symmetry
is used in a weak sense since the basic geometry can deviate in aspect ratio
and convexity. Localization of approximate centroid of each nucleus in a three
dimensional cell culture assay enables partitioning a mammosphere along the
planes that generate minimum surface cross sections and are possibly aligned
with points of maximum curvature along the surface.

The novelty of the proposed method is in specific geometric steps designed
to bound the solution through seeding and subsequent partitioning. The basis
for seeding (e.g., estimating centers of mass) is through geometric voting and
perceptual grouping, and is implemented through the refinement of specifically
tuned voting kernels [13]. Localization of centers of mass for each nucleus pro-
vides a bound on overall stable segmentation. Partitioning of adjacent nuclei
is performed by finding planes that best separate adjacent cells, and the ac-
tual methodology is based on the Radon transform. In comparison, scale space
representation (e.g., Gabor filters and scale-invariant feature transform) is less
than adequate since they don’t incorporate global geometric constraints. For ex-
ample, our experience indicates that such methods can infer one seed for two
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overlapping nuclei. This is often due to the fact that (i) nuclear size varies widely,
and (ii) intensity distribution within the nuclear region is non-uniform.

The organization of this paper is as follows. Section 2 provides a brief re-
view of the previous research. Section 3 describes the basic idea and detailed
implementation of approach. Section 4 demonstrates the experimental results.
Section 5 concludes the paper.

2 Previous Research

Current state of art for delineation of nuclear regions from 3D multicellular sys-
tems and mammospheres leverage intensity information with limited amount of
inherent geometry. Some of these methods are interactive and serve as a com-
puted aided tool to increase operational throughput. In [7], background and
nuclear regions are automatically delineated using a thresholding mechanism,
Hough transform and automatic focusing are applied to estimate the size of
the nuclei, the user labels each object as a single nucleus or a cluster of nuclei,
and the process ends with watershed method to partition potential clumps of
cells. In [10], limitations in [7] were identified in several computational steps:
(1) initial thresholding, (2) noise, and (3) low gradient in some of the nuclear
regions. These limitations were then addressed using level set methods for im-
proved performance. In [12], nuclear regions were modeled as elliptic features and
fragmented features were grouped together to form a convex hull. The method
produces a segmentation that is not very accurate along the surfaces with poten-
tial fragmentation of nuclear regions. Recently, in [2] mammosphere slices were
segmented in 2D and then segmented 2D slices were merged together. However,
combination of assay and high resolution imaging produced a morphological
nuclear signature that tend to be more separable in 2D (e.g., little overlap)
while maintaining similar scale in nuclear size. One novelty of this system is
that the analysis does not require isotropic representation of the data volume.

In contrast to previous approach, proposed method uses high level geometric
features to delineate a multicellular system. Geometrically, nuclear regions are
almost convex; however, scale (e.g., size) is heterogeneous. Furthermore, when
two nuclear regions overlap, they form folds corresponding to positive curvature
maxima. Partitioning adjacent nuclear regions along points of curvature maxima
or a variation of that is the final step of the process.

3 Approach

Proposed steps in delineation of nuclei in a mammosphere system are shown in
Figure 1. Starting from the interpolated 3D image, the solution first bounds
the problem by computing seeds that estimate the centroid of each nucleus
through iterative radial voting in 3D. Simultaneously, the colony is thresholded
in 3D, which produces an erroneous segmentation of the clump of nearby cells
by merging them. Each clump is subsequently labeled for further analysis, and
any connected volume with more than two seeds is subject for further analysis.
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Adaptive

Thresholding

Connected
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Coarse 3D
Tessellation

Refined Segmentation
Radon Transform

Fig. 1. Detailed representation of methodology for segmentation of a 3D mammosphere

Partitioning is performed by finding planes that best separate adjacent nuclei,
and the actual methodology is based on the Radon transform. However, Radon
transfer precedes by a coarse segmentation from adjacent seed locations. Ideally,
such a coarse segmentation should be realized through voronoi tessellation, which
is compute intensive in 3D. A simpler approximation to voronoi tessellation is
implemented to provide a rough segmentation of nuclear regions. This segmen-
tation is further refined by Radon transform. Details of seed selection through
iterative voting and partitioning adjacent connected nuclei through radon trans-
form are included below.

3.1 Seed Estimation with Iterative Voting

The basis for seeding (e.g., estimating centers of mass) is through geometric
voting and perceptual grouping, and is implemented through the refinement of
specifically tuned voting kernels [13]. In general, voting operates on the notion of
continuity and proximity, which can occur at multiple scales, e.g., points, lines,
lines of symmetry, or generalized cylinders. The novelty of our approach is in
defining a series of kernels that vote iteratively along the radial or tangential
directions. Voting along the radial direction leads to localization of the center
of mass, while voting along the tangential direction enforces continuity. At each
iteration, the kernel orientation is refined until it converges to a single focal
response. Voting kernels have a cone-shaped with an initial scale and spread (e.g.,
height and base) that is refined iteratively. These kernels are initially applied
along the gradient direction, then at each consecutive iteration and at each grid
location, orientation is aligned along the maximum local response. The method
has excellent noise immunity, is tolerant to variations in target shape scale, and
is applicable to a large class of application domains. Figure 2 shows a subset of
voting kernels that vary in topography, scale, and orientation.
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(a) (b) (c) (d) (e)

Fig. 2. Kernel topography: (a-e) Evolving kernel for the detection of radial symmetries
(shown at a fixed orientation) has a trapezoidal active area with Gaussian distribution
along both axes

(a) (b) (c) (d) (e)

Fig. 3. Detection of radial symmetries for three overlapping blobs with with the signal-
to-noise ratio of 6dB: (a) original image; (b)-(d) the voting landscape at intermediate
iterations; and (e) final localization following thresholding. The voting landscape is
initially diffused in the background region, but it becomes more localized at the fore-
ground in subsequent iterations.

(a) (b)

Fig. 4. Two views of voting results of a 3D clump of mammosphere: (a) top view; (b)
side view

The iterative voting algorithm is presented for the 2D case in [9]. Our current
implementation extends the 2D algorithm to volumetric data. An example of
the application of radial kernels to overlapping 2D objects is shown in Figure 3
together with the intermediate results. The voting landscape corresponds to the
spatial clustering that is initially diffuse and subsequently refined and focused
into distinct islands. Figure 4 shows two views of the voting results for a 3D
clump of mammosphere.
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3.2 Partitioning of a Mammosphere from Seeded Nuclei

The process is initiated by a coarse segmentation of nuclei with a simplified 3D
voronoi tessellation. Tessellation facilitates (1) identification of a local neigh-
borhood where each nuclear region is contained within its own space, and (2)
improved computational performance for each mammosphere prior to Radon
transform. The first aspect has to do with constrained locality, which eliminates
error and reduces ambiguities. Without tessellation, Radon transfer will fail be-
cause two neighboring nuclei may have a third nucleus that sits at the fold of
the two touching nuclei. This condition is shown and visualized in Figure 5 from
real data. The second point has to do with the fact that not all adjacent nuclei
are connected and that there is a clear empty space between them. Under this
condition, there is no need to refine the segmentation further.

(a) (b)

Fig. 5. A segmented example of the nuclear configuration where tessellation enforces
locality: (a) the blue nuclei resides at the fold between the green and black nuclei and
without an initial tessellation subsequent Radon transform refinement will fail; and (b)
empty spaces between black and blue nuclei eliminates the need for Radon transform
refinement

The details of Radon transform is as follows; however, for simplicity the 2D
version is first described. The Radon transform represents an image as a collec-
tion of projections in a function domain f(x, y) along various lines defined by
the shortest distance ρ from the origin and the angle of inclination θ with the y
axis:

R(ρ, θ) =
∫ ∫

f(x, y)δ(ρ− x cos θ − y sin θ)dxdy.

Properties of the Radon transform enable delineation of nearby touching objects.
For example, two adjacent objects, represented by circles in Figure 6(a), and the
corresponding Radon transform shown in Figure 6(b), has a local minimum at
ρ = 17 and θ = 135◦. This local minimum corresponds to the integration over
the line that separates the two objects with the smallest cross section.

Similarly, 3D Radon transform represents a 3D volume as a collection of pro-
jections in a function domain f(x, y, z) along various planes defined by the short-
est distance ρ from the origin, the angle of azimuth φ around the z axis and the
angle of elevation θ around the y axis:
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Fig. 6. An example of 2D object segmentation using the Radon transform: (a) synthetic
object composed of two circles; and (b) corresponding Radon transform with local
minimum at ρ = 17 and θ = 135◦

Fig. 7. The implementation of 3D Radon transform through 2D Radon transform

R(ρ, φ, θ) =
∫ ∫ ∫

f(x, y, z)δ(ρ− x cosφ cos θ − y sinφ cos θ − z sin θ)dxdydz.

The Radon transform is a separable transform and its implementation is shown
in Figure 7. A fast method for computing 3D radon transform via a direct Fourier
method can be found in [3]. Given a local cube containing two nearby adjacent
cells, each of which is bounded by a seed, the optimal plane separating these two
cells should be located between the two seeds and have the smallest cross section.
The local minimum in the 3D Radon transform corresponds to the integration
over the optimal plane in the local cube.

4 Experimental Results

The proposed approach was implemented and applied to a set of samples that
were imaged with deconvolution microscopy. The image resolution along the
x and y directions is 0.15 micron, and the resolution along the z direction
is 1.32 micron. Figure 8 shows several slices from a mammosphere, and the
corresponding segmentation result is shown in Figure 9. Proposed method was
implemented in C++ and Matlab with the average execution time of 2.5 minutes
per volume data. The software was used to process 151 colonies, which has
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#6 #7 #8 #9 #10 #11

#12 #13 #14 #15 #16 #17

Fig. 8. Slices from a 3D cell colony in the order of z direction

(a) (b)

Fig. 9. Two views of final segmentation of a mammosphere for the stack shown in
Figure 8: (a) top view; (b) side view

an average of 11 seeds per colony. 1771 seeds were estimated through iterative
radial voting; however, 77 nuclei did not register any corresponding seeds, which
indicates a detection error rate of 4%. This is presumably due to abnormal scale
and shape of the nuclear volume with the following conditions:

– Low contrast between overlapping nuclei: Absence of gradient information
between overlapping nuclei coupled with their accidental morphological prop-
erties provide ambiguous voting evidence that produces one fixed point in-
stead of two.

– Morphological abnormality: Often a single nucleus has an abnormal elon-
gated shape and radial voting merges multiple seed points into a single fixed
point. This condition is highly correlated with previous case.

– Incomplete information: This is an imaging problem where imaging is in-
complete and part of the nuclei is missing from the volumetric image, as
shown in Figure 5.
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– Low sampling resolution in Z axis: The current interpolation algorithm
is linear for making an volumetric stack homogeneous in its X, Y, and Z
dimension. Linear interpolation smooth the gradient in the Z direction and
reduces contribution of the corresponding gradient information. An improved
model will use some form of spline interpolation.

Finally, partitioning accuracy was compromised for 35 pair of overlapping
nuclei from a total of 1850 pairs, which indicates an error rate of approximately
2%. These errors occur when the optimum planes for separating two nuclei is
not the desired plane for partitioning two neighboring nuclei. The notion of
desired planes has to do with those planes that bisect neighboring nuclei along
points of maximum curvature. In this case, the error rate can be reduced through
improved seed localization.

5 Conclusion and Future Work

This paper presented a series of geometric steps for segmentation of mammo-
spheres from volumetric data. The first step localizes an approximation to center
of mass for each nucleus and then partitioning clump of nuclei along minimal
intersecting surfaces. Approximate solution to the center of mass is realized
through iterative spatial voting, which is tolerant to variation in shape morpholo-
gies, perceptual surfaces, noise, and overlapping compartments. These centers of
mass are then used to partition a clump of cells along minimal intersecting sur-
faces that are estimated by Radon transform. The technique has been tested on
151 colonies and their corresponding 3D volumes, and error rate is fully char-
acterized. The system is being planned to be used for subsequent localization
studies.
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Abstract. In this paper, we present a novel viewpoint selection frame-
work for angiographic volume data. We propose several view descriptors
based on typical concerns of clinicians for the view evaluation. Compared
with conventional approaches, our method can deliver a more represen-
tative global optimal view by sampling at a much higher rate in the
view space. Instead of performing analysis on sample views individually,
we construct a solution space to estimate the quality of the views. De-
scriptor values are propagated to the solution space where an efficient
searching process can be performed. The best viewpoint can be found by
analyzing the accumulated descriptor values in the solution space based
on different visualization goals.

1 Introduction

Direct volume rendering (DVR) is a powerful tool for angiographic volume as
it can help clinicians analyze the anatomical structures present in the volume.
Viewpoint selection is an important issue to the effectiveness of DVR. More 3D
structures can be revealed at a proper viewpoint while severe occlusion and less
informative results may be delivered at a bad viewpoint. It is time consuming
for the viewers to find the optimal viewpoints by trial and error. Therefore,
this paper addresses the problem by proposing a view-selection framework for
angiographic volume based on some objective criteria.

As mentioned in different previous works [1] on viewpoint selection, it is sub-
jective to judge the aesthetic value and appropriateness of a view. Different quan-
tifications and measurements of visual information present in an image have been
proposed. However, unlike typical view analysis, medical applications require a
more objective and effective assessment on the accuracy and performance of the
methodology. Therefore, we establish several objective criteria on the best view
for angiograms, based on the common medical concerns of clinicians.

Even though a proper view evaluation can be derived from the medical con-
siderations, optimal view searching is still a difficult problem. In order to find
the best view, a considerable amount of computations are required to analyze
different views in a huge search space. It is obvious that we cannot try out all
possible views which are infinite in number. Assumptions are always exerted on
the view selection (e.g., limited viewing angles) to restrict the range of the search
space. Methods like canonical views [2] and normal clustering [3] have been sug-
gested for aesthetic purposes, but are not always applicable to medical images.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 528–537, 2006.
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Some researchers proposed to use different optimization methods to search for
an optimal solution. The process is slow and may easily lead to local optimal so-
lutions. Sampling of the view space and compromising with local optimal views
are possible solutions. However, only a limited number of views are sampled for
the sake of computation and the best view may still be missed.

In this paper, we design several view descriptors based on the typical concerns
of clinicians to tackle the problems of visibility, self-occlusion and coverage of
important structures in angiograms. After that, we propose a framework that
projects those view descriptors onto a solution space where the viewpoint can
be easily selected. The solution space can be constructed efficiently in one pass
without evaluating the views individually.

The rest of the paper is organized as follows. We introduce the previous work
in Section 2 and describe the proposed framework for view selection in Section
3. The initialization process is covered in Section 4. The details about view
descriptors are explained in Section 5. The projection process is explained in
Section 6. The solution space and view selection are explained in Section 7.
Experimental results and conclusion are covered in Section 8 and 9.

2 Previous Work

Viewpoint selection is a challenging problem which has been studied extensively
in various fields, like computer graphics [4] and computer vision [5]. A proper
viewpoint can bring a meaningful and informative view to viewers. Several meth-
ods have been introduced to evaluate the quality of views using different metrics
and a recent survey can be found in [1]. Methodologies like surface area entropy
[6], curvature entropy [7], entropy of semantic parts have been studied. Vázquez
et al. [5] proposed a view selection method based on view entropy and Sbert
et al. [8] suggested the use of Kullback-Leibler distance as a view quality mea-
sure. Lee et al. [9] also proposed a view selection method based on view saliency.
Most of the works focus on mesh-based data and the evaluation is based on
the geometries present in the data. However, some measures, like visibility, are
not clearly defined in volume data where geometry is usually not present. Semi-
transparent structures present in the image may be considered as meaningful
characteristic features in volume rendering. Previous works on view selection for
volume data are scant. Recently, Bordoloi and Shen [10] suggested the use of
a voxel-based entropy function as a goodness measure of viewpoints. Takahashi
et al. [11] proposed to decompose a volume into feature components and a best
view is computed by compromising between different local optimal viewpoints.
Some related approaches can also be found in [12].

3 Overview

We propose a framework for view selection by propagation of view descriptors
on a solution space and the pipeline is shown in Figure 1. During the initial-
ization process, regions of interest (ROI) and the corresponding boundaries are
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defined by users. Values are assigned to the view descriptors of each voxels. The
propagation of the view descriptors is performed by projecting the values along
different directions onto the boundaries of the volume, which constitute the final
solution space. Optimal views can be found by searching in the solution space
which is represented as a color-encoded projection map. To deliver proper results
that conform with clinical requirements, we proposed several view descriptors
for angiographic visualization, namely visibility, coverage and self-occlusion.

(a) (b) (c) (d)

Fig. 1. Viewpoint selection pipeline: (a) selecting ROIs and boundaries; (b) initializing
the view descriptors; (c) propagating view descriptors to the boundaries; (d) selecting
viewpoints from the projection maps

4 Initialization

In the conventional approaches, the objects of interest are always assumed to be
located at the center. Instead, we allow viewers to define the region of interest
in the volume such that a good view can be found accordingly. The viewpoint
is placed on a view sphere (i.e., a fixed distance away from the ROI) while the
exact position depends on the view evaluation result.

To ease the difficulty in the user selection process in angiograms, a MIP-guided
selection method [13] can be used to define regions of interest (i.e., voxels to be
visible in the final view) by selecting the projected voxels in a MIP. Besides, the
user can label those voxels in the slices of the volume. For simplicity, the voxels
of interest can be specified using the histogram. After selecting the voxels of
interest, a bounding region is generated automatically. The region encapsulates
all the selected voxels and the voxels on the boundary of the region will become
the starting points of the projection process. The simplest way is to construct a
rectangular bounding box.

However, to ensure a proper and efficient projection, the region should be
a tight minimum bound. This minimizes the initialization cost and increases
the significance of the projected result. A bounding region may be too large if
the selected points are sparse (e.g., irregular structures and branches of vessels)
in the volume. To solve this problem, clustering is performed on the selected
points and smaller regions are formed. A large vessel tree may be clustered into
smaller branches. The projection process will then be conducted on each clus-
ter individually. As the propagation is partially driven by the shape of the objects
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of interest for determining the normal direction for projection, it is important to
select appropriate points on the boundary of the objects to preserve the shape.

The voxels on the bounding region are the starting points of the propagation
process. Each of them is assigned a set of initial values of view descriptors (see
Section 5). In our experiment, we initialize values for visibility by performing
ray-casting from each boundary voxel to all the selected points. The initial value
is given by the average of the accumulated opacity of the rays. It estimates the
obstruction caused by the voxel and indicates the visibility within the bound-
ing region at the voxel. Besides, a value of coverage is assigned to each initial
boundary voxel according to the importance given by the user. If no importance
values are given, every voxel is assigned a constant value.

5 View Descriptors

View descriptor is a term used to describe the criterion employed in the view
evaluation process. The choice of the descriptors depends on the visualization
goal and also the effectiveness of the measures. In our proposed framework, we
adopt the visibility, coverage and self-occlusion as they are the practical criteria
for a clinical view on angiograms. They can be applied on volumetric data and
are tailored for angiographic purposes.

The visibility descriptor, similar to the visibility ratio, represents the effect
of one object in space blocking another object from view. However, unlike the
surface-based model, the value indicates the level of obstruction of voxels in the
volume data. We assign an occlusion value to each voxel according to the transfer
function. A more opaque voxel has a higher occlusion value. In the propagation
process, the accumulated occlusion values projected onto the solution space in-
dicate the visibility of the views. The coverage descriptor, on the other hand,
indicates the exposure of the object to the view. In a surface-based model, it is
easily found by considering the area of surfaces visible to the view. In the vol-
ume data, we try to maximize the number of boundary voxels visible to the view.
Besides, we propose another descriptor to indicate the degree of self-occlusion.
In a volume data with complicated anatomies, the structures (e.g., vessels) may
obscure each other in the view. The value of the self-occlusion descriptor tries
to indicate the possible occlusion existing in the view.

Actually, our framework does not exert any restriction on the use of view
descriptors. More complicated and high-level semantic descriptors can be used
to suit different applications. However, the above descriptors can satisfy the
typical requirements of clinicians for angiographic purposes.

To evaluate the quality of a view, we establish a view measure which consists of
a composite value of the view descriptors. Instead of sampling the view space and
evaluating the views one by one, we reverse the process and project the values
to the solution space. An estimated global optimal view can be found efficiently
by searching in the solution space. Different from the typical approaches which
make assumptions on the orientation of the structures in the volume and only
select views in a certain range of directions, our method allows the search space
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to span all possible directions. It is more reasonable for medical images in which
hidden pathologies may exist at different positions and orientations.

5.1 Visibility

The optimal view should attain the highest visibility and the region of interest
should not be occluded by irrelevant structures. Therefore, we design a view de-
scriptor to indicate the degree of occlusion caused by the context. Typically, the
visibility problem can be solved easily for surface-based models. However, such
surfaces are not defined in volume data and the occlusion is due to the opaque
voxels in the context. Therefore, each opaque voxel is assigned an occlusion value
and is propagated to the solution space (Figure 2(b)). As the occlusion effect is
more severe if the voxels locate in between the viewpoint and the ROI in the
normal direction, the projection direction always coincides with the normal of
the ROI. The viewpoints at the normal receive the highest projected value while
those views farther way from it receive a lower value. The projection is performed
on all the contextual voxels and the values accumulate at the boundary planes
(solution space). The higher the accumulated value, the higher the occlusion
level. Therefore, a good view should keep this value at a minimum or zero.

5.2 Coverage

The quality of the view may not be good even if it attains a high degree of
visibility. For instance, an unoccluded view may only reveal a small portion of
the ROI. Besides, there may be many candidate views which have high visibility,
therefore, we should have an additional criterion to evaluate the goodness of a
view. Following the basic idea of surface area entropy [6] in a polygonal scene,
we propose a descriptor for coverage of ROI in volume data which can be then
propagated from the boundary of the ROI (Figure 2(c)). Users may specify
certain regions that they are interested in and assign different coverage values
according to the importance. After that, the value will be propagated, in a similar
manner, along the nomral direction of the ROI.

5.3 Self-occlusion

Angiograms are usually cluttered and fuzzy in nature. Self-occlusion between the
vessels within the ROI usually exists and should be minimized. However, it is
infeasible to perform a surface-based visibility test on such a complicated scene.
Therefore, we assign occlusion values to different parts of the object according
to their opacity and then compute the mutual occlusion effect among them.

First, we build an octree of the angiographic volume. The voxels of interest are
labeled and structures are encoded into the nodes of the octree. Then, we perform
clustering based on the similarity of the neighboring voxels (e.g., opacity or other
high-level feature measures). Smaller nodes are clustered into larger nodes for
the sake of efficient computation. A vessel tree structure is represented by a series
of nodes of different sizes (Figure 2(a)). To analyze the possible self-occlusion,
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we project each node to the projection plane in all directions from the node to
other nodes (Figure 2(d)). Similar to the previous case, the projection value and
the kernel depend on the size of the node, opacity, distance, etc. The running
time of the process is O(n2), where n is the number of nodes. For the sake of
performance, we limit the number of nodes by pruning the tree and ignoring the
nodes of smaller size. This does not affect the final result much as the occlusion
effect of an isolated voxel (e.g., noise) is insignificant.

(a) (b) (c) (d)

Fig. 2. View descriptor projection: (a) octree representation; (b) visibility projection;
(c) coverage projection; (d) self-occlusion projection

6 Projection

After defining the region of interest and initializing the corresponding descriptor
values, a propagation process is performed by projecting the values onto the view
solution space. One major assumption of the projection process is that the best
views are always located at the front of the object (i.e., normal direction). This
results in a high projected value for those views. The views with larger incident
angle (i.e., deviated from the normal direction to the object) should receive a
lower value. The projection depends on the orientation and distance of each
voxel from the viewpoint. During the projection, we try to propagate the effect
of descriptors exerted by the voxels to a solution space and the projected values
on the solution space should be an accumulated effect from different voxels. This
method is different from the conventional approaches which try to compute the
accumulated effects on each view individually. The values are projected onto
the boundaries of the volume. The six boundary planes, in the case of a cubic
volume data, become the solution space for view analysis. Each pixel on the
plane actually represents a viewpoint at a certain viewing direction from a fixed
distance to the center of the region of interest.

Instead of projecting values at all directions, we only project at the normal
directions of the ROIs. This is based on the previous assumption on the best
view. The opposite direction to the normal represents a back face to the view.
To avoid unnecessary projections and increase the efficiency of the process, only
the normal direction should be considered for each projection. Actually, the pro-
jection is similar to splatting and the projected region depends on the position
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of the source, the projection plane and also the parameters used. Unlike uni-
directional splatting, our projection direction also depends on the shape of the
object. Although the projection kernel should take the shape of the object into
account for the highest accuracy, a uniform gaussian kernel is used as it can
relieve the effort for the shape computation which is view dependent. This gives
satisfactory results in our experiments as all the voxels contribute to the final
result, and the shape can be preserved in a large extent during the propagation.

7 Solution Space and Viewpoint Selection

The propagation process terminates at the boundary of the volume. Each pixel in
the boundary planes receives values of descriptors from different projection rays
passing through it. The boundary voxels with the projected values constitute
the solution space for view selection. The feature vector (view measure) of a
boundary voxel can be represented as

v(x) = {v1, v2, . . . , vk} where vi =
1
n

n∑
j=0

Pi(j, x) (1)

vi represents the averaged projected value of descriptor i at position x. The
feature values accumulate the contributions of different voxels and each voxel
propagates view effects to different views in the solution space. By analyzing the
values in the solution space, good views can be selected according to different
visualization goals.

To allow users to select a proper view according to their preferences, we display
the feature values in the solution space by unfolding it into a plane, which we
refer to as projection map, to show the results of the propagation. To visualize
the feature vector of the map elements, the values of the view descriptors are
encoded into different color channels (e.g., RGB), as shown in Figure 3. The
vector values can also be integrated into a composite value as

I =
k∑

i=0

αivi (2)

where αi is the weight given to the descriptor vi (it may be negative for some
descriptors like visibility and occlusion to penalize such effects). The weights can
be learnt using machine learning approaches or determined by users according to
their visualization concerns. The composite value can indicate the quality of the
view at a specific viewpoint given by the corresponding boundary voxel location.
To increase the stability of the view, we apply a gaussian filter to the map.

For a volumetric dataset of size 256×256×256, the map size is 393216 and each
element of the map represents a candidate view. After the propagation process,
each element should have a vector of accumulated view descriptor values. The
view space can be interpreted as an energy function of view descriptors

f(x) = α1vvis(x) + α2vcov(x) + α3vself (x) (3)
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The optimal views can be found easily using the gradient decent-based al-
gorithm or manual selection. As the propagation is completed in one pass, the
solution space can be precomputed and all the local or even global optimals can
be obtained efficiently. Due to the complex vascular structures in the images, the
view selection process can easily lead to a local optimal solution. Our method
avoids this problem by sampling at a much higher rate and thus a global optimal
solution is more likely to be found.

8 Experimental Results

We test our method with several angiographic datasets (256 × 256 × 256) with
vascular tumors. Our method is used to select proper viewpoints for diagnosis.
The optimal view should have: 1) high visibility such that the tumor can be seen
clearly without being occluded by the vessels; 2) high coverage such that more
vessels and contextual information can be found; 3) minimum self-occlusion such
that the vessels are not obscuring each other.

(a) (b) (c)

(d) (e)

Fig. 3. Experiment on angiographic data (256 × 256 × 256): (a) coverage map; (b)
visibility map; (c) self-occlusion map; (d) combined projection map; (e) selected views

Figure 4 shows the result of our experiment. To demonstrate the effectiveness
of our method, several views are selected from the regions with high and low
values in the maps. We can see that the tumor (green in color) is always occluded
by other vascular structures in the views with high visibility value. However,
among those unoccluded views, certain views may reveal more information about
the contextual structures. Therefore, we use coverage as a criterion to select
the views which can reveal more vessels. Figure 4(d) shows that more vessels
are revealed for a higher coverage value. This can be reflected in the higher
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Fig. 4. Projection maps of visibility (a), coverage (c), self-occlusion (e) and some se-
lected views from the maps (b)(d)(f)

occupancy ratio of vessels in the images. However, the large vessels near the
tumor may not be seen clearly at certain angles due to the self-blockage. To
minimize the occlusion effect among the vessels, the self-occlusion value is also
considered, as shown in Figure 4(e). This shows that some viewpoints with high
coverage may have a severe occlusion effect. A better view can be achieved
by selecting a viewpoint with a smaller self-occlusion effect. Figure 3 shows the
projection maps of visibility, coverage and self-occlusion. Some views are selected
by considering the above criteria.

9 Conclusion

In this paper, we presented a framework for viewpoint selection for angiographic
volume. View descriptors for visibility, coverage and self-occlusion of impor-
tant structures in the data are established to address the typical concerns of
clinicians. By projecting the view descriptor values onto the projection maps,
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optimal viewpoints can be efficiently found by searching in the solution space.
The effectiveness of our method is demonstrated in the experiments on differ-
ent angiograms. Compared with conventional methods, our method can deliver a
more accurate solution by sampling at a much higher rate with less computation.
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Abstract. There is biological evidence that human actions are com-
posed out of action primitives, similarly to words and sentences being
composed out of phonemes. Given a set of action primitives and an action
composed out of these primitives we present a Hidden Markov Model-
based approach that allows to recover the action primitives in that ac-
tion. In our approach, the primitives may have different lengths, no clear
“divider” between the primitives is necessary. The primitive detection is
done online, no storing of past data is necessary. We verify our approach
on a large database. Recognition rates are slightly smaller than the rate
when recognizing the singular action primitives.

1 Introduction

There is biological evidence that actions and activities are composed out of action
primitives similarly to phonemes being concatenated into words [23, 8, 22].

In this sense, one can define a hierarchy of action primitives at the coarsest
level, and then actions and activities as the higher abstract levels where actions
are composed out of the action primitives while activities are, in turn, a com-
position of the set of actions [2, 17]1. It is an open problem how to define and
detect these action primitives. It might probably be reasonable to assume that a
particular set of action primitives can only be defined in context of the specific
application at hand.

In this paper we will deal with the recovery of the sequence of the action
primitives out of an action, when a set (or alphabet) of action primitives is
given.

In other words, if we have given an alphabet of action primitives P and if
we define a particular action to be a sequence S = a1a2a3 . . . aT of these action
primitives, then it is our interest to recover these primitives and their precise
order. This problem is closely related to speech recognition where the goal is

1 In the following, we define the term action as a sequence of action primitive of
arbitrary length.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 538–547, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



Recognizing Action Primitives in Complex Actions 539

to find the right sequences of phonemes (see Sec. 2). Once we have parsed and
detected the sequence of action primitives in the observed sequence, this sequence
of action primitives could identify the action. (In speech recognition, the sequence
of detected phonemes is used to identity the corresponding word.)

One possibility to recognize the action is to define an action-grammar for
each action, based on the action primitives as the alphabet and to use a parsing
approach for recognition, as suggested in [25, 13].

In order to take into account possible noise and imperfect data, we base our
approach on Hidden Markov Models (HMMs) [10, 18] and represent our action
primitives with HMMs.

Thus, given a set of action primitives where each action primitive is repre-
sented by an HMM and given an observed sequence S of these action primitives
where

1. the order of the action primitives and
2. the duration of each single action primitive and the position of their

boundaries

are unknown, we would like to identify the most likely sequence of action prim-
itives in the observation sequence S for subsequent parsing.

According to the biological findings, the representation for action recognition
is closely related to the representation for action synthesis (i.e. the motor repre-
sentation of the action) [23,8,22]. This motivates us to focus our considerations
in this paper to actions represented in joint space. Thus, our actions are given as
sequences of joint settings. A further justification for this approach is that this
action representation can then be used, in future work, to bias 3D body trackers
as it operates directly on the 3D parameters that are to be estimated by the 3D
tracker. The focus of this paper on joint data is without limiting generality. In
our on-going research we have applied the techniques of this paper also action
recognition based on silhouettes.

This paper is structured as follows: In Sec. 2 will will give an overview of
related work. In Sec. 3 we will discuss our approach for the HMM-based recog-
nition of the action primitives. In Sec. 4 we present our extensive experimental
results. The paper is concluded then in Sec. 5 with final comments.

2 Related Work

The recovery of phonemes in speech recognition is a closely related to our prob-
lem. In speech recognition, acoustic data gets samples and quantized, followed
by using the LPC (Linear Predictive Coding) to compute a cepstral feature set,
or by a PLP (Perceptual Linear Predictive) analysis [9]. In a later step, time
slices are analyzed. Gaussians are often used to compute likelihoods of the ob-
servations of being a phoneme [11]. An alternative way is to analyze time slices
with an Artificial Neural Network [3]. Timeslices seem to work well on phonemes
that have a very short duration. In our case, however, the action primitives have
usually a much longer duration and one would have a combinatorial problem
when considering time slices.
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When viewing other agents performing an action, the human visual system
seems to relate the visual input to a sequence of motor primitives. The neu-
robiological representation for visually perceived, learned and recognized ac-
tions appears to be the same as the one used to drive the motor control of
the body [23, 8, 22]. These findings have gained considerable attention from the
robotics community [24, 7]. In imitation learning the goal is to develop a robot
system that is able to relate perceived actions to its own motor control in order
to learn and to later recognize and perform the demonstrated actions.

In [15,14], Jenkins et al. suggest applying a spatio-temporal non-linear dimen-
sion reduction technique on manually segmented human motion capture data.
Similar segments are clustered into primitive units which are generalized into
parameterized primitives by interpolating between them. In the same manner,
they define action units (“behavior units”) which can be generalized into actions.
In [12] the problem of defining motor primitives is approached from the motor
side. They define a set of nonlinear differential equations that form a control
policy (CP) and quantify how well different trajectories can be fitted with these
CPs. The parameters of a CP for a primitive movement are learned in a training
phase. These parameters are also used to compute similarities between move-
ments. In [5,1,4] a HMM based approach is used to learn characteristic features
of repetitively demonstrated movements. They suggest to use the HMM to syn-
thesize joint trajectories of a robot. For each joint, one HMM is used. In [5] an
additional HMM is used to model end-effector movement. In these approaches,
the HMM structure is heavily constrained to assure convergence to a model that
can be used for synthesizing joint trajectories.

Generally, there is a very large body of literature on action recognition. How-
ever, only a small subset is concerned with action primitives and their detec-
tion and recognition. In [26], Vecchio and Perona employ techniques from the
dynamical systems framework to approach segmentation and classification. Sys-
tem identification techniques are used to derive analytical error analysis and
performance estimates. Once, the primitives are detected an iterative approach
is used to find the sequence of primitives for a novel action. In [16], Lu et al. also
approach the problem from a system theoretic point of view. Their goal is to
segment and represent repetitive movements. For this, they model the joint data
over time with a second order auto-regressive (AR) model and the segmentation
problem is approached by detection significant changes of the dynamical param-
eters. Then, for each motion segment and for each joint, they model the motion
with a damped harmonic model. In order to compare actions, a metric based
on the dynamic model parameters is defined. In [15, 14], Jenkins et al. suggest
applying a spatio-temporal non-linear dimension reduction technique on manu-
ally segmented human motion capture data. Similar segments are clustered into
primitive units which are generalized into parameterized primitives by interpo-
lating between them. In the same manner, they define action units (“behavior
units”) which can be generalized into actions. While most scientists concentrate
on the action representation by circumventing the vision problem, [19] takes a
vision-based approach. They propose a view-invariant representation of action



Recognizing Action Primitives in Complex Actions 541

based on dynamic instants and intervals. Dynamic instants are used as primitives
of actions which are computed from discontinuities of 2D hand trajectories. An
interval represents the time period between two dynamic instants (key poses).
A similar approach of using meaningful instants in time is proposed by Reng
et al. [21] where key poses are found based on the curvature and covariance of
the normalized trajectories. In [6] key poses are found through evaluation of
anti-eigenvalues.

3 Representing and Recognizing Action Primitives Using
HMMs

In order to approach the action recognition problem, we model each of the action
primitives P = {a1, a2, . . . , aN} with a mixture-HMM where each observation
function is a continuous Gaussian mixture with M ≥ 1 mixtures. The mixture
HMMs are trained based on demonstrations of a number of individuals. The
Gaussian mixture are able to represent the variability across individuals to allow
some degree of invariance across different individuals. The training results into
a set of HMMs {λi|i = 1 . . .N}, one for each action primitive.

Once each action primitive is represented with an HMM, the primitives can
generally simply be recognized with the classical recognition technique for HMMs
by employing a maximum likelihood or a maximum a-posteriori classifier: Given
an observation sequence Ot of an action primitive, and a set of HMMs λi, the
maximum likelihood (ML)

max
i
P (Ot|λi) (1)

identifies the most likely primitive. An alternative to the ML technique is the
maximum a-posteriori (MAP) estimate that allows to take in to account the
likelihood of observing each action primitive:

max
i
P (λi|Ot) = max

i
P (Ot|λi)P (λi) , (2)

where P (λi) is the likelihood that the action, represented by the HMM λi

appears.

3.1 Recognition with HMMs

In general, the likelihood of an observation for some HMM λi can be computed
as

P (O|λi) =
∑
S

P (O,S|λi) (3)

=
∑
S

P (O|S, λi)P (S|λi) (4)

=
∑
S

T∏
t=0

P (Ot|St, λi)
T∏

t=0

P (St|St−1, λi) . (5)
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Here, one marginalizes over all possible state sequences S = {S0, . . . , ST } the
HMM λa can pass through.

To apply this technique to our problem directly is difficult as we would need
to know when to evaluate, i.e. at what time steps t we should stop and do the
maximum-likelihood estimation to find the most likely action primitive that is
just now being observed.

Instead of keeping the HMMs distinct, our suggestion is to insert the “action”
a of the HMM λa as a random variable into Eq. (5) and to rewrite it as

P (O|a) =
∑
S

T∏
t=0

P (Ot|St, at)P (St, at|St−1, at−1) . (6)

In other words, we would like to estimate at each time step the action a and the
state S from the previously seen observations, or, respectively, the probability
of λa being a model of the observed action:

P (ST , aT |O0:T ) =
T∏

t=0

P (Ot|St, at)P (St, at|St−1, at−1) (7)

The difference in the interpretation becomes more clear when we write Eq. (7)
in a recursive fashion:

P (St+1, at+1|O0:t+1) = P (Ot+1|St+1, at+1)P (St+1, at+1|St, at)P (St, at|O0:t) .(8)

This is the classical Bayesian propagation over time. It computes at each time
step t the likelihood of observing the action at while having observed O0:t. If we
ignore the action variable at, then Eq. (8) explains the usual efficient implemen-
tation of the forward algorithm [10]. Using the random variable at, Eq. (8) defines
a pdf across the set of states (where the state vector St is the concatenation of
state vectors of each individual HMM) and the set of possible actions. The effect
of introducing the action a might not be obvious: using the action a, we do not
any more estimate the likelihood of an observation, given a HMM λa. Instead,
we compute at each time step the probability mass function (pmf) P (St, at|O0:t)
of each state and each identity, given the observations. By marginalizing over
the states, we can compute the pmf P (at|O0:t) for the action at each time step.
The likelihood P (at|O0:t) converges to the most likely action primitive as time
progresses and more data becomes available (see Fig. 1). From Fig. 1 it is ap-
parent that the pmf P (at|O0:t) will remain constant after convergence as one
action primitive will have the likelihood 1 and all other primitive likelihoods
have vanished. To properly evaluate the entire observation sequence, we apply a
voting scheme that counts the votes after each convergence and then restarts the
HMMs. The states are initialized with the present observation likelihoods and
then propagated with the transition matrix as usual. Fig. 2 shows the repeated
convergence and the restarting of the HMMs. In the example shown in Fig. 2
we have used two concatenated action primitives, denoted by the green curve
with the “+” and by the blue curve with the “o”, respectively. The first action
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Fig. 1. Shows an example for a typical behavior of the pmf P (at|O0:t) for each of the
actions a as time t progresses. One can see that the likelihood for one particular action
(the correct one in this example, marked with ”+”) converges to 1 while the likelihoods
for the others vanish.

primitive was in the interval between 0 and 51, while the second action primitive
was from sample 52 to the end. One can see that the precise time step when
primitive 1 ended and when primitive 2 started cannot be identified. But this
does not pose a problem for our recovery of the primitives as for us the order
matters but not their precise duration. In Fig. 1 a typical situation can be seen
where the observed data did not give enough evidence for a fast recognition of
the true action.

4 Experiments

For our experiments, we have used our MoPrim [20] database of human one-arm
movements. The data was captured using a FastTrack Motion capture device
with 4 electromagnetic sensors. The sensors are attached to the torso, shoulder,
elbow and hand (see Fig. 3). Each sensor delivers a 6D vector, containing 3D
position and 3D orientation thus giving a 24D sample vector at each time-step (4
sensors with each 6D). The MoPrim database consists of 6 individuals, showing
9 different actions, with 20 repetitions for each. The actions in the database
are simple actions such as point forward, point up, “come here”, “stop!”. Each
sequence consists of ≈ 60-70 samples and each one starts with 5 samples of the
arm in a resting position where it is simply hanging down.

Instead of using the sensor positions directly, we transform the raw 24D sen-
sor data into joint angles: one elbow angle, one shoulder angle between elbow,
shoulder and torso and a 3D orientation of the normal of this shoulder-elbow-
torso-triangle. The orientation of the normal is given with respect to the normal
of this triangle when the arm is in resting position. All angles are given in radians.
No further processing of the MoPrim data was done.



544 V. Krüger
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Fig. 2. Shows an example for a typical behavior of the pmf P (at|O0:t) as time t pro-
gresses. The input data consisted of two action primitives: first, action primitive “2”,
marked with “+”, then, action primitive “3”, marked with “o”. One can see that until
≈ sample 52 the system converges to action “2”, after sample 70, the system converges
to primitive 3. The length of the first sequence is 51 samples, the length of sequence 2
is 71 samples.

Fig. 3. Marks the positions of the magnetic sensor on the human body

We have carried out several different experiments:

1. In the first test, we tested for invariance with respect to the performing
human. We have trained nine HMM for nine action. Each of the HMMs
was trained on 6 individuals and all the 20 repetitions of the actions. The
recognition testing was then carried out on the remaining individual (leave-
one-out-strategy). The HMMs we use were mixture HMMs with 10 states
and 5 mixtures per state.

2. In this test, we tested for invariance with respect to the variations within the
repetitions. We have trained nine HMMs for nine actions. Each HMM was
trained on all individuals but only on 19 repetitions. The test set consisted
of the 20th repetition of the actions.

3. As a base line reference, we have tested how good the HMMs are able to rec-
ognize the actions primitives by testing action primitive sequences of length
1. Here, the HMMs were trained as explained under 2 above. This test reflects
the recognition performance of the classical maximum-likelihood approach.
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4. We have repeated the above three experiments after having added Gaussian
noise with zero mean and a standard deviation of σ = 0, σ = 0.3 and σ = 1
to the training and testing data. As all angles are given in radians, thus, this
noise is considerable.

To achieve a good statistic we have for each test generated 10.000 test actions
of random length ≤ 100. Also, we have systematically left out each individual
(action) once and trained on the remaining ones. The results below are aver-
aged across all leave-one-out tests. In each test action, the action primitives
were chosen randomly, identically and independently. Clearly, in reality there is
a strong statistical dependency between action primitives so that our recognition
results can be seen as a lower bound and results are likely to increase consider-
ably when exploiting the temporal correlation by using an action grammar (e.g.
another HMM).

The results are summarized in Table 1. One can see that the recognition rates
of the individual action primitives is close to the general base-line of the HMMs.
The recognition rates degrade with increasing noise which was to be expected,
however, the degredation effect is the same for all three experiments (identities,
repetition, baseline).

Table 1. Summarizes the results of our various experiments. In the experiments, the
training of the HMMs were done without the test data. We tested for invariance w.r.t.
identity and w.r.t. the action. The baseline shows the recognition results when the test
action was a single action primitives.

Leave-one-Out experiments

Test Noise σ Recognition Result

Identities (Test 1) 0 0.9177
Repetitions (Test 2) 0 0.9097
Baseline (Test 3) 0 0.9417

Identities (Test 1) 0.5 0.8672
Repetitions (Test 2) 0.5 0.8710
Baseline (Test 3) 0.5 0.8649

Identities (Test 1) 1 0.3572
Repetitions (Test 2) 1 0.3395
Baseline (Test 3) 1 0.3548

All actions in the action database start and end in a resting pose. To assure
that the resting pose does not effect the recognition results, we have repeated the
above experiments on the action primitives where the rest poses were omitted.
However, the recognition results did not change notably.

5 Conclusions

In this work we have presented an approach to recover the motion primitives from
an action where the motion primitives are represented with a Hidden Markov
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Model. The approach we have taken is to consider the joint distribution of the
state and the action at the same time instead of using the classical maximum
likelihood approach. The experiments show that the approach is able to suc-
cessfully recover the action primitives in the action with a large likelihood. It is
worth pointing out that in our experiments the pairwise appearance of action
primitives was statistically independent. Thus, for the recovery of the action
primitives no temporal constraints between the action primitives were used or
exploited. Temporal constraints between the action primitives are later intro-
duced at a higher level though action grammars.

In future work we will use a further HMM to learn sequences of action prim-
itives from training examples to learn such an action grammar.
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FP6-IP-027657).
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Abstract. In recent years the problem of obtaining a reversible dis-
crete surface polyhedrization (DSP) is attracting an increasing interest
within the discrete geometry community. In this paper we propose the
first algorithm for obtaining a reversible polyhedrization with a guaran-
teed performance, i.e., together with a bound on the ratio of the number
of facets of the obtained polyhedron and one with a minimal number of
facets. The algorithm applies to the case of a convex DSP when a discrete
surface M is determined by a convex body in R3. The performance esti-
mation is based on a new lower bound (in terms of the diameter of M) on
the number of 2-facets of an optimal polyhedrization. That bound easily
extends to an arbitrary dimension n. We also discuss on approaches for
solving the general 3D DSP.

Keywords: discrete geometry, reversible polyhedrization, polyhedron
decomposition.

1 Introduction

This paper deals with a problem usually known as “discrete surface/set/volume
polyhedrization” and further abbreviated DSP. In its most general form, the
problem is the following. Given a set M ⊂ Z3, find a (possibly, non-convex)
polyhedron P , such that the set of integer points contained in P is precisely M ,
i.e., P∩Z3 = M . The number f2(P ) of the 2-dimensional facets of P (2-facets, for
short) is usually desired to be as small as possible. Often, these are required to be
convex polygons; note that two adjacent polygons may be co-planar. Commonly,
the set M is a discrete surface obtained from a “digitization”1 of some (usually
unknown) set S ⊂ R3 of full dimension 3. See [5,6,7,12] for related matters.

The main motivation for studying DSP problems comes from medical imaging,
where discrete volumes of voxels result from scanning and MRI techniques. Since
digital medical images involve a huge number of points, it is quite problematic to
apply traditional rendering or texturing algorithms in order to obtain satisfactory
visualization. Moreover, one can face difficulties in storing or transmitting data of
that size. In medical imaging and other areas there are multiple sources of data
1 E.g., M = G(S), where G(S) is the Gauss discretization of a set S ⊂ R3, which is

defined as the set of all integer points that belong to S.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 548–557, 2006.
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being transmitted for many diverse uses, e.g., telemedicine, tele-maintenance,
mine detection, ATR, visual display, cueing, and others. In all these applications
the coding compression methodology used is paramount.

To overcome such kind of difficulties, one can try to transform a discrete data
set to a polyhedron P , such that the number of its 2-facets is as small as possible.
The most widely used algorithm is the marching cubes method [16] (see also [13]
for a recent application to the considered problem) that generates a triangulated
polyhedral surface in which small triangles model local configurations of voxels.
The shortcoming of this method is that the number of triangular facets in the
surface may be comparable with the number of points in the original discrete ob-
ject. Moreover, this method is not “reversible” in general, i.e., from the obtained
polyhedrization one cannot reconstruct the original discrete object.

In recent years DSP is attracting an increasing interest in discrete geometry
community and a number of papers have been devoted to it or to related mat-
ters. See [19] and the bibliography therein. Some of the proposed algorithms are
reversible. Overall, they often provide satisfactory practical solutions, although
sometimes the polyhedra appearance exhibits certain defects.2 The proposed
algorithms are all heuristic, usually based on certain greedy-type strategy. As
a rule, these are not accompanied with an estimation of their performance. In
other words, there are no results showing how far is the obtained solution from
the optimal one (i.e., a polyhedron P ∗ for which f2(P ∗) is minimal). It was re-
cently proved that the general 3D DSP problem is strongly NP-hard [4]. The
following fundamental tasks have not been addressed yet:

(A) Obtain bounds on the minimal number of polygonal facets of a polytope
P that determines a given integer set M , distinguishing between the cases
when the discretized set S is convex and when it is arbitrary.

(B) Design a reversible algorithm for DSP with a guaranteed performance (e.g.,
estimation of the ratio of the number of facets of the obtained solution and
an optimal solution).

In what follows, we cope with the above tasks. In Section 2 we present a
reversible polyhedrization algorithm in 3D. It works for an input set that appears
to be a discrete surface. The latter is determined as the set of the “surface
elements” of a discretization of a certain convex set S ⊂ R3. We also analyze the
algorithm’s complexity and performance (the latter in terms of “closeness” of the
obtained polyhedrization to the optimal one). Our analysis is based on proving
a new lower bound on f2(P ) (that easily extends to an arbitrary dimension n).
Thus, as a byproduct, we address Problem (A). In Section 3 we comment how
the algorithm from Section 2 can be used to solve the general DSP. We discuss
on possibilities of obtaining a reasonable initial polyhedrization and concern
complexity issues. We conclude with some remarks and open problems in Section
4. In obtaining our results, we rely on some well-known results in the theory of
lattice polytopes, integer programming, and discrete geometry.
2 For instance, some polygons that constitute the polyhedron facets, as well as the

polyhedron itself, may be non-convex, even for discrete sets that are discretizations
of convex bodies (such as spheres or ellipsoids).
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1.1 Some Notations

In this section we introduce some notions and notations to be used throughout
the paper. Other notations will be given in the subsequent sections.

Let S be a body in R3, i.e., a subset of R3 of full dimension dim(S) = 3. By
SZ = S ∩ Z3 we denote its Gauss discretization. (Note that SZ may be empty
for a non-empty S.)

Voxel v(p) is a unit grid cube centered at an integer point p. We denote the
union of all voxels corresponding to points from SZ by V ol(SZ) = ∪p∈SZ

v(p).
Clearly, V ol(SZ) is a rectilinear polytope (i.e., all its facets are parallel to the
coordinate axes).

By Surf(SZ) we denote the rectilinear surface of V ol(SZ). A point p ∈ SZ

will be called a surface element of SZ if at least one 2-facet of the corresponding
voxel v(x) is contained in Surf(SZ).

For a set A ⊆ R3, by diam(A) we denote its diameter defined as diam(A) =
maxx,y∈A ||x− y||, where ||.|| is the Euclidean norm. By conv(A) we denote the
convex hull of A. The interior and the boundary of a closed set A ⊆ R3 is denoted
by int(A) and bd(A), respectively.

Given a polytope P ⊂ R3, the number of its i-facets is denoted by fi(P ),
0 ≤ i ≤ 3.

2 Reversible Polyhedrization Algorithm

In this section we present and analyze a reversible polyhedrization algorithm
based on convex hull computation. It applies to convex DSP’s for which the set
S is convex.

2.1 Description of the Algorithm

We call our algorithm a reversible convex hull computation (RCH). The algorithm
naturally has two components: Forth and Back. The former takes as an input
a discrete surface M that consists of the surface elements of a certain set SZ

(where S is convex), obtained, e.g., by scan-conversion techniques.3 Forth RCH
computes the vertices and 2-facets of a convex polytope P , such that M is the
set of the surface elements of PZ. Its description is straightforward.

Forth RCH (Polyhedrization): Compute the convex hull of M .

The Back RCH takes as an input a convex polytope P given by its vertex set
f0(P ) and its 2-facet set f2(P ). It computes a set M that consists of the surface
elements of PZ.

The description of Back RCH, that is more involved than Forth RCH, is given
next. We start with some preliminaries.

First recall that a discrete plane, that appears to be a discretization of a
plane h : a1x1 + a2x2 + a3x3 + b = 0, is a set of voxels H(a1, a2, a3, b, |a|max) =
3 It can also be extracted from a discrete volume SZ by scanning each layer of it,

similar to how it is done in marching cubes algorithm (see, e.g., [14], p. 301).
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(x1, x2, x3) ∈ Z3|0 ≤ a1x1 + a2x2 + a3x3 + b+  |a|max

2 ! < |a|max

}
, where

|a|max = max(|a1|, |a2|, |a3|) (see, e.g., [1,3] for basic definitions and facts).
H(a1, a2, a3, b, |a|max) is “centered” about h and provides the best approximation
to it. Alternatively, we will also use the discrete plane H ′(a1, a2, a3, b, |a|max) ={
(x1, x2, x3) ∈ Z3|0 < a1x1 + a2x2 + a3x3 + b+  |a|max

2 ! ≤ |a|max

}
that has

analogous properties to those of H ′(a1, a2, a3, b, |a|max). The only difference is
that H ′(a1, a2, a3, b, |a|max) contains the integer points on the plane h while h′

does not. We will call H the lower and H ′ the upper discretization of h.
Note that in the continuous case the planes a1x1 + a2x2 + a3x3 + b = 0 and

−a1x1 − a2x2 − a3x3 − b = 0 coincide, while in the discrete case there might be
an ambiguity. To avoid that, we impose in our definition of discrete planes the
following “orientation” conditions: If |a| = max(|a|, |b|, |c|), then a > 0; else if
|b| = max(|a|, |b|, |c|), then b > 0; else if |c| = max(|a|, |b|, |c|), then c > 0.

A discrete plane H = H(a1, a2, a3, b, |a|max) is functional over a (discrete) co-
ordinate plane, say,H3 = Ox1x2, if for any cell (x1, x2) ∈ H3 there is exactly one
voxel (x1, x2, x3) belonging to H . The plane H3 is called a functional coordinate
plane forH and denoted πH . It is well-known (see [3]) that a discrete plane is func-
tional over at least one of the coordinate planes H1 = Ox2x3, H2 = Ox1x3, or
H3 = Ox1x2. Moreover, if, e.g., |a3| = max{|a1|, |a2|, |a3|}, then πH = H3. (If
max{|a1|, |a2|, |a3|} equals the absolute value of more than one of the coefficients,
then the discrete plane H is functional over more than one coordinate plane.)

The Back RCH algorithm calls the following procedure that is similar to one
available in more detail in [3].

Procedure A (Polygon Discretization)
Input: Space polygon F ⊂ R3 with vertices v(1), v(2), . . . , v(k) ∈ Z3, where v(i) =
(v(i)1 , v

(i)
2 , v

(i)
3 ) for i = 1, 2, . . . , k.

Output: A set I(F ) ⊂ Z3 that is a discretization of F .
Description:

1. Find a plane f : a1x1 + a2x2 + a3x3 + b = 0 containing F ;
2. Determine a lower/upper discretization H of f ;
3. Find a functional coordinate plane πH ;
4. Find the projections of v(1), v(2), . . . , v(k) onto πH (clearly, these are vertices

of a convex polygon F ′ in πH);
5. Compute the sides of F ′ and determine the set I(F ′) of integer points that

belong to the interior or the sides of F ′;
6. Generate the set I(F ) of points of H whose projections constitute the set
I(F ′).

See Fig. 1 (left and middle) for an illustration. It is not hard to realize that
Procedure A takes linear time in the number of elements of I(F ).

After this preparation, we are able to describe Back RCH. The input to the
algorithm is the set v(1), v(2), . . . , v(m) ∈ Z3 of vertices of a polytope P , and the
set of its 2-facets is given as ordered lists of vertices.
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Back RCH (Polytope Discretization)

(1) 1. Find a convex combination of P ’s vertices: v∗ = 1
m (v(1) + v(2) + . . . +

v(m)), i.e., v∗ = (v∗1 , v
∗
2 , v

∗
3), where v∗i = 1

m (v(1)i + v(2)i + . . . + v(m)
i ) for

i = 1, 2, 3. Clearly, v∗ ∈ int(P ).
2. Compute the rank of the (3×m)-matrix A = ((v(1))T − (v∗)T |(v(2))T −

(v∗)T | . . . |(v(m))T − (v∗)T ), where vT denotes the transposed vector v.
(2) (2a) If rank(A) = 1, then all points from PZ belong to a line l parallel to a

coordinate axis, e.g., of the form l : x1 = c1, x2 = c2, c1, c2 ∈ Z. We have
that conv(PZ) has only two vertices u = (c1, c2, x′3) and v = (c1, c2, x′′3),
and M = PZ = {w(c1, c2, x3) ∈ Z3, c1 ≤ x3 ≤ c2}.

(2b) If rank(A) = 2, then all points from PZ belong to a plane p that is
parallel to a coordinate plane, e.g., of the form p : x1 = c1, c1 ∈ Z. In
other words, the points of PZ = M belong to a convex plane polygon.
These can be found in O(|M |) time (see [3] for a similar procedure).

(2c) If rank(A) = 3, then perform the following steps:
1. For every facet F ∈ f2(P ) do:

Let f : a1x1 + a2x2 + a3x3 + b = 0 be the plane determined by F .
Case 1: If a1v

∗
1 + a2v

∗
2 + a3v

∗
3 + b < 0, then consider the linear

constraint f1 : a1x1 + a2x2 + a3x3 + b−  |a|max
2 ! ≤ |a|max.

Case 2: If a1v
∗
1 + a2v

∗
2 + a3v

∗
3 + b > 0, then consider the linear

constraint f2 : a1x1 + a2x2 + a3x3 + b+  |a|max
2 ! ≤ |a|max.

(Since v∗ ∈ int(P ), equality a1v
∗
1 +a2v

∗
2 +a3v

∗
3 +b = 0 cannot hold.)

2. Determine the polytope P ′ formed by the obtained linear constraints.
3. Let F ′ be a facet of P ′. If F ′ has been obtained within Case 1 (resp.

Case 2), then call Procedure A to find its upper (lower) discretization.
When F ′ runs over all facets of P ′, we obtain the target set M consisting
of the surface elements of PZ.

C
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Fig. 1. Left: A 2D discrete triangle determined by the points A(1, 5), B(−5,−2), and
C(5,−5). The triangle border consists of the three discrete line segments determined
by pairs of vertices of the continuous triangle. Middle: A 3D discrete triangle with
vertices A(1, 5, 4), B(−5,−2, 0), and C(5,−5,−2). Its projection onto the coordinate
plane Oxy is the 2D discrete triangle on the left. The border voxels corresponding to
the border pixels of the 2D discrete triangle are in dark gray. Right: Discrete triangular
mesh with vertices A(1, 5, 4), B(−5,−2, 0), C(5,−5,−2), D(8, 2, 0).
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It is not hard to realize that the described method is reversible in both di-
rections, i.e., we have that: (i) Consecutive application of Forth and Back RCH
to a set M (with the properties described above) will result into the same set
M , and (ii) Consecutive application of Back and Forth RCH to a polytope P
with integer vertices will result into the same polytope P . Details are left for the
full-length journal version of the paper.

Remark 1. Since the set of integer points contained in a polytope P does not
need to be connected [14], it is clear that the set of the surface elements of
the discrete volume contained in P is not necessarily tunnel-free4. Conditions
under which a mesh of discrete polygons (Fig. 1, right) is tunnel-free are studied
in [3].

2.2 Bounds on the Number of Facets

It is not hard to realize that if in the DSP formulation S (and thus also M) is
an arbitrary set, then a bound fi(P ) = Θ(|M |) holds, where |M | denotes the
cardinality of setM (see Fig. 2). Problem (A) becomes nontrivial if S is a convex
set, that is the case we consider next.

1 2 3 k − 2 k−1 k

Fig. 2. Example in 2D with |M | = 6k − 2 and fi(P ) = 4k − 2

To state what we need, let C(D) be the family of convex bodies with C2

boundary and radius of curvature at every point and every direction between
1/D and D, where D ≥ 1. Now let S ∈ C(D) and 0 ∈ S. Let P = conv(SZ).
Clearly, PZ = SZ and conv(PZ) = conv(SZ) = P . Let P ∗ be a convex poly-
tope with a minimal number of 2-facets, such that P ∗

Z
= PZ = SZ. Then,

conv(P ∗
Z
) = P . Denote dP = diam(P ), dP∗ = diam(P ∗), and dS = diam(S).

Clearly, diam(P ) ≤ diam(P ∗) and diam(P ) ≤ diam(S). It is easy to see
that any of the relations diam(P ∗) < diam(S), diam(P ∗) = diam(S), and
diam(P ∗) > diam(S) is possible. In what follows, we will suppose that these di-
ameters are sufficiently large. We will show that there exists a constant α, such
that f2(P )

f2(P∗) ≤ α.log2(1 + dP∗), i.e., the number of facets of the solution provided
by Forth RCH algorithm is within a factor α. log2(1 + dP∗) from the optimal
solution. In the proof we will use the following well-known facts.

4 Here we assume the common notions of a tunnel and tunnel-freedom, known from
the classical topology, applied to the polyhedron V ol(SZ).
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Lemma 1. Let P and P ′ be bounded polytopes with vertices v1, v2, . . . , vk and
v′1, v

′
2, . . . , v

′
k, respectively. If ||vi−v′i|| < ε, where ε is a sufficiently small positive

real number, then P and P ′ have the same number of k-facets (0 ≤ k ≤ 2).

This last fact, that can be classified as belonging to the mathematical folklore,
easily follows from theory of polyhedra (see, e.g., [17]). It implies that, given a
polytope P , there is a rational polytope P ′, to which the conditions of Lemma 1
apply. Thus in what follows, one can assume that both convex polytopes P and
P ∗ are rational.

Lemma 2. [2] Let K ∈ C(D) and K̄ = conv(K ∩ Zn). Then for every n ≥ 2
there are positive constants c1(n) and c2(n) depending only on n, such that for
all k ∈ {0, 1, . . . , n−1}, c1(n)dn n−1

n+1 ≤ fk(K̄) ≤ c2(n)dn n−1
n+1 , where d = diam(K)

is sufficiently large. In particular, for n = 3, we have

c1d
3/2 ≤ fk(K̄) ≤ c2d3/2, (1)

for some positive constants c1 and c2.

Lemma 3. [8] Let Q = {x ∈ Rn : Ax ≤ b, A ∈ Rm×n,b ∈ Zm}. Consider the
polytope conv(QZ) and denote by V (A,b) the set of its vertices. Then V (A,b) ≤
c(n)m�n/2� logn−1(1+d), where d = maxx,y∈Q maxj=1,2,...,n |xj − yj | and c(n) is
a positive constant depending only on n. In particular, for n = 3, we have

V (A,b) ≤ c.m log2(1 + d). (2)

for some positive constant c.

Clearly, Lemma 3 holds also if d is defined by the Euclidean metric.
Estimation of Forth RCH performance is implied by the following theorem

that provides a lower bound on the number of facets of P ∗.

Theorem 1. There is an absolute constant c, such that

f2(P ∗) ≥ c d
3/2
S

log2(1 + dP∗)
≥ c d

3/2
P

log2(1 + dP∗)
.

Proof. From (1) we have that there exist c1, c2 > 0 such that c1d3/2 ≤
fk(P ) ≤ c2d

3/2. Denote for short m = f2(P ), m∗ = f2(P ∗), v = f0(P ), and
v∗ = f0(conv(P ∗

Z
)). Clearly, v = v∗. We have

m∗ ≤ m ≤ c2d3/2
S . (3)

Multiplying by c1
c2

both sides of the last inequality in (3) and using once again

Lemma 2, we obtain c1
c2
m ≤ c1d

3/2
S ≤ v. Now, keeping in mind Lemma 1, from

(2) we obtain v = v∗ ≤ c′m∗ log2(1+dP∗) and thus c1d
3/2
S ≤ c′m∗ log2(1+dP∗),

where c′ is a positive constant. From here we obtain consecutively

m∗ ≥ c′′ d
3/2
S

log2(1 + dP∗)
,
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and

m∗ = f2(P ∗) ≥ c d
3/2
S

log2(1 + dP∗)
≥ c d

3/2
P

log2(1 + dP∗)
,

for some positive constants c′′ and c, respectively. ��
From Theorem 1 we immediately obtain the following corollaries.

Corollary 1. There is a constant α2 ∈ Z+, such that f2(P )
f2(P∗) ≤ α2 log2(1+dP∗).

If S is a sphere, then there are constants λ1, λ2 ∈ R+ such that d = diam(S) =
λ1 diam(P ) = λ2 diam(P ∗). Then we obtain

Corollary 2. Let S be a sphere in R3 with a radius r. Then there are constants
β2, β

′
2 ∈ Z+, such that f2(P ∗) ≥ β2

r3/2

log(r+1) and f2(P )
f2(P∗) ≤ β′2 log2(r + 1).

Remark 2. It is not hard to realize that the result of Theorem 1 easily generalizes
to higher dimensions. More precisely, one can show that for every n ≥ 2 there is
a constant c(n) depending only on n such that

fn−1(P ∗) ≥ c(n) d
n(n−1)

(n+1)�n/2�
S

log
n−1
�n/2� (1 + dP∗)

≥ c(n) d
n(n−1)

(n+1)�n/2�
P

log
n−1
�n/2� (1 + dP∗)

. (4)

For n = 3, (4) provides the result of Theorem 1 and its corollaries. In the case
when S is a disc in R2 with a radius r, (4) implies that there are constants
β1, β

′
1 ∈ Z+, such that f1(P ∗) ≥ β1

r2/3

log(r+1) and f1(P )
f1(P∗) ≤ β′1 log(r + 1). These

last two inequalities have been recently obtained in [9].

2.3 Complexity

The complexity of Forth RCH matches the complexity of convex hull compu-
tation. It is well-known that in arbitrary dimension n finding the convex hull
of m points of Rn takes at worst O(m� n

2 �+1) + O(m�n
2 � logm) time [18]. Then,

in dimension three, the complexity of Forth RCH is O(|M |2). Since Back RCH
involves convex hull computation, its time complexity is analogous to the one of
Forth RCH.

3 Towards Solution of the General DSP

In this section we propose an approach for solving DSP in its general form when
S is an arbitrary body in R3. The algorithm consists of three phases:

1. Obtaining an initial polyhedrization of M , that, in general, will be a non-
convex polyhedron Q.

2. Partitioning Q into convex polytopes.
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3. Applying the algorithm from Section 2 to each of the convex polytopes ob-
tained in Phase 2.

Phase 1: Obtaining an Initial Polyhedrization. The objective here is to
obtain a polyhedron with a comparatively small number of 2-facets, which can
be decomposed into a comparatively small number of convex polytopes.

One possible approach is to use the well-known marching cubes algorithm
[16]. However, a polyhedron obtained this way has, as a rule, a great number
of small 2-facets. Moreover, in general, this algorithm is not reversible and the
obtained polyhedrization may not be hole-free (see discussion in [19] as well as
pp. 301-303 of [14]).

Another starting point may be the rectilinear polyhedron V ol(SZ). However,
in practice such polyhedra feature a great number of notches (locations causing
non-convexity5). This may result in a very large number of “small” convex poly-
topes in the convex decomposition of Phase 2. Note that in dimension three, the
optimization decomposition problem is NP-complete [10].

Another possible approach follows from [19]: Apply the algorithm from [19]
to partition the discrete surface into discrete polygonal patches, then for each
discrete patch construct the corresponding (possibly non-convex) polygon. The
second step of the above procedure is not readily available in [19], so its realiza-
tion is seen as a further task.

Phase 2: Polyhedron Decomposition. Given a non-convex polyhedron ob-
tained in Phase 1, our task is to decompose it into an as small as possible
number of convex polytopes. It has been shown that the optimization version
of this problem is strongly NP-hard [15]. Therefore, it makes sense to look for
an approximation solution to it. For this, one can use, e.g., the algorithm of
Hershberger and Snoeyink [11] that provides decomposition into O(r2) convex
polytopes in O(nr + r

7
3 ) time, where n and r are the number of edges and the

number of notches of Q, respectively.

4 Concluding Remarks

In this paper we proposed an algorithm for obtaining a reversible discrete surface
polyhedrization for a set of voxels contained in a convex body. We also provided
time complexity bounds for the algorithm as well as a bound on its performance
in terms of the diameter of M . An open question is whether the obtained per-
formance bound is tight. Obtaining similar bounds for the case of an arbitrary
discrete volume is another challenging task.
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Abstract. The goal of our research is to robustly reconstruct general
3D scenes from 2D images, with application to automatic model gener-
ation in computer graphics and virtual reality. In this paper we aim at
producing relatively dense and well-distributed 3D points which can sub-
sequently be used to reconstruct the scene structure. We present novel
camera calibration and scene reconstruction using scale-invariant feature
points. A generic high-dimensional vector matching scheme is proposed
to enhance the efficiency and reduce the computational cost while finding
feature correspondences. A framework for structure and motion is also
presented that better exploits the advantages of scale-invariant features.
In this approach we solve the “phantom points” problem and this greatly
reduces the possibility of error propagation. The whole process requires
no information other than the input images. The results illustrate that
our system is capable of producing accurate scene structure and realistic
3D models within a few minutes.

1 Introduction

The possibility of being able to acquire 3D information from 2D images has at-
tracted considerable attention in recent years. It offers promising applications
in such areas as archaeological conservation, scene-of-crime analysis, architec-
tural design, movie post-processing, to name but a few. The idea of automatic
reconstruction from images is intriguing because, unlike other techniques which
usually require special devices to obtain the data (e.g. laser scanner, ultrasound),
the digital images are readily available. Although reconstructing 3D models from
2D images is a very difficult problem, recent years have seen several theoretical
breakthroughs, and a few systems have already been built. However, most of the
systems only work under restrictive conditions, and are not readily applicable
to more general cases.

One of the most important stages of scene reconstruction is structure from
motion (SfM), which determines the camera poses and scene structure based
on image information alone. Feature points are first extracted from each input
image, and they are tracked to provide information about the relations between
the images. Therefore, feature extraction and tracking act as a starting point for
scene reconstruction, and their performance largely determines the overall relia-
bility of the reconstruction algorithm. Two of the most popular feature tracking

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 558–568, 2006.
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algorithms are the Harris corner detector [1] followed by Sum of Squared Differ-
ence (SSD) matching [2, 3, 4, 5], and the Kanade-Lucas-Tomasi (KLT) tracker
[6, 7]. These algorithms work well when the baseline (i.e. viewpoint change be-
tween images) is relatively small and the appearance of the features doesn’t
change much across subsequences. However, this condition does not hold when
the input data is a sequence of “sparse” images instead of a “dense” video stream,
or where the appearances of the features change significantly with respect to the
viewpoint. Therefore, a more robust feature tracking method is desirable to form
a good foundation for the scene reconstruction problem.

The Scale Invariant Feature Transformation (SIFT), first proposed by Lowe[8,
9], extracts distinctive features which act as descriptors of local image patches.
These features are largely invariant to image scale and rotation, and partially in-
variant (i.e. robust) to affine distortion, change in 3D viewpoint, addition of noise
and change in illumination. SIFT has become well-accepted by the computer vi-
sion community. A recent evaluation by Mikolajczyk and Schmid [10] suggested
that the SIFT-based descriptors performed the best among many other local de-
scriptors, in terms of distinctiveness and robustness to various changes in viewing
conditions. Successful applications of the SIFT algorithm have been reported in
the areas of object recognition [8, 9], panorama stitching [11] and augmented
reality [12].

Due to the invariant properties of SIFT, it can potentially tackle the problem
of wide baseline matching and matching between significantly changing features.
There is, however, very little literature about the application of SIFT in such
areas as camera calibration and scene reconstruction. A similar but different
work to ours is by Gordon and Lowe [12], where SIFT features are extracted
and matched to relate any two images from an image sequence. In this paper
we propose a more complete algorithm for SIFT feature matching and SfM
computation. Our system is different from others in that we not only use SIFT
features for camera pose estimation, but also their reconstructed 3D positions
for scene analysis.

The rest of the paper is organised as follows: Section 2 introduces a new fea-
ture matching algorithm based on SIFT, which improves the efficiency without
compromising its accuracy. Section 3 discusses a novel framework for SfM, with
the advantage that it can match features from non-adjacent images, thus solv-
ing the problem of “phantom points” and making the system less prone to error
propagation. Section 4 shows some experimental results to validate our method
and Section 5 concludes our work.

2 A New Approach for SIFT Feature Matching

2.1 Related Work

The SIFT algorithm computes, for each keypoint, its location in the image as
well as a distinctive 128-dimension descriptor vector associated with it. Matching
a keypoint to a database of keypoints is usually done by identifying its nearest
neighbour in that database . The nearest neighbour is defined as the keypoint
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with minimum Euclidean distance to the descriptor vector. To reduce the number
of spurious matches, the ratio R of the distance of the closest neighbour D to
that of the second closest neighbour D′ is computed. The matches with a ratio
greater than a certain threshold (0.8 is suggested by Lowe) are discarded.

Due to the high dimensionality of the keypoints, the matching process is rela-
tively expensive. The naive exhaustive search has a complexity of O(nmd) where
n is the number of keypoints in the database, m is the number of keypoints to
be matched, and d is the dimension of the descriptor vector. The best algo-
rithms, such as a k-d tree, provide no speedup over exhaustive search for more
than about 10 dimensional spaces [9]. Therefore, two approximate matching al-
gorithms have been proposed, namely Best-Bin-First(BBF) [13] and PCA-SIFT
[14]. The BBF algorithm is very similar to the k-d tree algorithm, except that
the BBF algorithm restricts the search step so that it sets an absolute time limit
on the search. As a result, the BBF algorithm returns a nearest neighbour at a
high probability. However, our experiment shows that as the number of keypoints
and the dimension increases, the BBF algorithm provides no significant speedup
over the standard matching method. PCA-SIFT, on the other hand, reduces the
dimensionality based on Principal Component Analysis. Both algorithms incur
a certain amount of loss of correct matches. In our system SIFT is applied to
act as a starting point for structure & motion and camera calibration, so it is
desirable that the data is as noise-free as possible.

2.2 Problem Specification

A formal specification of the matching problem is first outlined. Suppose we have
in the database n points P = {P0,P1, ...,Pn−1}, each of which comprises of a
d dimensional descriptor vector [V0, V1, ..., Vd−1]. We want to match m points
P′ = {P′

0,P′
1, ...P′

m−1}, each with a descriptor vector of the same dimension
[V ′

0 , V
′
1 , ..., V

′
d−1], to the database, in order to obtain a set of matched pairs

S = {(P,P′) | P ↔ P′,P ∈ P,P′ ∈ P′}. A matched pair (Pi,P′
j) has the

property that Pi is the nearest neighbour of P′
j in the database P, i.e. ,

∀Pk ∈ P D(Pi,P′
j) ≤ D(Pk,P′

j) (1)

where D(Pi,P′
j) is the Euclidean distance between the two descriptor vectors

associated with the two keypoints. Furthermore, if Pk is the second nearest
neighbour to P′

j in the database, then another constraint should be satisfied
that

D(Pi,P′
j) / D(Pk,P′

j) ≤ thr (2)

where thr is the threshold value, normally 0.8. This thresholding is designed to
make sure that the match is distinctive enough from other possible matches, so
as to discard many spurious matches.

2.3 The Algorithm

Here we present a new method which improves the efficiency without compromis-
ing its accuracy. Our algorithm first performs a Principal Component Analysis
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(PCA) on the two sets of keypoints P and P′, or more specifically, on the descrip-
tor vectors associated with them. PCA is essentially a multivariate procedure
which rotates the data such that maximum variabilities are projected onto the
axes. In our case, the descriptor vector sets

V = {(V i
0 , V

i
1 , ...V

i
d−1) | Pi ∈ P} (3)

V′ = {(V ′j
0, V

′j
1, ...V

′j
d−1) | P′

j ∈ P′} (4)

are transformed into

V̂ = {(V̂ i
0 , V̂

i
1 , ...V̂

i
d−1) | Pi ∈ P} (5)

V̂′ = {(V̂ ′j
0, V̂

′j
1, ...V̂

′j
d−1) | P′

j ∈ P′} (6)

with V̂0 and V̂ ′
0 representing the dimension of the greatest amount of varia-

tion, V̂1 and V̂ ′
1 representing the dimension of the second greatest amount of

variation, and so on.
The next step is that for every keypoint P′

j in P′, two initial full Euclidean
distances between P′

j and the first two elements in P, P0 and P1, are computed.
These initial distances, D(P′

j ,P0) and D(P′
j ,P1), are compared, with the smaller

one assigned to the nearest distance Nd, and the bigger one assigned to second
nearest distance Snd.

After the initialisation, the comparison continues, but without the necessity
to compute the full Euclidean distance for each keypoint in P. Suppose now
we want to test the keypoint Pi and see whether it is a nearer neighbour to
P′

j than the current nearest one. We start by computing the difference of the

vector in the first dimension D2 ← (V̂ ′j
0 − V̂ i

0 )2, and compare it with the nearest
distance squared Nd2. If D2 ≥ Nd2, which indicates that Pi cannot become the
nearer neighbour, then it is unnecessary to compute the rest of the dimensions.
If D2 < Nd2, then the process continues by adding the difference of the vec-
tor in the second dimension, D2 ← D2 + (V̂ ′j

1 − V̂ i
1 )2. The aim of this method

is to avoid unnecessary computations in the dimensional space, i.e., to more
quickly discard any keypoint which is unlikely to be the nearest neighbour. If,
after going though all the dimensions d, D2 < Nd2 still holds, then we iden-
tify Pi as the new nearest neighbour by assigning Nd to Snd, and assigning D
to Nd.

The process continues until it reaches the end of the list Pn−1. The final
stage is to compute the ratio R of the distance of the nearest neighbour Nd
to that of the second nearest neighbour Snd: R = Nd/Snd. If R is below a
certain threshold thr, then the matched pair is added to the set S, otherwise
there is no reliable match. The role PCA plays here is to re-arrange the order
of the dimensions so that the ones with larger variation come before the ones
with smaller variation. This allows this algorithm to execute more quickly, i.e.
to discard faster the keypoint which is not the nearest neighbour.
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2.4 Experimental Results

We use an experimental setup where we match 2 sets of keypoints of same size.
This assumption is valid when the SIFT algorithm is applied to camera calibra-
tion, in which case the number of keypoints detected for each frame does not
vary very much. The number of keypoints is in a range from 250 to 4000. We
use Pollefeys’ Castle sequence [15] to illustrate the algorithm. Two images are
randomly selected from the Castle Sequence, from which the SIFT algorithm
can detect up to around 4200 keypoints for each image. Then a random subset
of the detected keypoints is selected and matched using the standard exhaustive
search algorithm as well as our new algorithm. In this experiment 8 different
image pairs are tested, and each pair is matched 3 times with a certain number
of keypoints selected. The average time spent on keypoint matching is compared
and the result is shown in Figure 1. The result suggests that for the cases where
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Fig. 1. Efficiency comparison between the standard exhaustive search algorithm and
our improved algorithm

the number of keypoints is less than 1000, the performance of our algorithm is
only slightly worse than the standard algorithm. This is because the PCA com-
putation in our algorithm introduces an overhead, which offsets the speedup for
modest point sets. However, our algorithm significantly outperforms the original
one when the number of keypoints exceeds 3000. Therefore, our algorithm is
ideal for a large keypoint database, as it greatly improves the efficiency while
preserving the accuracy.

3 A Novel Framework for Structure from Motion

3.1 The “Phantom Points” Problem

The classical SfM only relates an image to the previous one. It is implicitly assumed
that once a point is out of frame or occluded, it will not reappear. Although this
is true for many sequences, the assumption does not always hold. Imagine a cer-
tain point becomes occluded for several frames in the middle of the sequence, but
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becomes visible again for the rest of the sequence. The classical SfM method will
generate two different 3D points although they are supposed to be the same 3D
point. Here we coin the term phantom points, referring to points which the algo-
rithm generates, but which do not really exist separately. The “phantom points”
problem has so far not been properly addressed in the computer vision literature.
Unfortunately, the problem often occurs in real image sequences, where there are
foreground occlusions, or the camera moves back and forth.

3.2 A New Framework for SfM

We start by extracting the keypoints from the first image and inserting them
into a list of vectors. Each keypoint P has three properties associated with it:
its location in the image, coord, its feature vector, fvec, and the frame number
of the image which it is from, fnum. After inserting the keypoints of the first
image, the list is illustrated in Figure 2(a) (with fnum marked):

(a) (b)

Fig. 2. (a): Adding the first frame: (1) Features are extracted with SIFT, each of which
contains the information of its location in the image coord, its feature vector fvec, and
the frame number of the image which it is from fnum. Here only fnum is illustrated;
(2) The keypoints are inserted at the back of the list. (b): Adding the second frame:
(1) Features are extracted, which are matched to the list; (2) For those which find a
match, we extend the vector and move the pair (3) to the front of the list; (4) For those
which cannot find a match, we insert them at the front of the list.

The keypoints from the second image are extracted and matched with the
method described in Section 2.3. For those which do not match any keypoints
in Frame 0, we simply insert them at the front of the list. For those which do
match, we extend the vector and move the pair to the front of the list, which is
illustrated in Figure 2(b).

From the matched pairs a fundamental matrix F is computed. Based on F,
spurious matches (the ones which do not adhere to the epipolar constraint)
are detected. The false matches are, however, not removed from the list as in
traditional methods. Instead, false matches are split: we remove the last item
from the vector and insert it at the front of the list (See Figure 3(a)). This
way the keypoints that SIFT detects are utilised to the maximum: the falsely
matched keypoints are given another chance to match the keypoints from later
frames.
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(a) (b)

Fig. 3. (a): Rejecting outliers: outliers are detected based on the computed fundamen-
tal matrix F. If a pair is detected as an outlier, then the algorithm (1) removes the
unmatched features and (2) insert it at the front of the list. (b) Adding the third frame:
(1) Features are extracted, and (2) matched to the last item of each vector. Note that
the keypoints from Frame 2 can be matched to both those from Frame 1 and those
from Frame 0.

The initial poses and structure are computed the same way as the traditional
method. When a new view is available, the extracted keypoints are compared
to the last item of each vector in the list. Again the outliers are “discarded”
by splitting the matches rather than removing them. Figure 3(b) shows, as an
example, the status of the list after adding Frame 2. Note that the keypoints from
Frame 2 can be matched to both those from Frame 1 and those from Frame 0.
This is important because the matching is no longer restricted to adjacent frames.
The framework described here natively solves the “phantom points” problem.

4 Experimental Results

Our SfM framework has been tested with the dinosaur sequence [16] (see Fig-
ure 5(b)) from the Robotics Group, University of Oxford. Our work is different
from theirs [16] in that we do not require any prior knowledge of the input se-
quence, i.e. we do not need to know whether it is a turntable sequence or not.
To provide a comparison, we first reconstruct the sequence with the traditional

(a) (b)

Fig. 4. Comparison of the reconstruction with the traditional method and our method
(view from the top). (a): With the traditional method, severe “phantom points” lead
to misalignment of the tail. (b): There are no “phantom points” with our method; thus
the shape of the tail is consistent.
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(a) (b)

Fig. 5. Image sequences used in the comparison of the reprojection error. (a) Castle
sequence, 3 samples of 28 images; (b) Dinosaur sequence, 3 samples of 37 images.
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Fig. 6. Comparison of mean reprojection error between subsequence merging and our
method: (a) Castle sequence and (b) Dinosaur sequence

(a) (b) (c) (d)

Fig. 7. Meshed model of the Dinosaur sequence: (a)front view, (b)side view, (c)top
view and (d)back view. The model comprises of more than 6000 robustly tracked and
well-distributed 3D points. With our system the whole reconstruction process (from
the initial input images to the final output model) requires less than 10 minutes.

method, where the features from current frame only relate to the previous adja-
cent frame. To better illustrate the reconstruction of feature points, we generate
a novel view from the top of the dinosaur. From Figure 4(a) it is obvious that
this method suffers from the “phantom points” problem: the tail of the dinosaur
exhibits slight misalignment, although the dinosaur is supposed to have only one
integral tail. Note that the misalignment effect is exaggerated by error propaga-
tion in camera auto-calibration. The sequence is then tested with our new SfM
framework, where features from current frame are matched to those from all the
previous frames, and the result is shown in Figure 4(b).

Quantitative assessment was carried out to validate the advantages of our
proposed SfM framework. Two publicly available image sequences were chosen:
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(a)

(b) (c)

(d) (e)

(f) (g)

Fig. 8. (a) A challenging test case consisting of 9 images, each of which is 1024 × 679
in resolution. This small set of images involve complicated camera movements includ-
ing scaling and wide baseline translation. The surface point reconstruction viewed (b)
from the front and (c) from the top illustrates that our system performs well in linking
the widely separated frames into a consistent scene structure. In (d) a reference image
is selected and a textured model is viewed from the front. We move the viewpoint to
somewhere very different from the original ones and a novel view is shown in (e) from
the very left and (f) from the top (textured with a different reference image). The
straightness of lines demonstrates the accurate recovery of the depth information. We
further analyse the quality of reconstruction by super-imposing the triangular meshes
onto the textured model. The zoomed-in details are shown in (g). Meshes are more
refined in complicated areas than in plain areas. This is desirable because the compu-
tational resources are better distributed, biasing towards fine recognisable details in
both scene reconstruction and model rendering. The reconstruction finishes within 5
minutes on a 2GHz processor.
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the Castle sequence [15] (see Figure 5(a)) and the Dinosaur sequence [16] (see
Figure 5(b)). A commonly used criterion to analyse the quality of reconstruc-
tion is the “reprojection error”, which is the geometric Euclidean distance (or L2

norm) between the projection of the reconstructed 3D point and the measured
image point. In our experiments the mean reprojection error for all the recon-
structed 3D points is used as an indication for the quality of the SfM methods.
Our results are compared to the results using subsequence merging [17, 18].

Even though the subsequence merging technique performs well in constraining
the overall mean reprojection error, it still shows moderate signs of error propa-
gation. Results in Figures 6(a) and 6(b) suggest that our method is significantly
less prone to error propagation compared to the subsequence merging technique.
It is also interesting to see that our method performs surprisingly well for the
Dinosaur sequence, considering the fact that it is a turntable sequence involving
frequent self-occlusions. The ability to relate non-adjacent frames is important
for pose estimation, as it results in projection matrices in a more consistent
projective framework.

Figure 7 shows the reconstructed model of the Dinosaur sequence. Our system
recovers 6105 surface points which are subsequently meshed using Cocone[19].
Several views are taken from positions very different from the original viewpoints
and the results indicate that the model structure is accurately reconstructed. The
whole reconstruction process requires no user intervention and finishes within
10 minutes on a 2GHz processor. Our system was further tested with photos
taken with a Nikon D70s digital camera. Figure 8 shows our reconstruction of a
sculptured memorial.

5 Conclusions and Future Work

We have presented a scene reconstruction system based on scale-invariant feature
points. Our system is carefully designed such that the features from non-adjacent
frames can be matched efficiently. We solve the “phantom points” problem and
greatly reduce the chance of error propagation. Experimental results show that
relatively dense and well-distributed surface points can be recovered. Our system
assigns refined and detailed meshes to complicated areas, but coarse and simple
meshes to plain areas. This is desirable because the computational resources
are better distributed, biasing towards fine recognisable details in both scene
reconstruction and model rendering.

Future work includes a more sophisticated meshing scheme and inclusion of
edge information to better represent the scene structure.
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Abstract. An algorithm for surface fitting to curves with energy control
is proposed in this paper. Given four boundary curves and a set of unor-
ganized curves, we impose the constrained energy on the desired surface,
and covert the minimum energy problem into a linear equation system
of the control points of the surface. We prove that there is one unique
solution of this equation system. The proposed algorithm is independent
of the coordinate system, and experience shows that the resultant surface
is fair.

1 Introduction

B-spline surfaces play an important role in Computer Aided Geometric Design
(CAGD) [1,2]. There are various methods to construct a B-spline surface by fit-
ting a set of B-spline curves [3,4,5]. Unfortunately, most of the existing methods
require that the curves are in order. A novel algorithm for fitting a B-spline sur-
face from a set of unorganized curves is proposed by Maekawa et al. [6]. Maekawa
et al.’s algorithm needs the input of four boundary curves, and a set of unor-
ganized curves that can take arbitrary orientation and possibly intersect each
other. The main idea of the algorithm is as follows.

Firstly, a Coons surface is constructed by interpolating four boundary curves.
Then the parametrization of each unorganized curve can be obtained by project-
ing itself onto the surface. Assuming that the curves are all on the final surface,
they derive a linear equation system of the control points of the surface. The
fitted surface can be obtained simply by solving the linear equation system.

Due to the local support property of B-spline, the matrix of the equation
system is often singular when the distribution of the input curves is sparse or
non-uniform. In this case, Maekawa et al. [6] use Singular Value Decomposition
[7] (SVD) to get one of the solution of the equation system in the least square
sense. However, their method may fail to get a satisfactory surface since it doesn’t
consider the geometry and physical character of the surface. Ferguson et al. [8]
employ the null space of A (i.e., the space that satisfies AX = 0) which is
the matrix of the equation system in the singular case. Their algorithm selects
a component from the null space to obtain a surface with a second derivative
whose square integrated over the domain is minimized. Unfortunately, Ferguson
et al. do not give a method to solve this optimization problem, and they do not
prove that their algorithm can get one unique solution either. In fact, the square

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 569–578, 2006.
c© Springer-Verlag Berlin Heidelberg 2006



570 W.-K. Wang et al.

integrated over the domain is a kind of energy. The constrained energy is widely
used in surface modeling to control the shape of the surface or to fair the surface
[9,10]. In this paper, we impose a more general constrained energy on the surface
to be fitted to improve the fairness of the surface. Compared with the method
proposed in Ref. [6], the user can get more degrees of freedom to control the
shape of the fitted surface.

The major contributions of our work are as follows.

- We provide a linear equation system of the control points of the surface to
be fitted for minimizing the energy of the surface.

- We prove that there is one unique solution of the equation system.
- With the constrained energy, the fitted surface is fairer than the surface

obtained by the SVD method as proposed in Ref. [6] in most cases, and it is
independent of the coordinate system.

2 The Energy of a B-Spline Surface

A B-spline surface is defined as

S(u, v) =
m∑

i=0

n∑
j=0

Ni,p(u)Nj,q(v)Pi,j , (1)

where Ni,p(u) is the ith B-spline basis function of p-degree in u direction and
Nj,q(v) is the j th basis function of q-degree in v direction. Pi,j are the control
points of the surface.

In this paper, we use the energy proposed in Ref. [9]. The energy formula is

e =

1∫
0

1∫
0

⎛⎜⎜⎜⎜⎜⎜⎜⎝
α1,1

(
∂S
∂u

)2

+ α2,2

(
∂S
∂v

)2

+β1,1

(
∂2S
∂u2

)2

+ β2,2

(
∂2S
∂v2

)2

+2α1,2
∂S
∂u

∂S
∂v

+ 2β1,2

(
∂2S
∂u∂v

)2

⎞⎟⎟⎟⎟⎟⎟⎟⎠
dudv. (2)

This kind of energy considers the geometric property and the elastically defor-
mation of the surface. Generally speaking, by minimizing the above energy of
the surface, we will build a shape which naturally attempts to resist stretching
and bending so that the fairness of the fitted surface will be good [9]. The co-
efficients in Formula(2) represent for the material characteristic of the surface.
We set α1,2 = 0 and other coefficients are all larger than zero. In this setting,
we can get the following theorem.

Theorem 1. The energy of a surface is no less than zero, and is equal to zero
if and only if every control point of the surface equals to each other.
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Proof. We know that the energy of a surface can’t be negative from the setting

of the coefficients of the energy. If the energy is equal to zero, we get
∂S
∂u

= 0

and
∂S
∂v

= 0 from Formula(2), which means that the surface S(u, v) = C, where
C is a constant point. That is, the energy of a surface is equal to zero if and only
if the surface degenerates into a point, which means that every control point of
the surface equals to each other. ��

3 The Optimization Problem and Its Solution

3.1 The Overview of the Algorithm

We summarize the algorithm for surface fitting proposed in Ref. [6] as follows.
The input of the algorithm is four boundary curves and a set of unorganized
curves; all these curves are in B-spline form. The output of the algorithm is a
B-spline surface. The main steps are as follows.

(1) Construct a Coons surface by bilinearly blending the given four boundary
curves.

(2) Subdivide the input B-spline curves into Bézier segments and project the two
end points of each Bézier segment onto the Coons surface. The parameters of
these two projected points are denoted as (u1, v1) and (u2, v2). The straight
line between (u1, v1) and (u2, v2) is assumed to be the parameterization of
this Bézier segment on the final surface.

(3) The final surface is in B-spline form shown in Eq. (1). Subdivide the final
surface into Bézier surface segments. The input B-spline curves should be
on the final surface. Suppose the ith Bézier curve on the j th Bézier surface
segments, then an equation can be written as

di (t) = rj (u(t), v(t)) , (3)

where di (t) =
m∑

k=0

dkBk,m(t) is the ith Bézier curve and

rj(u, v) =
n1∑

k1=0

n2∑
k2=0

rk1,k2Bk1,n1(u)Bk2,n2(v)

is the j th Bézier surface. A linear equation system is obtained from Eq.
(3); the unknowns are the control points of the Bézier surface corresponding
to the Bézier curve, which are linear combinations of the control points of
the surface to be fitted. For each Bézier curve, a linear equation system is
obtained, and finally a whole linear equation system is formed by combining
all equation systems. We denote the whole linear equation system as

AX = B, (4)

where X are the unknown control points of the surface to be fitted.
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Since the four boundary curves are given, Eq. (4) becomes

A1X1 = B − A2X2, (5)

where X2 are the boundary control points and X1 are the other control
points.

(4) Solve this equation system to get the surface.

As mentioned in Ref. [6], the equation system (5) is usually overdetermined
so that no unique solution can be found. In this case, Maekawa et al. [6] suggest
to use the SVD method to get a solution of the system (5) in the least square
sense. In fact, due to the local support property of B-spline, we even can’t get
one unique solution of the system in the least square sense when the distribution
of the input curves is sparse or non-uniform. On the other hand, when the system
(5) is underdetermined, there may also be many solutions. Therefore, we need
to choose one. In fact, we can use SVD to get one of the solution of the system
(5) in any case. When the system (5) is overdetermined, we get a solution in the
least square sense. While when the system (5) is underdetermined, we get an
exact solution. Unfortunately, the SVD method doesn’t consider the geometry
and physical character of the surface and often can’t get a satisfactory surface
as shown in Section 4. In Section 3.2, we will impose the constrained energy on
the surface to be fitted, which results in an optimization problem. Finally, we
will get one unique solution for this optimization problem and the fitted surface
is fairer than that obtained by SVD.

3.2 The Solution of the Equation System Based on the Constrained
Energy

In this section, we first get the energy of a surface in matrix form for calculating
the energy conveniently. We rewrite the control points of the surface in the form

X =
[
p0,0,p0,1, ...,p0,n,p1,0, ...,pm,n

]T
. (6)

Since the boundary of the surface is fixed, Eq. (6) can be rewritten as

X =
[
X1

X2

]
, (7)

where X2 are the boundary control points and X1 are the other control points.
Correspondingly, the bases of the surface are given in the following formula:

N =
[
N1

N2

]
(8)



Surface Fitting to Curves with Energy Control 573

The surface is rewritten as S = NT
1 X1 +NT

2 X2. Then, we get the derivatives of
the surface

∂S
∂u

=
∂NT

1

∂u
X1 +

∂NT
2

∂u
X2,

∂S
∂v

=
∂NT

1

∂v
X1 +

∂NT
2

∂v
X2,

∂2S
∂u2

=
∂2NT

1

∂u2
X1 +

∂2NT
2

∂u2
X2,

∂2S
∂v2

=
∂2NT

1

∂v2
X1 +

∂2NT
2

∂v2
X2,

∂2S
∂u∂v

=
∂2NT

1

∂u∂v
X1 +

∂2NT
2

∂u∂v
X2.

(9)

Substituting Eqs. (9) into Formula(2), we get the energy expression in the form

e = XT
1 H1X1 + 2XT

2 H2X1 + XT
2 H3X2

= XT
1 H1X1 + 2gT X1 + c

, (10)

where gT = XT
2 H2, c = XT

2 H3X2, and

H1 =

1∫
0

1∫
0

⎛⎜⎜⎜⎜⎜⎝
α1,1

∂N1

∂u

∂NT
1

∂u
+ α2,2

∂N1

∂v

∂NT
1

∂v

+β1,1
∂2N1

∂u2

∂2NT
1

∂u2 + β2,2
∂2N1

∂v2
∂2NT

1

∂v2

+2α1,2
∂N1

∂u

∂NT
1

∂v
+ 2β1,2

∂2N1

∂u∂v

∂2NT
1

∂u∂v

⎞⎟⎟⎟⎟⎟⎠ dudv,

H2 =

1∫
0

1∫
0

⎛⎜⎜⎜⎜⎜⎝
α1,1

∂N2

∂u

∂NT
1

∂u
+ α2,2

∂N2

∂v

∂NT
1

∂v

+β1,1
∂2N2

∂u2

∂2NT
1

∂u2 + β2,2
∂2N2

∂v2
∂2NT

1

∂v2

+2α1,2
∂N2

∂u

∂NT
1

∂v
+ 2β1,2

∂2N2

∂u∂v

∂2NT
1

∂u∂v

⎞⎟⎟⎟⎟⎟⎠ dudv,

H3 =

1∫
0

1∫
0

⎛⎜⎜⎜⎜⎜⎝
α1,1

∂N2

∂u

∂NT
2

∂u
+ α2,2

∂N2

∂v

∂NT
2

∂v

+β1,1
∂2N2

∂u2

∂2NT
2

∂u2
+ β2,2

∂2N2

∂v2
∂2NT

2

∂v2

+2α1,2
∂N2

∂u

∂NT
2

∂v
+ 2β1,2

∂2N2

∂u∂v

∂2NT
2

∂u∂v

⎞⎟⎟⎟⎟⎟⎠ dudv.
The above three matrices (i.e. H1, H2 and H3) can be calculated by a numerical
method, such as Gaussian quadrature [11].

It is obvious that the matrix H1 is symmetric and semi-positive. In fact, we
can prove that the matrix H1 is positive definite.

Theorem 2. The matrix H1 in Eq. (10) is positive definite.

Proof. If ∃X1 �= 0, XT
1 H1X1 = 0. We set X2 = 0. We know that the energy of

the surface is larger than zero from Theorem 1, that is e > 0. However, when we
substitute X1 and X2 into Eq. (10), we get
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e = XT
1 H1X1 + 2XT

2 H2X1 + XT
2 H3X2

= 0 + 20T H2X1 + 0T H30

= 0.

It conflicts with the former inequation (e > 0). Since H1 is semi-positive, we get
∀X1 �= 0, XT

1 H1X1 > 0. ��

Now we consider the solution of the linear equation system (5). Suppose

X1 = Y1 + Z1, (11)

where Y1 is obtained by SVD, and Z1 is comprised of the bases of the null space
of A1. Substituting Eq. (11) into Eq. (10), we get the expression of the energy
shown as

e = (Y1 + Z1)
T H1 (Y1 + Z1) + 2gT (Y1 + Z1) + c

= ZT
1 H1Z1 + 2fT Z1 + c1

, (12)

where fT = YT
1 H1 + gT and c1 = YT

1 H1Y1 + 2gT Y1 + c.
Now we need to minimize the following functions:

e1 =
1
2
ZT

1 H1Z1 + fT Z1

A1Z1 = 0
(13)

System(13) is a linearly constrained quadratic minimization problem, and it
can be solved by many existing methods. Most of the methods require that the
rows of A1 are linearly independent [10,12] which is not satisfied in many cases in
surface fitting problem, unfortunately. In this paper, we solve this optimization
problem by using the null space of A1 to avoid the problem that the rows of A1

are linearly dependent. Considering that Z1 is comprised of the bases of the null
space of A1, we decompose Z1 into

Z1 = CW, (14)

where C is a set of orthogonal bases of the null space of A1, and the bases can
be obtained as the by-product of SVD. W is the coefficient vector.

Substituting Eq. (14) into Eq. (13), we get another expression of e1 shown as

e1 =
1
2
WT CT H1CW + fT CW

=
1
2
WT QW + hT W

, (15)

where Q = CT H1C and hT = fT C. Eq. (15) is a quadratic minimization prob-
lem with no constrained.

Since H1 is symmetric, Q is symmetric. In the following, we prove that the
matrix Q is positive definite. In order to prove this theorem, we first prove the
following theorem.
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Theorem 3. Y = CX = 0, if and only if X = 0, where C is a set of orthogonal
bases of the null space of A1.

Proof. It is obvious that Y = 0 when X = 0. Now we assume that X =

[a1, ..., ar]
T �= 0. C =

⎡⎢⎣ c1,1, . . . , c1,r

...,
. . . ,

...
cn,1, . . . , cn,r

⎤⎥⎦ = [c1, . . . , cr], then we get Y = a1c1 +

. . . + arcr. Since c1, . . . , cr is a set of linearly independent orthogonal bases of
the null space of A1, Y �= 0. ��

Theorem 4. The matrix Q in Eq. (15) is positive definite.

Proof. It is obvious that XT QX = 0 when X = 0. When X �= 0, we know
that Y = CX �= 0 from Theorem 3. Then we get XT QX = XT CT H1CX =
YT H1Y > 0 from Theorem 2. ��

4 Examples

In this section, we give some examples to illustrate the effect of the constrained
energy imposed on the surface. A set of curves, including four boundary curves
and three other curves, is shown in Fig.1(a). The three orthogonal arrows indicate
the object-oriented coordinate system. Fig.1(b) and Fig.1(c) show two fitted
surfaces. Fig.1(b) shows the surface obtained by the SVD method. Fig.1(c) shows
the surface obtained by our optimization. In our experiment, the coefficients of
the energy are as follows. α1,1 =1, α1,2=0, α2,2 =1, β1,1 =1, β1,2=10, β2,2=1.

(a) (b) (c)

Fig. 1. Input curves and the fitted surfaces. (a) Input curves. (b) Surface obtained by
the SVD method. (c) Surface obtained by the constrained energy method.

Since the basis functions of the B-spline surface are fixed, the degree of the
smoothness of the two fitted surfaces (shown in Fig.1(b) and Fig.1(c)) are the
same. But it is obvious that the surface in Fig.1(c) is much fairer than that
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shown in Fig.1(b). It is easy to give a qualitative analysis that why the shape of
the surface shown in Fig.1(b) is not good. The SVD solution doesn’t consider the
geometric property and the elastically deformation of the surface. It only gets
the solution with the minimal norm. Based on this reason, the surface obtained
by the SVD method tends to the original point so that the norm of the control
points will be small. While the energy of the surface considers the geometric
property and the elastically deformation of the surface and it tries to get a
surface which resist stretching and bending. As a result, a fairer surface will be
obtained.

On the other hand, since the SVD method only gets the solution with minimal
norm, the fitted surface is dependent on the coordinates of the input curves. On
the contrary, the energy of the surface is independent of the coordinate system,
which means that the shape of the fitted surface is unchanged while the curves
undergoing translation and rotation. To illustrate this instance, we translate
each curve by a distance as shown in Fig.2(a)(The translation can be seen easily
by comparing the coordinate system shown in Fig.1(a) and Fig.2(a)). The two
fitted surfaces are shown in Fig.2(b) and Fig.2(c).

(a) (b) (c)

Fig. 2. Curves translated by a distance and the fitted surfaces. (a) Curves translated
by a distance. (b) Surface obtained by the SVD method. (c) Surface obtained by the
constrained energy method.

The fitted surface obtained by the SVD method, as shown in Fig.2(b), is
much different from that shown in Fig.1(b). While the surface obtained by the
constrained energy method, as shown in Fig.2(c), looks the same as that shown
in Fig.1(c). In fact, the surface in Fig.2(c) is just a translation of the surface in
Fig.1(c). In most cases, the designer considers the shape of the curves much more
than the coordinates of the curves, so the surface obtained by the constrained
energy method is more suitable for the designer.

Next, we will give a more complicated example. A set of curves, including
four boundary curves and four other curves, is shown in Fig.3(a). Fig.3(b) and
Fig.3(c) show two fitted surfaces. Fig.3(b) shows the surface obtained by the
SVD method and Fig.3(c) shows the surface obtained by our optimization. The
surface shown in Fig.3(c) is fairer than that shown in Fig.3(b).

At the end of this section, we show the difference between the energy used in
Ref. [8] and the energy used in this paper. If we use the energy proposed in Ref.
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(a) (b) (c)

Fig. 3. Another example. (a) Input curves. (b) Surface obtained by the SVD method.
(c) Surface obtained by the constrained energy method.

[8], we set α1,1 = 0, α1,2 = 0, α2,2 = 0, β1,1 = 1, β1,2 = 0, β2,2 = 1 in Formula(2).

Fig. 4. Surface obtained by the constrained energy proposed in [5]

The fitted surface is shown in Fig.4. It is not as fair as that in Fig.1(c).
The energy used in this paper (proposed in Ref. [9]) can provide the user more
degrees of freedom to control the shape of the surface to be fitted. Generally
speaking, α1,1 may affect the length of the iso-parameter curves of the surface
in u direction, and α2,2 may affect the length in v direction. α1,2 may affect the
area of the surface. β1,1, β1,2 and β2,2 may affect the curvature of the surface.
Unfortunately, we don’t know the exact relationship between these parameters
and the fitted surface, which will be our future work.

5 Conclusions

In this paper, we impose an energy item on the surface that fits a set of unorga-
nized curves. We also give an equation system of the control points of the surface
in order to minimize the energy of the surface and prove that there is one unique
solution of this equation system. With the constrained energy introduced, the
fitted surface is fairer than that obtained by SVD in most cases and it is also
unchanged while the curves undergoing translation and rotation.
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We point out that the calculation of the energy matrix is time consuming,
but it is only computed just once in the whole algorithm. In some cases that
the surface can’t interpolate the curves, we can replace the Coons surface by
the fitted surface and repeat the algorithm to reduce the fitting error. In this
iterative process, the energy matrix does not need to be recomputed.
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Abstract. We propose a novel color based tracking framework in which an ob-
ject configuration and color feature are simultaneously determined via scale 
space filtration. The tracker can automatically select discriminative color fea-
ture that well distinguishes foreground from background. According to that fea-
ture, a likelihood image of the target is generated for each incoming frame. The 
target’s area turns into a blob in the likelihood image. The scale of this blob can 
be determined based on the local maximum of differential scale-space filters. 
We employ the QP_TR trust region algorithm to search for the local maximum 
of multi-scale normalized Laplacian filter of the likelihood image to locate the 
target as well as determine its scale. Based on the tracking results of sequence 
examples, the proposed method has been proven to be resilient to the color and 
lighting changes, be capable of describing the target more accurately and 
achieve much better tracking precision. 

1   Introduction 

Object tracking in image sequences is a key issue in many computer vision applica-
tions such as video surveillance, perceptual user interfaces, object-based video com-
pression, etc. Two major components can be distinguished in a typical visual tracker: 
target representation and target localization. Gray scale values, shape information, 
colors, textures, velocity and acceleration are the commonly used object’s features. 
Target localization is the procedure to locate the area that matches the object’s feature 
best, and it can be addressed by particular optimization methods. 

It is well known that the success or failure of object tracking is primarily dependent 
on how distinguishable the feature of an object is from its surroundings and back-
ground. In literatures, Shi and Tomasi [1] have pointed out that good features are as 
important as good tracking algorithms. The degree and discriminability to which a 
tracker can discriminate the object and background is directly related to the image 
features used. It is the ability to distinguish between object and background that is the 
most important. In [2] a fixed set of candidate features are assessed in terms of the 
variance ratio and the best N  ones are chosen to produce the likelihood images for 
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tracking. Bohyung Han[3] used PCA to extract the most discriminative feature from 
the feature set composed of every subset of the RGB and rgb color channels. Stern 
and Efros [4] chose the best features from 5 features spaces and switch amongst them 
to improve the tracking performance. All these methods focused on the determination 
of the best feature from a predefined feature set with finite number of features. 

The tracking precision also has much to do with the description of the target’s  
scaling. Most previous related work [5,6,7] addressed the scaling by working on some 
presumably possible discrete values of scale. However, discrete values cannot fit the 
complex movements of the target. Tyng-Luh and Hwann-Tzong[8] proposed to use a 
covariance ellipse to characterize an object and adopt a bivariate normal within the  
ellipse as the weighting function for the features. They dealt with the issue in a con-
tinuous manner but the features they used are just predefined color probability and 
edge density information, which are not guaranteed to be the best one. Collins [9] 
combined mean shift procedure with Lindeberg’s theory to solve the scale problem, 
but he ignored the feature updating. 

In this paper we extend the discrete feature set to a continuous feature space. The 
best feature is chosen out of this space in terms of the target-background class vari-
ance ratio. We also adapt Lindeberg’s theory [10] of feature scale selection based on 
the local maxima of differential scale-space filters to deal with the description of the 
target and describe scaling in the continuous space.  

Compared with the popular mean shift [6] method, trust region methods are more 
effective and can yield a better performance [8]. Based on the traditional trust region 
method, QP_TR algorithm [11] improves the way to get the object function’s Hessian 
matrix and gradient, and achieves even better performance. In this paper, we combine 
the QP_TR method with the scale space theory and propose a new tracking algorithm 
in which tracking is implemented to search for local maxima of the multi-scale nor-
malized Laplacian filter function with the QP_TR method. Details about QP_TR can 
be found in the Appendix. 

2   Proposed Target Model 

Our goal in this section is to develop an efficient method that automatically chooses 
the best feature for tracking. Features used for tracking only need be locally discrimi-
native, in that the object only needs to be clearly separable from its immediate  
surroundings. We represent target appearance using histograms of color filter bank  
responses applied to R, G, and B pixel values within local image windows. This rep-
resentation is chosen since it is relatively insensitive to variation in target appearance 
due to viewpoint, occlusion and non-rigidity. In [2] a fixed set of candidate features 
are evaluated and the best one is chosen to produce the likelihood image. Based upon 
[2] but different from it, we extend the candidate features in a continuous  
manner. 

In this paper, the candidate features are composed of linear combinations of R, G, 
B pixel values. Specifically, we have chosen the following candidate feature: 

1 2 3R G B iF ω ω ω ω= + + ∈R  (1) 
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where F  is the linear combination of R, G, and B with real coefficients except for 

1 2 3( , , ) (0,0,0)ω ω ω = . Many common features from the literatures are included in the 

candidate space, such as the raw values of R, G, and B, intensity R+G+B, approxi-
mate chrominance features such as R-B, and so-called excess color features such as 
2G-R-B. All features are normalized into the range 0 to 255 and discretized into  
histograms of length 255.  

We follow [2] to use a “center-surround” approach to sampling pixels covering the 
object and background. A rectangular set of pixels covering the object is chosen to 
represent the object pixels, while a larger surrounding ring of pixels is chosen to rep-
resent the background. For an inner rectangle of dimensions t th w×  pixels, an outer 

margin of width ( , )t th wmax  pixels forms the background sample. We use the object 

pixels to get the target histogram objH  for a candidate feature and the background 

pixels to get the background histogram bgH . We form an empirical discrete probabil-

ity distribution ( ), 1...255p i i =  for the object, and ( )q i  for the background by  

normalizing each histogram by the number of elements in it. 
From any candidate features, we can create a new feature that is “tuned” to dis-

criminate between object and background pixels. The tuned feature is formed as the 
log likelihood ratio of the class conditional candidate feature distributions. The log 
likelihood ratio [3] of a feature value i  is given by 

( ) ( )
( )

( ),
1, 1, log

( ),

p i
L i

q i

δ
δ

= −
max

max min
max

 

(2) 

where δ  is a small value that prevents dividing by zero or taking the log of zero (we 
choose it to 0.001). The nonlinear log likelihood ratio maps object/background distri-
butions into positive values for colors distinctive to the object and negative for colors 
associated with the background. Colors shared by both object and background tend 
towards zero. Back-projecting these log likelihood ratio values into the image  
produces a likelihood image suitable for tracking, as shown in Fig 1. 

 

 

Fig. 1. Likelihood images by three methods, one frame from the “car” sequence 
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The separability that ( )L i  induces between object and background classes can be 

measured using the two-class variance ratio. The variance of ( )L i  with respect to  

object class distribution ( )p i  is calculated as: 

( ) [ ]( ) ( )
2

22 2var ; ( ) ( ) ( ) ( ) ( )
i i

L p E L i E L i p i L i p i L i= − = −
 

(3) 

and similarly for background class distribution ( )q i [2]. Then the variance ratio can 

be defined as: 

( ) ( )
( ) ( )

var ;( ) / 2
; ,

var ; var ;

L p q
VR L p q

L p L q

+
≡

+
 

(4) 

The higher the ratio is, the wider the object and background are separated [2]. This 
means the triple of 1 2 3( , , )ω ω ω  which produces the highest ( ; , )VR L p q , corresponds 

to the best feature. To get this best triple we can define an object function 

1 2 3( , , )ψ ω ω ω that takes a triple 1 2 3( , , )ω ω ω  as the parameter, calculates ( )p i , ( )q i , 

( )L i , and returns ( ; , )VR L p q− .We call 1 2 3( , , )ψ ω ω ω  the feature discriminability 

function. Apply the QP_TR method on 1 2 3( , , )ψ ω ω ω  and we can get 1 2 3( , , )bestω ω ω . 

Introduce 1 2 3( , , )bestω ω ω  into (1) and we can get the best feature. Using the best fea-

ture we follow (2) to get the best “tuned” feature ( )bestL i  which can be back-projected 

to produce the likelihood image. 
Figure 1 shows the weight images calculated with three methods. The upper right 

one is by our method, the lower left one is by the method in [2], while the lower right 
is by that in [12]. 

Different from [2], we use real iω instead of integer ones. And we choose the best 

iω  in the continuous space rather than from a finite set. This improvement enables us 

to get more approximate feature. For example, in Fig.1 the likelihood image using our 
method has a 1.89425VR = , which is larger than that of the likelihood image pro-
duced by method in [2], which is 1.60777 . The corresponding triple 1 2 3( , , )ω ω ω  is 

(-5.02673, 4.9104, 0.959966) . 

3   Scale-Space Blob 

During tracking, the size of the target will change with the distance to the camera. 
Tracking algorithm should adapt to this kind of change and describe it precisely. 
Most previous related work [5,6,7] addresses scaling by working on some presuma-
bly possible discrete values of scale. For example, for each frame the tracker in  
[6] tries two sizes of plus and minus ten percent of the previous size to guess the 
current size. However, it’s difficult to adapt to the changes in size by  
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using only these discrete values (We will show this later). Aiming at this shortcom-
ing, we propose to solve the problem in the continuous scale space and describe the 
scaling in a continuous manner. 

The work of Lindeberg [10] provided an elegant theory for selecting the best scale 
for describing structural features in an image. Given any continuous function 

: Df R R→  and a Gaussian kernel with scale t , : Dg R R R+× → , 

2 2
1( ... ) /(2 )

/ 2

1
( ; )

(2 )
Dx x t

N
g t e

tπ
− + +=x , the scale-space representation of f  is its convolu-

tion with g , i.e., : DL R R R+× → , ( ; ) ( ; ) ( )L t g t f⋅ = ⋅ ∗ ⋅  with various scale t. The -

normalized derivative operator is defined as / 2
xtγξ∂ = ∂ . A very good property of the 

-normalized derivative of L  is the perfect scale invariance as follows: 

Consider two functions f  and f  related by ( ) ( )f f=x x  and define the scale-

space representation of f  and f  in the two domains by 

( ; ) ( ; ) ( )

( ; ) ( ; ) ( )

L t g t f

L t g t f

⋅ = ⋅ ∗ ⋅

⋅ = ⋅ ∗ ⋅  
(5) 

where the spatial variables and the scale parameters are transformed according to 

2

s

t s t

=
=  

(6) 

Then L  and L  are related by ( ; ) ( ; )L t L t= ⋅x  and the m-th order spatial deriva-

tives satisfy ( ; ) ( ; )m m

m

x x
L t s L t∂ = ∂x x . For -normalized derivatives defined in the 

two domains by 

/ 2

/ 2
x

x

t

t

γ
ξ

γ
ξ

∂ = ∂
∂ = ∂

 (7) 

we have (1 )( ; ) ( ; )m m

mL t s L tγ
ξ ξ

−∂ = ∂ . From this relation it can be seen that, when 

1γ = , ( ; ) ( ; )m mL t L tξ ξ∂ = ∂ . That is, if the -normalized derivative of f  assumes a 

local maximum at 0 0( ; )t  in the scale-space, the -normalized derivatives of f  will 

also assume a local maximum at 2
0 0( ; )s s t . Based on this property we can choose 

appropriate combination of the -normalized derivatives to determine the scale of 
some structure in the data. 

A gray image can be seen as a two dimensional function. That is, 2D = , and 
2:f R R→ . When 1γ = , ( ) ( ) ( )2 2 22 2 ( )xx yyt L t L t L Lγ ∇ = ∇ = +  reflects the details of 

blobs in an image. We call ( )2
( , , ) ( ( , ) ( , ))xx yyx y t t L x y L x yϕ = +  the multi-scale nor-

malized Laplacian filter function. With different scale values t, ( , , )x y tϕ  achieves  
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local maxima at blobs with different sizes. The gray image in Fig 2 contains two 
blobs. With 90t = , ( , , )x y tϕ  assumes the local maximum at the center of the smaller 

one, while with 391t = , ( , , )x y tϕ  assumes another local maximum at the center of 

the larger one. So the locations of the blobs as well as their scales can be determined 
by examining the local maxima of ( , , )x y tϕ  at various positions and scales. 

 

Fig. 2. For blobs with different sizes, ( , , )x y tϕ  assumes local maxima at different positions 
with different scales, Left: Original image Middle: The response of ( , , )x y tϕ  with 90t =  
Right: The response of ( , , )x y tϕ  with 391t =  

4   A Brief Outline of the Proposed Algorithm 

As a brief summary, we track targets by searching its best feature, location and scale 
for the target in the current frame. For each incoming frame the likelihood image of 
target is calculated, and QP_TR trust region method is employed to search for the  
local maximum of 1 2 3( , , ) ( , , )x y tφ ψ ω ω ω  in the scale space of the likelihood image. 

The algorithm proceeds as follows: 

1. Target initialization: get the width and height of the target, denoted as tw  and th . 

The width and height of the frame are w  and h  respectively. Using the method in 
section 3 to determine the best feature to use, record the corresponding triple 

1 2 3( , , )bestω ω ω  and ( )bestL i . 

2. Resize the frame so that the ratio of width to height will be / /t twh h wρ = . If we 

hold w  fixed the height of the frame will be /w ρ . 

3. Initialize a vector 0 1 2 3( , , , , , )T
prev prev prev prev prev prevx y tω ω ω=x , where ( , )prev prevx y  is the 

center of the target in the previous frame, prevt  the scale parameter in the previous 

frame and ( )1 2 3, ,prev prev prevω ω ω  the previous best feature. Set the initial trust re-

gion radius 0 9Δ = , the minimum radius 0.1endΔ =  and the maximum iteration 

50iterMAX = . 

4. Run the QP_TR algorithm for 1 2 3( ) ( , , ) ( , , )f x y tφ ψ ω ω ω= −x  and get 

1 2 3( , , , , , )T
opt opt opt opt opt opt optx y tω ω ω=x  which minimizes ( )f , where ( , )opt optx y  is the 

center of the target in the current frame with optt  its scale parameter and 

( )1 2 3, ,opt opt optω ω ω  the optimal feature. Go to step 2) until the track is over. 
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5   Experiments, Results and Discussion 

To verify the efficiency of our method, we apply it to many sequences and compare 
with other tracking algorithms. First, we evaluated the performance of feature selec-
tion of our novel method with [2], as shown in Fig 3. The number of evaluated fea-
tures by our method is reduced a lot whereas the number is a fixed one in ref [2]. At 
the same time, the discriminability between the object and background has increased 
compared with ref [2]. From the results, we find that our method is more effective and 
efficient than that in [2] in term of the evaluated features and discriminability of the 
selected feature for object description, e.g., VR. 

 

Fig. 3. The curves of the number of evaluated features and VR of the “car” sequence (from 1 to 
142 frames) 

To demonstrate our method’s ability to adapt to the appearance changes, we test it 
on the “ellipse” sequence. In this sequence the ellipse is moving around the center of 
the image while its size and color change. An algorithm without feature updating, 
such as [6], will soon be distracted and shrinks. See fig 4. Our method searches for the 
best feature while locating the target, therefore, avoids this problem. 

 

 

Fig. 4. Tracking results of “ellipse” sequence. Upper row: Results based on our method, Lower 
row: Results based on the method in [6]. 

Besides the above-mentioned good performance of feature extraction and updating 
for objects, the proposed method is proven to be accurate in describing the object and 
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can yield better tracking result than those of refs [3, 5, 7, 13] by the following  
experimental results. Fig 5 shows the tracking result of the “pedestrian” sequence and 
performance comparison with the bandwidth mean shift tracker [7] In the bandwidth 
mean shift tracker, the scale parameter can take only three discrete values so that there 
is much error in describing the target’s size, which results in error of the target local-
ization (as shown in the lower row). The upper row shows our method’s result. It can 
be seen that the black ellipse shrinks with the target and describes the target’s size ac-
curately. 

 

 

Fig. 5. Tracking results of a pedestrian. Upper row: Results based on our method. Lower row: 
Results of the bandwidth mean shift tracker. Only the 3rd, 254th and 341st frames are shown. 

 

 

Fig. 6. Tracking results of the “cup” sequence. Only the 4th, 44th, 88th and 124th 168th, 204th, 
244th and 332nd frame are shown. 

Fig 6 is another example of our method’s ability to cope with the zooming of tar-
get. The cup zooms in dramatically through the “cup” sequence. The proposed 
method still produces satisfactory description of the target. 
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6   Conclusion 

In this paper, we proposed a new target tracking algorithm to address the problem of 
feature selection and target’s scale determination, by the combination of Lindeberg’s 
scale space theory with the QP_TR trust region method. Firstly, the best feature that 
best discriminates the target and background is automatically determined out of the 
continuous candidate feature space. Each target corresponds to a specific blob in the 
likelihood image. Then we introduce the multi-scale normalized Laplacian filter func-
tion to detect the blobs in gray images. Conceptually, the scale space is generated by 
convolving the likelihood image with a filter bank of spatial LOG filters. Explicit 
generation of these convolutions would be very expensive and only able to evaluate at 
finite discrete parameters. However, by using the QP_TR trust region method, we can 
search for the local maximum of the object function in the continuous scale space 
much more efficiently, where the local maximum corresponds to a blob, i.e. the tar-
get. The precise tracking of objects is fulfilled as searching the maxima of both the 
Laplacian filter function and the feature discriminability function. Experimental  
results have demonstrated our new algorithm’s ability to adapt to objects’ scale and 
appearance changes with much a better tracking precision. 
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Appendix  

QP_TR Trust Region Algorithm 
 
The QP_TR trust region method can be used to solve the unconstrained minimization 
problem min ( )f

∈x V
x , where V  is a vector space and f  is the objective function to be 

minimized. It derives its iterations by solving the corresponding optimization problem 
in a bounded region iteratively, which is called the trust region sub-problem. There 
are three parameters to specify: the initial trust region radius 0Δ , the final trust  

region radius endΔ and the max number of iteration iterMAX . Given these three pa-

rameters, and a initial point 0
nR∈x , the QP_TR trust region method can find the  

local minimum of ( )f x around 0x . More information can be found in ref [11]. 
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Abstract. In this paper, we present a self-calibration strategy to estimate 
camera intrinsic and extrinsic parameters using the scale-invariant feature 
transform (SIFT). The accuracy of the estimated parameters depends on how 
reliably a set of image correspondences is established. The SIFT employed in 
the self-calibration algorithms plays an important role in accurate estimation of 
camera parameters, because of its robustness to changes in viewing conditions. 
Under the assumption that the camera intrinsic parameters are constant, 
experimental results show that the SIFT-based approach using two images 
yields more competitive results than the existing Harris corner detector-based 
approach using two images. 

Keywords: Self-Calibration, Scale-Invariant Feature Transform, Harris Corner 
Detector. 

1   Introduction 

Camera calibration is the process of determining the camera intrinsic and extrinsic 
parameters that represent a camera’s geometry. Most existing methods use a 
calibration object, such as a checkboard pattern, whose geometry in the three-
dimensional (3-D) space is known [1]. In contrast, camera self-calibration does not 
need any calibration object. Self-calibration is performed with correspondences 
between several views of the same scene instead of using a calibration object. Many 
self-calibration methods based on the fundamental matrix have been proposed [2][3]. 
These methods at first compute the fundamental matrix from the corresponding points 
of the image. Then, intrinsic parameters and the relative pose of a camera are 
retrieved up to a projective transformation in the 3-D space [4]. However, most self-
calibration methods are sensitive to noise. Shift in correspondences by just one pixel 
in pixel coordinates can produce a wrong estimate of camera parameters. Thus, these 
methods use lots of image sequences to decrease the effect of image noise. Despite of 
that, they often fail to get the accurate results. 

This paper shows the superiority of the distinctive image features, scale-invariant 
feature transform (SIFT) that is invariant to image scaling and rotation [5], in the self-
calibration framework. It provides us with the robustness against changes in 3-D 
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viewpoint and decreases the probability of the incorrect estimation of parameters, 
giving reliable image correspondences. Thus, employment of the SIFT into the self-
calibration framework can improve the estimation accuracy of the calibration 
parameters. The improvement is measured compared with the existing Harris corner 
detector [6]. 

The rest of the paper is structured as follows. Section 2 reviews two-view 
geometry, camera model, and epipolar geometry. Section 3 explains the SIFT-based 
image correspondences. Section 4 describes three self-calibration methods. Section 5 
gives experimental results and discussions. Section 6 concludes the paper. 

2   Two-View Geometry 

The theoretical bases for the two-view geometry are presented in this section. We 
begin with the general pinhole camera model that describes a mapping between the  
3-D space and a two-dimensional (2-D) image. Then, we will review the epipolar 
geometry and the fundamental matrix defined between two views. 

2.1   Camera Model 

Under the pinhole camera model, a point Tzyx )1,,,(=X  in the 3-D space is mapped 

to the point Tvu )1,,(=x  in the 2-D image plane, in which the homogeneous 

coordinates are used. This mapping relationship may be written in vector-matrix 
form as 

[ ]Xx tRA=  (1) 

where A  represents a camera calibration matrix, R  and t  denote the rotation matrix 
and translation vector, respectively. This equation is defined up to an arbitrary scale. 
The camera calibration matrix A  can be written as 

=
100

0 0

0

v

us

A v

u

α
α

 (2) 

where uα  and vα  represent the focal lengths of the camera in terms of pixel 

dimensions in the u  and v  directions, respectively. ),( 00 vu  signifies the image 

coordinates of the principal point and s  denotes the skew parameter. 

2.2   Epipolar Geometry 

The epipolar geometry describes the fundamental geometric relationship between two 
perspective cameras. It depends on the camera’s intrinsic parameters and relative  
pose. The epipolar geometry is represented by a 3 3 matrix called the fundamental  
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matrix F . Given a pair of images, the fundamental matrix describes the relationship 
between points in one image and a corresponding epipolar line in the other image. 
The fundamental matrix can be computed from a set of correspondences. If points x  
and x′  are corresponding points in the 2-D image planes, the fundamental matrix 
satisfies the equation 

.0=′ xx F  (3) 

When there are more than eight correspondences, the fundamental matrix can be 
determined by a linear least squares minimization method [7].

3   SIFT-Based Image Correspondences 

Most self-calibration algorithms estimate camera calibration parameters based on  
the fundamental matrix. The accurately estimated fundamental matrix can give the 
accurate calibration parameters. In addition, it is obvious that the accuracy of the 
fundamental matrix depends on the robustness of image correspondences. Existing 
algorithms have used the Harris corner detector to extract image feature points and 
developed the point matching method through evaluating the correlation between 
feature points [6]. However, the Harris corner detector has a limited ability to find lots 
of reliable image correspondences under the 3-D view change conditions. 

Lowe proposed a new method for extracting distinctive image features and finding 
a reliable matching called the SIFT [5]. These features provide invariance under the 
conditions of the image scaling, rotation, and partial 3-D view changes. According to 
[5], features are detected with the following four steps: detection of scale-space 
extrema, accurate keypoint localization, orientation assignment, and descriptor 
generation. First, the difference-of-Gaussian (DoG) spaces are generated by 
convolving the original image with the Gaussian filter mask having a varying scale 
parameter, producing a set of Gaussian images, and subtracting them to construct a set 
of DoG images. The maxima and minima of the DoG images are selected as feature 
candidates. Second, their stability is measured with the ratio of principal curvatures. If 
the ratio is below some threshold, the selected feature is discarded. After that, the 
interpolated location of each feature is determined by fitting feature points to a 3-D 
quadratic function. Third, the reference direction is assigned to each feature based on 
the largest image gradient direction in the specified region. Fourth, the image 
gradients in the neighboring region of the feature are measured to specify the 
characteristics of the local region. The image gradients described above are 
represented by a local image descriptor vector. This approach can generate a large 
number of stable features. 

The reliable correspondences are established by individually comparing each 
feature of images. If two features have the minimum Euclidean distance between their 
image descriptor vectors, this feature pair could be a best match. As a result,  
the image correspondences established using the SIFT are more reliable than the 
correspondences by the Harris corner detector-based method. Furthermore, the 
superiority of the SIFT has been demonstrated by a recent paper [8]. The SIFT-based 
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self-calibration approach can improve the estimation accuracy of the calibration 
parameters, which was also presented in [9]. 

4   Self-Calibration 

Self-calibration is a computational work to estimate the camera intrinsic parameters, 
such as focal lengths, the image center, and the camera skew, from a set of 
uncalibrated images. This section describes three methods for determination of 
camera intrinsic parameters, which are all based on estimation of the fundamental 
matrix. Next, camera extrinsic parameters are estimated. Then, the camera projection 
matrix can be determined with the estimated camera intrinsic and extrinsic 
parameters. 

4.1   Intrinsic Parameter Estimation 

There are various self-calibration algorithms to estimate the camera intrinsic 
parameters. This paper focuses on three self-calibration algorithms that were recently 
presented. Among them, two algorithms use the Kruppa’s equations whereas the other 
is based on the eigenvalues of the essential matrix. 

Whitehead and Roth suggested the estimation algorithm which starts with the 
singular value decomposition (SVD) of the fundamental matrix [2]. Let the SVD of 
the fundamental matrix F be TUDV ,  A be the camera calibration matrix, and K be 

the symmetric matrix expressed as TAA . The Kruppa’s equation is given by 

22
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where 1u , 2u , and 3u  represent column vectors of U  whereas 1v , 2v , and 3v  

denote column vectors of V. r  and s  are the singular values from )0,,( srdiagD = . 

Given N  fundamental matrices, the intrinsic parameters can be estimated using the 
non-linear least squares problem written as 
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where iw  is a weight factor, with 1factor  equal to 
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and 2factor  and 3factor  can be defined similarly. 

Mendonça and Cipolla presented another method based on the essential matrix 
[10]. The essential matrix is given by 

FAAE T=  (7) 
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where A represents the camera calibration matrix. When 1σ  and 2σ  are the two 

singular values of E, where 1σ > 2σ , and N  essential matrices are given, the intrinsic 

parameters can be estimated using the non-linear least squares problem that can be 
written as 

=

−
N

i
iw

1 1

21
σ
σ  (8) 

where iw  is a weight factor. 

Lastly, Habed and Boufama proposed a simplified form of the Kruppa’s equation 
[11], which is given by 

FKFFKF T =  (9) 

where F represents the fundamental matrix. Also Habed and Boufama defined the 
cost function to refine the solutions of equation (9) using the nonlinear least-square 
method. The cost function is written as 

F
FF

T

T

F

F

KFFKF

KFFKF −  (10) 

where 
F

.  denotes the Frobenius norm. 

4.2   Extrinsic Parameter Estimation 

After the intrinsic parameters are derived, determination of the camera extrinsic 
parameters is needed to estimate two projection matrices. In the case of the known 
intrinsic parameters, the relative pose of the camera can be derived from the essential 
matrix defined by two views. With the fundamental matrix and the calibration matrix, 
the essential matrix is computed by equation (7). On the other hand, the essential 
matrix has the another form by definition 

[ ] RtE ×=  (11) 

where [ ] ×t  represents a 3×3 skew-symmetric matrix of the translation vector and R 

denotes the rotation matrix. 
Hartley proposed the estimation algorithm of the relative camera position [4]. The 

rotation matrix and the translation vector can be estimated, up to a scale factor, by the 
factorization of the essential matrix using the SVD. 

5   Experimental Results and Discussions 

Most self-calibration algorithms evaluate their performance with virtually generated 
points in the 3-D space as well as real images. Because the performance by the SIFT 
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can be estimated with real images, we take only real image pairs to perform the  
self-calibration. We estimate the camera intrinsic parameters with two kinds of real 
image pairs that have been widely used to measure the performance of the calibration 
method. Those image pairs were derived from the Valbonne church and Leuven castle 
sequences. 

The SIFT is applied to the two image pairs to establish correspondences between 
the two images of each pair. A demonstration version of the SIFT can be found in the 
website, http://www.cs.ubc.ca/~lowe/keypoints/. The ratio of distances among the 
SIFT parameters, that is calculated by dividing the minimum Euclidean distance 
between two image descriptor vectors of the correspondences by the next minimum 
Euclidean distance, is set to a low value of 0.3 to find robust correspondences 
between two views. The ratio of distances is in proportion to the probability of the 
false correspondences. Using the SIFT, 139 and 88 correspondences are found from 
the Valbonne church and Leuven castle image pairs, respectively. Next, the 
fundamental matrix is estimated using corresponding points. The random sample 
consensus (RANSAC) based fundamental matrix estimation method is used [12]. In 
computation of the fundamental matrix, only one correspondence is classified as an 
outlier in the Valbonne church image pair and none in the Leuven castle image pair, 
because robust correspondences using the SIFT are employed. 

The Harris corner detector and correlation-based matching are also applied to the 
two image pairs to establish correspondences. We select the parameter values of each 
method in such a way that each method has approximately the same number of 
correspondences that are classified as inliers in estimating the fundamental matrix. In 
comparison with the SIFT, the Harris corner detector-based approach needs more 
candidate correspondences to have approximately the same number of the 
correspondences that are classified as inliers. Initially, 183 and 247 correspondences 
are found from the Valbonne church and Leuven castle image pairs, respectively, 
using the Harris corner detector and correlation-based matching. 

However, 138 and 89 correspondences are used as inliers by the RANSAC method 
in estimating the fundamental matrix in the Valbonne church and Leuven castle image 
pairs, respectively. In the case of applying the Harris corner detector to the Leuven 
castle image pairs, about half of the correspondences are extracted from the tree 
region of the images. Because the similar image patterns are found in the tree region, 
it is unlikely that robust correspondences are established between the tree regions of 
an image pair. Then, most correspondences that are located in the tree region are 
classified as outliers by the RANSAC method, as expected. We try in vain to select a 
higher threshold value in running the Harris corner detector to remove the feature 
points found in the tree region. Thus, the Harris corner-based matching shows a 
higher outlier rate than the SIFT. Figs. 1 and 2 show the correspondences, detected by 
the SIFT and the Harris corner detector, of the Valbonne church and Leuven castle 
image pairs, respectively. White and black circles in each image pair represent the 
inliers and outliers that are classified by the RANSAC method, respectively. We can 
easily see that there are lots of black circles in Fig. 2(b), because 172 correspondences 
are classified as outliers, especially in the tree region. 
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Before performing self-calibration using three existing algorithms described in 

Section 4.1, we make some assumptions to reduce the number of parameters to be 
estimated, because only the camera focal length could be estimated given a single 
fundamental matrix. We assume that the camera has a zero skew and the principal 
point is set to be the center of the image. In addition, the ratio vu αα /  is assumed to 

be equal to unity and the focal lengths are constant. These assumptions are practically 
reasonable. 

The resolution of the Valbonne church image is 512×768. Thus, the principal point 
is set at the center of the image (256, 384). Similarly, the principal point of the 
Leuven castle image is set at (384, 288), noting that the Leuven castle image has a 
size of 768×576. Three self-calibration methods are applied to each image pair using 
the fundamental matrices that are estimated through the SIFT-based and the Harris 
corner detector-based approach. The solutions of each cost function are obtained 
using the non-linear least squares method. Table 1 shows the comparison of the 
estimated focal lengths using the SIFT-based approach, those using the Harris corner 
detector-based approach, and the ground truths. 

The estimated focal lengths of the Valbonne church image pair are similar, 692 and 
691, when we use the SIFT-based method. However the estimated focal lengths of the 
Valbonne church image pair using the Harris corner detector-based method are far 
from the ground truth. The SIFT-based and Harris corner detector-based self-
calibration methods give average errors of about 1.4% and 7.1%, respectively, with 
respect to the ground truths. It is sure that the SIFT-based approaches produce more 
accurate results than the Harris corner detector-based methods. When we use the 
Leuven image pair, the SIFT-based methods give the focal lengths that are also close 
to the ground truth with the error of 0.54% except for the result of Mendonça and 
Cipolla’s method. The Mendonça and Cipolla’s method with the SIFT produces the 
focal length that is far from the ground truth, with the error of 36%. The Harris corner 
detector-based methods have the errors three times larger than the SIFT-based  
 

    
    (a)                                                                      (b) 

Fig. 1. Correspondences of the Valbonne church image pair. (a) Using the SIFT. (b) Using the 
Harris corner detector and correlation-based matching. 
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methods. Also the Harris corner detector-based methods show a similar trend except 
that the error of the estimated focal length by the Mendonça and Cipolla’s method is 
extremely large. Thus, we can say that the SIFT-based approach can improve the 
estimation accuracy of the focal length compared with the Harris corner detector-
based method. 

With the estimated focal length and the assumption about the camera skew and the 
principal point described above, we can derive the complete camera calibration 
matrix. The rest of the camera projection matrix, a rotation matrix and translation 
vector, can be estimated with the camera calibration matrix and the fundamental 
matrix. Hartley proposed the method to estimate a relative camera pose using the 
factorization of the essential matrix, which is mentioned in Section 4.2. Through these 
processes, we can determine the 3×4 camera projection matrices corresponding to 
two respective views, up to a scale factor. The validity of the estimated projection 
matrices can be shown by reconstructing the positions of all the feature points in the 
3-D space. 3-D positions of all the correspondences are determined by the 
triangulation method [13]. Fig. 3 shows the estimated 3-D positions of feature points 
that are extracted from each image pair. Fig. 3(a) has a difficulty in recognizing 
Valbonne church’s geometry, because it has a small depth variation. In contrast,  
Fig. 3(b) shows the coarse structure of the Leuven castle. 

    
(a) 

    
(b) 

Fig. 2. Correspondences of the Leuven castle image pair. (a) Using the SIFT. (b) Using the 
Harris corner detector and correlation-based matching. 
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6   Conclusions 

This paper shows the superiority of a SIFT-based self-calibration strategy to increase 
the estimation accuracy of the camera intrinsic parameters. Its performance is 
compared with that of the Harris corner-based approach with two image pairs. The 
results estimated using the SIFT-based approach are closer to the ground truths than 
those by the Harris corner detector-based approach. As a result, it can be said that the 
SIFT-based approach can improve the estimation accuracy of the focal length 
compared with the Harris corner detector-based method. Further research will focus 

  
   (a)                                                                               (b) 

Fig. 3. 3-D reconstructions of each image pair. (a) Valbonne church. (b) Leuven castle. 

Table 1. Comparison of the estimated focal lengths by three self-calibration methods and the 
ground truths (pixels) 

Methods 
Valbonne church 

images 
Leuven castle 

images 

Ground truths 682 1100 

SIFT-based 692 1094 Whitehead and 
Roth’s method 

[2] Harris corner 
detector-based 

637 907 

SIFT-based 691 701 Mendonça and 
Cipolla’s 

method [10] Harris corner 
detector-based 

628 570 

SIFT-based 692 1094 Habed and 
Boufama’s 

method [11] Harris corner 
detector-based 

636 906 
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on the development of the automatic parameter selection method to extract a number 
of robust correspondences, keeping the outlier rate low. 
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Abstract. In this paper, we present an improved face recognition algorithm us-
ing extended modular principal component analysis (PCA). The proposed 
method, when compared with a regular PCA-based algorithm, has significantly 
improved recognition rate with large variations in pose, lighting direction, and 
facial expression. The face images are divided into multiple, smaller blocks 
based on the Gaussian model and we use the PCA approach to these combined 
blocks for obtaining two eyes, nose, mouth, and glabella. Priority for merging 
blocks is decided by using fuzzy logic. Some of the local facial features do not 
vary with pose, lighting direction, and facial expression. The proposed tech-
nique is robust against these variations. 

1   Introduction 

Human biometric characteristic is unique, so it can hardly be duplicated [1]. Such 
information includes: facial expression, speech, hands, body, and gesture to name a 
few. Face detection and recognition techniques are proven to be more popular than 
other biometric features based on efficiency and convenience [2], [3]. It can also use a 
low-cost personal computer (PC) camera instead of expensive equipments, and re-
quires minimal user interface. Face recognition is a difficult problem with a variety of 
sensitive factors such as face change with facial expression, pose, viewpoint, illumi-
nation, noise, and age. 

Recently, extensive research using 3D face data has been carried out in order to 
overcome the limits of 2D face detection and extraction [2], which include principal 
component analysis (PCA) [3], artificial neural networks (ANN) [4], support vector 
machines (SVM) [5], hidden markov models (HMM) [6], and linear discriminant 
analysis (LDA) [7]. Among them, PCA and LDA methods with self-learning are most 
widely used [3], and at the same time combination of various methods tend to become 
alternative solutions. While most traditional face recognition techniques are focused 
on the whole face, localized parts-based face recognition is more effective under spe-
cial environment. In the appearance-based method of PCA, intensity and/or intensity 
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derived parameters such as eigenfaces are used. The modular PCA [8] approach was 
presented to improve the accuracy of PCA in cases of extreme change of illumination 
and pose. 

In this paper, we propose to improve the accuracy of face recognition subject to 
variation of pose, lighting direction, and facial expression. The eye formation is one 
of the most invariant features of the face, because geometric information of two eyes 
can provide pose and position information. The proposed method locates two eyes  
by using darker blobs of the input image [9], which is normalized by 60 60. Gaus-
sian models are established for blocks of eyes, nose, mouth, glabella from the eye  
formation. 

Although PCA is a popular technique for recognizing a frontal face, its accuracy is 
significantly decreased with change in pose and/or illumination. In this paper, we 
propose an extended version of modular PCA, whose original version has been pro-
posed by Asari et al. [8]. The proposed method divides the input face image into 
smaller blocks using the Gaussian probability models of two eyes, nose, mouth, and 
glabella, and applies PCA to each block. We also use fuzzy logic to obtain the opti-
mum priority of merging. 

Conventional PCA technique deal with the entire face region, hence they require 
long training time for large variation in pose, and facial expression. On the other hand 
the proposed extended modular method can significantly improve the recognition rate 
with reduced amount of training time. 

This paper is organized as follows: Section 2 describes the PCA and the singular 
value decomposition (SVD) theories. Section 3 explains Gaussian model of probabil-
ity density function (PDF), and presents the proposed extended modular PCA with 
fuzzy logic-based priority decision. Section 4 summarizes experimental results of the 
proposed and the conventional PCA methods. Finally, section 5 concludes the paper. 

2   PCA and SVD Theories Revisited 

In the process of PCA we compute covariance matrix C  and its eigenvectors from the 
training set of images. Consider the face images in the face database to be of size 

NN × . These images can be represented as a vector of dimension 2N . Let { }MIII ,,, 21
 

be a set of M  training face vectors. By definition, C  can then be estimated as [10] 

=
=

M

k

T
kkYY

M
C

1

1 ,           (1) 

where each face differs from the average face by the vector mIY −= . The training 
dataset is packed into the following matrix 

[ ]MIIII ,,, 21= .           (2) 

The average face is defined as  

=
=

M

k
kI

M
m

1

1 .           (3) 

Even for images of moderate size, computation of eigenvectors of C  is computa-
tionally complex. By using SVD of X , the eigenvectors of TXX  can be found from 
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eigenvectors of XX T , which are much easier to obtain. More specifically, suppose the 
rank of X  is r , Nr ≤ . According to fundamental linear algebra, X  has SVD as 

=
=

r

k

T
kkk vuX

1

λ ,           (4) 

where 
kλ , 

ku , and 
kv  respectively represent singular values, left, and right singular 

vectors of X . 
ku  and 

kv  have the following relationship. 

k

k

k Xvu
λ
1= .           (5) 

Hence, we can easily find eigenface 
ku  after finding 

kv . 

3   Gaussian PDF and Extended Modular PCA 

In face recognition, PCA struggles with varying pose, expression, and light. For this 
reason we propose an improved method to minimize special conditions occurring in 
traditional PCA. The proposed method locates two eyes from darker blobs, and the 
corresponding area is normalized to 60 60. Gaussian models are established for 
block regions representing eyes, nose, mouth, and glabella as a preprocessing of the 
extended modular PCA procedure. 

3.1   Gaussian PDF 

Gaussian models of blocks representing left and right eyes, nose, mouth, and glabella 
are generated using Gaussian PDF defined as [11] 

−Σ−−
Σ

≅Σ − )()(
2
1

exp
)2(

1
),|( 1

2/12/
μμ

π
μ xxxp T

D

,           (6) 

where x  represents a 1×D  feature vector, μ  the 1×D  mean vector, and Σ  the DD×  

covariance matrix. More specifically the mean vector and the covariance matrices are 
defined as [ ]xE=μ , and [ ]TxxE ))(( μμ −−=Σ , respectively. 

Fig. 1 shows training sets of the Gaussian model of a face representing eyes, nose, 
mouth, and glabella. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

Fig. 1. Face Gaussian models of; (a) left eyes, (b) right eyes, (c) mouths, (d) noses, and (e) 
glabellas 
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3.2   Extended Modular PCA 

For the extended modular PCA, the face images are divided into B  smaller blocks 
from the previously generated Gaussian models. 

Creation of new combined block using the proposed method is defined as 

= blocknew II ,                                                                           (7) 

where 
blockI  includes left and right eyes, nose, mouth, and glabella. 

These blocks can be represented mathematically as 

{ } jinjImjIInmI blockblockiij ,   ,)1(,)1(),( ∀+−+−=                                     (8) 

where i  varies from 1 to M , the number of images in the training set, j  varies from 1 

to B , the number of blocks, and m  and n  respectively represent the sizes of the  
created image. 

The average image of all the combined blocks is obtained as 

= =⋅
=

M

i

B

j
ijI

BM
m

1 1

1 .           (9) 

The next step is to normalize each training block by subtracting it from the mean as 

jiijij mIX ,      , ∀−=  .         (10) 

From the normalized combined blocks the covariance matrix is computed as 

T

ij

M

i
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j
ij XX

BM
C ⋅

⋅
=

= =1 1

1  .         (11) 

In this method, estimating eigenvalues and eigenvectors of C  is computationally 
complex, and requires long processing time. This problem can be solved by using SVD. 

Given that ijX  replaces with X , SVD is a factorization of X  as TUDVX = , where 

U  and V  represent orthogonal matrices, and D  represents a diagonal matrix with non-
negative entries. Effective number k  selects value larger than threshold t  in D , and 
selects the left eigenvector as many as k  in U . 

The estimated eigenvector v  of the selected k  in U  is sorted by the corresponding  
eigenvalue. Therefore, the eigenvector V  can be expressed as a set of k  eigenvectors as 

[ ]kvvvV 21,= .         (12) 

Given the set of sorted eigenvectors, the weight for each image in the training set is 
computed by the following projection 

,    ),( i, Kij
T

KiK mIVW ∀−⋅=          (13) 

where 
KV ’s represent eigenvectors with k  largest eigenvalues of X , as K  varies from 

1 to k . 

3.3   Classification for Face Recognition 

Recognized faces are classified based on Mahalanobis distance [11] as 

( ) ( ) ( )ji
T

jiji xxxxxxd −Σ−≡ −1, ,         (14) 
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where 
ix  represents the feature value of the projected image, 

jx  represents the feature 

value of a new input image, and 1−Σ  represents the covariance matrix of the training 
weights. If 

id θ<)min( , the test image is classified to the corresponding class, where 
iθ  

represents the threshold. 

3.4   Fuzzy Logic for Improving Recognition 

In this subsection, we propose a recognition method to consider the merging priority 
based on fuzzy logic. First, the proposed method extracts a list of recognized candi-
date blocks. The priority of merging these blocks is decided by a fuzzy logic. The 
proposed method assigns P5 to a set of 5 blocks of potential merging. Other methods 
assign P1, P2, P3, and P4 to 1, 2, 3, and 4 blocks, respectively. We perform fuzzy 
inferences 1st, 2nd, 3rd, 4th, and 5th orders for minimum distance of face sub-blocks. 
This can drive good results of face sub-blocks. This makes F1 occur over 1 once for 
the face sub-block of the same person. Other methods define F2, F3, F4, and F5 by 
using sets of 2, 3, 4, and 5 blocks, respectively. For the proposed fuzzy inference 
steps we used Kim’s method [12]. The corresponding fuzzy engine is classified by a 
recognized probability as shown in Fig. 2. 

 

Fig. 2. Fuzzy inference engine 

In Fig. 2, P1, P2, P3, P4, and P5 represent the corresponding coefficient of recog-
nized probability. The base rule is defined as 

=
=
=

=
LARGE  P(R) 0.0,

SMALL  P(R) 0.5,

 ZERO P(R) 1.0,

O θ
,         (15) 

where R  represents one of F1, F2, F3, F4, and F5. 
Input membership function of the fuzzy inference engine is shown in Fig. 3. 

 

Fig. 3. Input membership function of fuzzy engine 
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Finally, predicted mergence can be written by using the Singleton fuzzier, the prod-
uct inference engine, and the average defuzzifier as 

)1(5)1(4)1(3)1(2)1(1
54321

max OFOFOFOFOFP ++++= .        (16) 

4   Experimental results 

Five sets of image databases are used for the experiment. The Olivetti Research Labo-
ratory (ORL) database consists of images which were taken at different times, with 
variation of lighting, facial expressions, and facial details as shown in Fig. 4. The 
Yale database consists of images with varying illumination and expressions as shown 
in Fig. 5. The University of Manchester Institute of Science and Technology 
(UMIST) database consists of images with varying poses as shown in Fig. 6. 

 

Fig. 4. ORL face image set 

 

Fig. 5. Yale face image set 

 

Fig. 6. UMIST face image set 

Fig. 7 shows the result of face separation by using the multi-layered relative edge 
map, and the experimental face database was made by this result. 

           
            (a)                               (b)                      (c) 

Fig. 7. (a) An input image, (b) the correspondingly created edge map, and (c) the normalized 
database of size 60×60 

The Bio database consists of images with varying poses and expressions as shown 
in Fig. 8, which shows the detected face region in the Bio database by using the  
proposed method. Our database, called IPIS database, consists of images with varying 
pose and facial expressions as shown in Fig. 9. In experimental results of conven-
tional PCA techniques, the whole face is considered, which causes a delay in process-
ing due to a large variation in the frontal face, facial expression, and pose. 
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Fig. 8. Bio face image set 

 

Fig. 9. IPIS face image set 

A recognition pattern using the entire face images is called the global recognition 
pattern (GRP), which uses the combined facial part called the region recognition  
pattern (RRP). For convenience, 1, 2, 3, 4, and 5 represent left and right eyes, nose, 
mouth, and glabella, respectively. Fig. 10 compares experimental results of the pro-
posed method. 400 training images were used for the experiment as a database, and 
100 used test images. 
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Fig. 10. Comparison of experimental result 

Fig. 11 shows comparative results of training time, where the proposed method can 
be showed to be in real-time. Fig. 12 shows frequency by using the proposed method. 
In the experiment, In Yale database recognition rate falls in the special area from inten-
sity of light. The proposed method provided significantly improved recognition rate. 
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Fig. 11. Comparative results of training time 
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Fig. 12. Result of frequency by each block 

5   Conclusion 

In this paper, we presented a face recognition algorithm based on extended modular 
PCA approach. The proposed method, when compared with conventional PCA-based 
algorithms, significantly improved the recognition rate for face images with large 
variations of pose, lighting direction, and facial expression. In the proposed method, 
the face images are divided into smaller blocks with Gaussian model, and PCA is 
applied to each block representing two eyes, nose, mouth, and glabella. Since some 
local facial features of an individual do not vary even when the pose, lighting direc-
tion and facial expression, we expect the proposed technique can reduce large varia-
tions. The accuracies of the conventional PCA-based methods and the proposed  
extended modular PCA method are evaluated and compared under the same condi-
tions of varying pose, expression, and illumination using several standard face data-
bases. Based on experimental results the proposed method can be recognize faces in 
real-time with significantly improved recognition accuracy. 
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Abstract. Shape from silhouettes is a binary geometric tomography
since both objects and projections, which are measured as silhouettes,
are binary. In this paper, we formulate shape from silhouettes in the
three-dimensional discrete space. This treatment of the problem implies
an ambiguity theorem for the reconstruction of objects in discrete space.
Furthermore, we show that in three-dimensional space, it is possible to
reconstruct a class of non-convex objects from a collection of silhouettes
though on a plane non-convex object is unreconstractable from any col-
lection of silhouettes.

1 Introduction

The reconstruction of three-dimensional shapes from measured data such as
range data, photometric information, and stereo image pairs, is called “Shape
from X.” In this paper, we deal with “Shape from silhouettes.” This prob-
lem is also called ‘Shape from counter,”[2] and “Shape from profile”[7] in com-
puter vision and “Shape from plane probing,”[3], in computational geometry. In
computer vision, theoretical analysis of reconstruction algorithms is paid little
attention.

This paper aims to introduce a complete discrete version of “Shape from
silhouettes.” In this paper, a discrete object is reconstructed from discrete sil-
houettes, that is, both a camera which observes silhouettes and detectors which
measure silhouettes are described as a voxel and a collection of voxels in the
three-dimensional discrete space. A discrete object is reconstructed by line vot-
ing [15,6] in the discrete space. Therefore, a discrete object is reconstructed as
the common set of a collection of discrete lines which are defined by camera
voxels and silhouette voxels in the discrete space.

The illumination problem [5] estimates the minimum and maximum numbers
of view points for the reconstruction of a convex body from their views from an
appropriate set of view points. The illumination problem is equivalent to shape
reconstruction from silhouettes or shadows. However, it is in general difficult to
answer the configuration of view points for a given object. There are many results
for the reconstruction of a convex polygon from their shadows. For example
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see [12], and [9]. Laurentini [10,11] was concerned with geometric properties of
silhouette-based shape reconstruction for polyhedrons, and clarified the relation
among the visible hull and the convex hull of a polyhedron.

It is possible to decompose a three-dimensional objects to a collection of
shadows. The geometric relation permits to decompose shadows of a three-
dimensional object to shadows of planar objects. Using this geometric relations,
we reconstruct non-convex objects is reconstructible from a series of shadows.

Shape reconstruction from silhouette is a conventional technique for the de-
tection of shape models and shape reconstruction in computer graphics, com-
puter vision [6], and robotics [7,8,12,14]. Shape reconstruction from silhouette is
achieved by visible voting[15], shape carving[6] and so on. Though these recon-
struction methods are mathematically formulated in the continuous framework
[13,18], the reconstruction is achieved in discrete space. In this paper, we deal
with the shape-from-silhouette problem in the discrete space Z3.

2 Shape and Shadow

In n-dimensional Euclidean space Rn for n ≥ 2, let ω be the unit vector on
Sn−1. A finite closed convex body K in Rn is expressed as

K = {x|x�ω ≤ p(ω), ω ∈ Sn−1}, (1)

where p(ω) is the distance from the origin to a tangent plane to K [1]. An
intersection of a plane σ⊥, which is perpendicular to the unit vector σ and
passes through the origin, and finite closed convex body K is a shadow of K
projected from the direction σ, that is,

S(σ) = {x|x�σ = 0} ∩K. (2)

Let ∂S(σ) be the boundary curve of the shadow on plane σ⊥. Setting x�ω =
p(ω) to be the tangent plane to ∂S(σ), it is possible to reconstruct a finite closed
convex body K from shadows observed from all directions on Sn−1 [4].

For a point a in Rn, a line in Rn is

L(a,ω) = {x|x = a + tω, t ∈ R}. (3)

For a finite closed convex body K,

C(a) = {ω|K ∩ L(a,ω) �= ∅}, (4)

is the view cone with respect to the view point a. A set

P (a) = C(a) ∩ a⊥, (5)

where a⊥ is the plane which is perpendicular to vector a and passes through
the origin, is a shadow observed by the perspective projection.

For a finite convex object K in R3, if we can detect all planes which intersect
with K, we can obtain all rays which path through K as the intersections of
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pairs of planes. These rays defines silhouettes. Therefore, this geometrical prop-
erty implies that we can reconstruct a finite convex object in three-dimensional
Euclidean space from the collection of all planes which intersect with this object.

For a finite closed region O we define the silhouette from a source s ∈ Rn as

Ω(s) = {ω|l(s) ∩O �= ∅} (6)

for the half line
l(s) = {x|x = s + tω, ω ∈ Sn−1, t ≥ 0}. (7)

The cross section of cone l(s), s ∈ Ω(s) with hyperplane s�x = d is geometri-
cally defined as the silhouette from source s. In this paper, we define the direction
of the rays which yield silhouettes as the silhouettes.

If for all s in Rn \ K, where K is a finite convex region in Rn, Ω(s) are
measured, we can reconstruct K as

K =
⋂

s∈Rn\K

⎛⎝ ⋂
ω∈Ω(s)

{x|x = s + tω}

⎞⎠ . (8)

3 Reconstruction of Non-convex Object

In this section, we summarise the results in reference [19] on the reconstruction
of non-convex object from silhouettes in R3.

Lemma 1. From the collection of silhouettes which observed from vertices which
lie on a sphere encircling this object, we can obtain the collection of 2-dimensional
perspective projections of a slice form a point which moves on a circle encircling
this object.

For any points on the boundary, if there exists at least one unique convex slice
curve which contains this point, we call this object a slice convex object. A convex
closed object is slice convex. This geometric property and Lemma 1 derives the
following theorem.

Theorem 1. A slice convex object is uniquely reconstructible from the collection
of silhouettes observed from vertices which lie on the whole sphere encircling this
object.

This theorem permits us for the reconstruction of a class of non-convex objects
from silhouettes. Furthermore, in this expression, the axis for the reconstruction
is not required to be a straight line.

For a slice convex object V with respect to axis λv0 for |v0| = 1 and λ �= 0,
setting A[v] to be a reconstructed object with respect to the axis λv, for λ �= 0,
we have the following theorem

Theorem 2. For an object V the relation

V =
⋂

∃vo∈S2

A[v0] (9)

is satisfied if V is slice convex with respect to axis λv0.
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If an object is defined as the common region of a finite number of slice convex
objects, that is, object V is expressed as

V =
n⋂

α=1

A[aα], |aα| = 1, (10)

for λ �= 0, where λaα is the axis with respect to which slices of an object is
convex, we have the relation

V =
n⋂

α=1

A[aα] ⊇
⋂

v∈S2

A[λv] ⊇ V . (11)

This relation leads to the following theorem.

Theorem 3. Object V is reconstructed as

V =
⋂

v∈S2

A[v]. (12)

These theorems show that it is possible to reconstruct a slice convex object from
silhouettes using the equation

O =
⋂
s∈A

l(s,O), (13)

where A is a closed convex manifold encircles an object O and l(s,O) is a line
which passes through s and satisfies the property

l(s,O)
⋂

O �= ∅, (14)

if we do not detect the axe of a slice convex object. Furthermore, if we can
pre-detect axes of slice convex object, we can reconstruct a three-dimensional
non-convex object. This property show the difference between shape from sil-
houettes in 2D and 3D, since, in 2D, the collection of silhouettes does not allow
us the reconstruction of non-convex objects. Figure 1 shows geometrical rela-
tions of a silhouette in a space and slice-silhouettes in a space yielded from 3D
silhouettes.

4 Voting Method

Setting the characteristic function in the view cone to be

c(x; a,ω) =
{

1, x ∈ C(a,ω)
0, otherwise, (15)

if we vote c(x; a,ω) in to the space, we have a function

k(x) =
∑
a∈A

c(x; a,ω). (16)
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(a) (b) (c)

Fig. 1. Reconstruction of Object in 3D using 2D method. (a) A 3D silhouette of an
object (b) A 2D silhouette as a slice of a 3D silhouette. (c) A collection of 2D slices
reconstructs 3D object.

as the results of voting, where the apex of the view cone move in the region A.
For a positive integer τ , a set of points

Kτ = {x|, k(x) ≥ τ} (17)

defines an object. The construction of shape by Kτ is called shape reconstruc-
tion by voting. Furthermore, an algorithm for the computation of Kτ is called
shape carving. Equation (16) is a geometric version of back-projection in image
reconstruction from projections [16,17].

The voting process is the same operation with shape from shadows for slice
convex objects, if we can obtain tangent lines at each point from all directions.
Therefore, we have the following theorem.

Theorem 4. Voting process reconstruct slice convex objects from shadows if we
have orthogonal views from all directions in S2.

The boolean version [15] of eq. (16) for lines with finite width, which is adopted
in applications is

K =
⋂

a∈A

{
⋂

l(a)∈C(a,ω)

l(a) ⊕ B}, (18)

where B is the ball with radius δ, since {l(a) ⊕ B} defines a straight bar in a
space whose centre line is l(a).

5 Shape Reconstruction in Discrete Space

On the discrete plane Z2, supercover l(a, b, μ), such that gcd(a, b) = 1, is defined
as

{(x, y)||a�x + μ| ≤ 1
2
|a|1}, (19)

where for x = (x, y)� and a = (a, b)�, |a|1 = (|a| + |b|)
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In Z3, we adopt supercover

|ax+ bz + μ1| ≤
1
2
(|a| + |b|),

|ay + cz + μ2| ≤
1
2
(|a| + |c|), (20)

|cx− by + μ3| ≤
1
2
(|b| + |c|),

of line in R3 ⎛⎝a 0 b
0 a c
c −b 0

⎞⎠⎛⎝xy
z

⎞⎠+

⎛⎝μ1

μ2

μ3

⎞⎠ . (21)

In Z3, we assume that detectors are voxels on a cube D3 whose vertices are
(0, 0, 0)�, (3n− 1, 0, 0)�, (3n− 1, 3n− 1, 0)�, (0, 3n− 1, 0)�, (0, 0, 3n)�, (3n−
1, 0, 3n− 1)�, (3n− 1, 3n− 1, 3n− 1)�, and (0, 3n− 1, 3n− 1)�, and an object
exits in a cubic region R whose vertices are (n− 1, n− 1, n− 1)�, (n− 1, 2n−
1, n−1)�, (2n−1, 2n−1, n−1)�, (n−1, 2n−1, n−1)�, (n−1, n−1, 2n−1)�,
(n− 1, 2n− 1, 2n− 1)�, (2n− 1, 2n− 1, 2n− 1)�, and (n− 1, 2n− 1, 2n− 1)�.
Source s moves on the faces F of D3. We assume that our object is 6-connected
simple object. Figures 2 and 3 show a discrete model of shape from silhouettes
in a space.

For an object O, Setting l(s,O) to be a line which passes through a fixed
source s, we define a collection of voxels d on D3 such that

S = {x|l(s,O)
⋂

O �= ∅}. (22)

A collection of voxels d is the silhouette of object O with respect to the source s.
The boundary voxels on the detector is computed as

∂S = {S \ (S $N26)} ∩D3, (23)

where $ expresses the Minkwoski subtraction operation.

(a) (b) (c) (d)

Fig. 2. Reconstruction of Object in 3D. (a) A source and a silhouette are given. (b)
From a source to points on a silhouette lines are drown. (c) These lines are voted in a
space. (d) The intersection of all lines is the estimation of the original object.
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x

y

z

(3N 1,3N 1,0)

(0,3N 1,3N 1)

(3N 1,3N 1,3N 1)(3N 1,0,3N 1)

(0,0,0) (0,3N 1,0)

(3N 1,0,0)

(0,0,3N 1)

(a) (b) (c) (d)

Fig. 3. Silhouette and Reconstruction of Object in 3D. (a) Geometry of the detectors
and the source of 3Problem. (b) Silhouette of a convex object in a space. (c) Visible
hull of a silhouette. (d) Visible hull of silhouettes.

In D3, for voxels on a line l(s,d) with respect to a source s, we affix the labels
as

h(s,x) =

⎧⎨⎩1, if x ∈ S \ ∂S
2, if x ∈ ∂S
3, otherwise.

(24)

For these labels, we apply the operation

f(p) = max
s∈F

(h(s,d)). (25)

This operation classifies the voxels in D3 as

R̂ = {p|h(p) = 1, 2}, ∂R̂ = {p|h(p) = 2}, D3 \ R̂ = {p|h(p) = 3}. (26)

This is a discrete version of eq. (18).
For these voxels, we have the next theorem.

Theorem 5. If K is the discretisation of a finite convex region in R3, K̂, which
is computed using the relations in eq. (26), satisfies the relation

K̂ \K ⊂ (K ⊕N26 ⊕N26) \K, (27)

where N26 is the eight-neighbourhood of the origin.

Proof. Consider boundary pixels whose centres are (p, q, r)�, (p, q, r+ 1)�, (p+
1, q, r)� and (p, q + 1, r)� of a convex object K. A supercover of a Euclidean
line which touches to K is contains a bubble pixels centred at (p, q, r + 1)�,
(p, q+1, r+1)�, (p+1, q+1, r+1)�, (p+1, q, r+1)�, (p, q, r+2)�, (p, q+1, r+2)�,
(p+1, q+1, r+2)�, and (p+1, q, r+2)�. The maximum 26-connected distance to
these point from K is 2. This geometrical property proves the theorem. (Q.E.D.)

As the two-dimensional analogous of theorem 5, we have the next theorem, since
slices of convex objects are convex.

Theorem 6. If K is the discretisation of a finite convex region in R2, K̂, which
is computed using the relations in eq. (26), satisfies the relation

K̂ \K ⊂ (K ⊕N8 ⊕N8) \K, (28)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4. Reconstruction of Non-Convex Object by Three Methods. (a), (b), and (c) are
three views of the original object. (d), (e), and (f) are reconstructed objects by the
method in Figure 3, Figure 2 (c), and Figure 2 (a), respectively. (g), (h), and (i) are
difference between the original object and reconstructed object. These results show
that the line voting method for S2 has advantages over established methods.

where N8 is the eight-neighbourhood of the origin and ⊕ is the Minkowski addi-
tion of point sets on Rn.

This theorem implies the next theorem.

Theorem 7. If an objectA is slice-convex with respect to axis (1, 0, 0)�, (0, 1, 0)�,
and (0, 0, 1)�,

Â \A ⊂ (A⊕N26 ⊕N26) \A. (29)
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From these theorems, in shape carving and visible voting, smoothing and weight-
ing, respectively, are considered as operations to yield R′ such that

|R̂ΔR′| > |R′ΔR|, R ⊆ R ⊂ R̂, (30)

where

AΔB = (A ∩B) ∪ (A ∩B) (31)

and |A| is the number of elements in set A.
In Figure 4, (a) is reconstructed objects by all lines which pass through de-

tector voxels. (b) is reconstructed by a series of two-dimensional reconstruction.
(c) is reconstructed by view cones whose apex moves on the plane z = 0. This
configuration is widely used in computer vision.

Table 1 lists figures of ÂΔA and ÂΔA2 for three methods, where A2 =
A ⊕ N26 ⊕ N26. Theorem 5 implies that for a convex object K, the relation
Δ(K̂,K2) = 0. This numerical result suggests that Theorem 5 would be valid
for more large class of non-convex objects.

Table 1. Numbers of Different Voxels for |A| = 70413

Object |ÂΔA| |ÂΔA2|
Fig. 4 (a) 5637 0
Fig. 4 (b) 6869 0
Fig. 4 (c) 12380 492

6 Conclusions

In this paper, we formulated shape from silhouettes in three- dimensional discrete
space. This treatment of the problem implied an ambiguity theorem for the
reconstruction of objects in discrete space.
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Abstract. The present paper deals with discrete lines in the 3-
dimensional space. In particular, we focus on the minimal 0-connected
set of closest integer points to a Euclidean line. We propose a definition
which leads to geometric, arithmetic and algorithmic characterizations
of naive discrete lines in the 3-dimensional space.

1 Introduction

In discrete geometry, as in Euclidean one, linear objects are essential. All the
other discrete objects can be approximated as soon as the linear ones have been
characterized. The only well understood class of linear discrete objects is the one
of (d − 1)-dimensional objects in the d-dimensional space, namely, the discrete
hyperplanes [1,2]. Numerous works also exist on 1-dimensional linear discrete
objects. They tackle this problem algorithmically [3,4] or arithmetically [5,6,7].
Moreover, discretization models, such as the standard [8] and the supercover [9]
ones, define 2-connected discrete lines. Nevertheless, as far as we know, many
problems are still open. For instance, we are currently unable to characterize
the minimal 0-connected set of closest integer points to a Euclidean line in the
3-dimensional space.

In the present paper, our purpose is to introduce a modeling of discrete lines
in the 3-dimensional space such that topological properties and the relationship
with the closest integer points to the Euclidean line with same parameter are
easily determined. We propose a representation of the 1-dimensional linear dis-
crete object inspired by the notion of functionality [10,11]. Indeed, a connected
discrete line in the 3-dimensional space should verify some conditions similar to
this notion: we can define subsets of Z3 such that the discrete line is connected
only if it contains at least a point of each of them.

The paper is organized as follows. In the next section, we recall some basic
notions of discrete geometry useful to understand the remainder of the paper.
Then, in the third section, we focus on already known naive discrete line. First
we present the usual 2-dimensional definition which extends in higher dimensions
to discrete hyperplanes. Secondly, the 3-dimensional current definition based on
projections on particular planes is detailed. In the fourth section, we propose
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a definition related to the closest integer points to a Euclidean line and we
introduce its geometric, arithmetic, and algorithmic characterizations in the 3-
dimensional space.

2 Basic Notions

The aim of this section is to introduce the basic notions of discrete geometry
used throughout the present paper. Let d be an integer greater than 1 and let
{e1, . . . , ed} be the canonical basis of the Euclidean vector space Rd. Let us call
discrete set any subset of the discrete space Zd. The point x =

∑d
i=1 xiei ∈ Rd,

with xi ∈ R for each i ∈ {1, . . . , d}, is represented by (x1, . . . , xd). A point v ∈ Zd

is called a voxel in a d-dimensional space or a pixel in a 2-dimensional space.

Definition 1 (k-Adjacency or k-Neighborhood). Let d be the dimension of
the discrete space and k ∈ N such that k < d. Two voxels v = (v1, . . . , vd) and
w = (w1, . . . , wd) are k-neighbors or k-adjacent if and only if:

‖v−w‖∞=max{|v1−w1|, . . . , |vd−wd|} = 1 and ‖v−w‖1 =
d∑

i=1

|vi−wi| ≤ d−k.

Let k ∈ {0, . . . , d− 1}. A discrete set E is said to be k-connected if for each pair
of voxels (v,w) ∈ E2, there exists a finite sequence of voxels (s1, . . . , sp) ∈ Ep

such that v = s1, w = sp and the voxels sj and sj+1 are k-neighbors, for each
j ∈ {1, . . . , p− 1}.

Let E be a discrete set, v ∈ E and k ∈ {0, . . . , d − 1}. The k-connected
component of v in E is the maximal k-connected subset of E (with respect to
set inclusion) containing v.

Definition 2 (k-Separatingness). A discrete set E is k-separating in a dis-
crete set F if its complement in F, E = F \ E, has two distinct k-connected
components. E is called a separator of F.

Definition 3 (k-Simple Point, k-Minimality). Let d be the dimension of the
space and k ∈ N such that k < d. Let also F and E be two discrete sets such that
E is k-separating in F . A voxel v ∈ E is said to be k-simple if E \ {v} remains
k-separating in F. Moreover, a k-separating discrete set in F without k-simple
points is said to be k-minimal in F.

3 Discrete Lines

Lines are elementary objects in geometry. They have been widely studied in
discrete geometry [1] and are the best known discrete objects. However we un-
derstand them in the 2-dimensional space as (d − 1)-dimensional linear objects
and not as 1-dimensional linear objects. Consequently, results on discrete lines in
the 2-dimensional space extend in higher dimension to discrete hyperplanes and
not to discrete lines in d-dimensional spaces. Definitions of discrete lines in the
3-dimensional space exist, but none are equivalent to the minimal 0-connected
set of closest integer points to a Euclidean line.
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3.1 The 2-Dimensional Space: Discrete Lines as Discrete
Hyperplanes

First, discrete line drawing algorithms were designed to provide for the needs
of digital plotters [12]. Later, arithmetic and geometric characterizations have
been proposed [1,2]. The minimal 0-connected set of closest integer points to
a Euclidean line is its closed naive representation [13]. The closed naive model
introduced by E. Andres associates a Euclidean object O with the representation
N(O) defined as follows:

N(O) =
(
B1

(
1
2

)
� O

)
∩ Zd, (1)

=
{
p ∈ Zd;

(
B1

(
1
2

)
� p

)
∩ O �= ∅

}
, (2)

where B1
(

1
2

)
is the ball of radius 1

2 based on ‖ · ‖1, and � denote the Minkowski
sum:

A�B = {a + b;a ∈ A and b ∈ B} .
In Figure 1(a), an example of definition (1) is shown. The selected points are
the ones contained in the band described by the translation of B1

(
1
2

)
along

the discrete line. In Figure 1(b), an example of definition (2) is shown. The
selected discrete points are the ones for which the intersection between the ball
B1

(
1
2

)
centered on them and the Euclidean line is not empty. Both definitions

are equivalent.
From an arithmetic point of view, the closed naive representation N(D(n, μ))

of the Euclidean line D(n, μ) with normal vector n = (a, b) ∈ Z2 and translation
parameter μ is defined as follows:

N (D(n)) =
{
p = (i, j) ∈ Z2;−‖n‖∞

2
≤ ai+ bj + μ ≤ ‖n‖∞

2

}
(3)

Such an arithmetic representation is well adapted to the deduction of properties,
such as the membership of a discrete point to a discrete line, and the definition
of drawing and recognition algorithms.

(a) (b) (c)

Fig. 1. (a) First definition of the closed naive representation of a line, (b) Second defi-
nition of the closed naive representation of a line, (c) The associated naive discrete line
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However, the closed naive representation of an object can contain 0-simple
points. A simple way to avoid such configuration is to restrict one of the in-
equalities in (3). By doing so, we obtain the naive line N (D(n, μ)) introduced
by J.-P. Reveillès [1], defined as follows:

N (D(n, μ)) =
{
p = (i, j) ∈ Z2;−‖n‖∞

2
≤ ai+ bj + μ <

‖n‖∞
2

}
(4)

Definition (4) is the common definition of discrete lines because it leads to the
minimal 0-connected discrete set without simple points, as shown in Figure 1(c).
J. Bresenham’s line [12] is, in particular, a naive discrete line.

The above mentioned models of discrete lines easily extend in higher dimen-
sions to discrete hyperplanes [1,2]. In particular, we have the following naive
model of P(n, μ), the hyperplane with normal vector n ∈ Zd and μ ∈ Z its
translation parameter:

N (P(n, μ)) =

{
v = (v1..., vd) ∈ Zd;−‖n‖∞

2
≤

d∑
i=1

nivi + μ <
‖n‖∞

2

}
(5)

In the 2-dimensional space, discrete lines are defined by their normal vector.
This is not possible in higher dimensions: a line is then defined by its direction
vector or its normal hyperplane. Another approach is necessary to understand
them.

3.2 3-Dimensional Space: Discrete Lines and Projections

The closed naive description of a Euclidean line in the 3-dimensional space does
not share all the properties of a Euclidean line in the 2-dimensional space. In
particular, such a discrete set is not 0-connected.

Example 1. Let v = (1, 1, 2) be the direction vector of the Euclidean line D3D(v)
through the origin. Then, N (D3D(v)), its closed naive representation is defined
as follows:

N (D3D(v)) = {p.(1, 1, 2); p ∈ Z} .
This set is obviously not connected.

Another definition have been proposed to characterize naive discrete lines in the
3-dimensional space. It was first introduced by A. Kaufman and E. Shimony [3]
with an algorithm computing incrementally the set of its points. This algorithm
is a generalization to the 3-dimensional space of the J. Bresenham’s classical 2-
dimensional one [12]. Considering that this naive line is provided with a direction
vector v = (a, b, c) such that ‖v‖∞ = c �= 0 and gcd(a, b, c) = 1, its projections
on the planes normal to e1 and e2 (both equivalent to the 2-dimensional space
Z2) are naive discrete lines. This simplification is the key point of the approach.

Later, I. Debled-Rennesson [7], O. Figueiredo and J.-P. Reveillès [5,6] proposed
an arithmetic characterization of naive discrete lines in the 3-dimensional space.
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N(D3D(v)), the naive representation of the Euclidean line D3D(v) through the
origin and directed by v = (a, b, c), such that ‖v‖∞ = c �= 0 and gcd(a, b, c) = 1,
is the set of discrete points n = (i, j, k) ∈ Z3 verifying:{

− c
2 ≤ bk − cj < c

2
− c

2 ≤ ci− ak < c
2

(6)

This arithmetic definition characterizes the same set as A. Kaufman and
E. Shimony’s algorithm [6].

In [6], O. Figueiredo and J.-P. Reveillès notice that the resulting set is different
from the one of the closest discrete points to the Euclidean line D3D(v).

Example 2. Let v = (1, 2, 4) be the direction vector of the Euclidean line D3D(v).
Then, N (D3D(v)), the naive discrete representation of D3D(v) is the set of
points:

N (D3D(v)) = {pv � {(0, 0, 0), (0, 1, 1), (1, 1, 2), (1, 2, 3)} ; p ∈ Z} .

The Euclidean distance between the points {p.v � (0, 1, 1); p ∈ Z} and the Eu-
clidean line D3D(v) is of 0.535, whereas the points {pv � (0, 0, 1); p ∈ Z} are only
at a distance of 0.487 from the line. So the set of the closest points to the Euclidean
line D3D(v) is:

{p.v � {(0, 0, 0), (0,0,1), (1, 1, 2), (1, 2, 3)} ; p ∈ Z} .

Fig. 2. The naive discrete line directed by (1, 2, 4), for which projections are 2-
dimensional naive discrete lines, contains an error in the point selection

Anotherdefinitionofdiscrete lineswas introducedbyV.BrimkovandR.Barneva
in [14].Graceful lines are seenas intersectionofparticulardiscreteplanes, the grace-
ful ones. They are 0-connected but not minimal sets.

4 Discrete Lines as Sets of Closest Integer Points

The usual definition of discrete lines in 3-dimensional space is not satisfactory
because it it not equivalent to the set of the closest integer points to the Euclidean
line with same parameters and because geometric properties are lost. In the
sequel, we propose a definition which overcomes these limitations and leads to
geometric, arithmetic and algorithmic characterizations.
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4.1 Minimal 0-Connected Set of Closest Integer Points

We are interested in the thinnest discrete line D3D(v) through the origin and
directed by v = (a, b, c) ∈ N3 such that ‖v‖∞ = c �= 0 and gcd(a, b, c) = 1. By
thinnest, we mean the minimal (with respect to set inclusion) 0-connected set
constituted by the closest discrete points to the Euclidean line D3D(v).

Theorem 1. The discrete line D3D(v) is 0-connected if and only if :

∀k ∈ Z, ∃(i, j) ∈ Z2; (i, j, k) ∈ D3D(v).

Proof (Sketch). If ∃k ∈ Z such that �(i, j) ∈ Z2, (i, j, k) ∈ D3D(v) then D3D(v)
is not 0-connected since the discrete plane P(e3, k, 1) is 0-separating in Z3 and
points of D3D(v) belongs to both sides of it. Thus, if D3D(v) is 0-connected,
then ∀k ∈ Z, ∃(i, j) ∈ Z2, (i, j, k) ∈ D3D(v).

The discrete line D3D(v) is the set of closest discrete points to the Euclidean
line D3D(v). Let us assume that n and m ∈ Z3 belong to D3D(v) such that
km = kn + 1. From the initial conditions on the direction vector v (‖v‖∞ =
c �= 0), the intersection between D3D(v) and P(e3, km), the plane normal to e3

containing m, is the intersection between D3D(v) and P(e3, kn) translated by
vector (a

c ,
b
c , 1). As the criterion is the distance to the line, in the worst case,

m = n + (1, 1, 1) and finally for each kn, n and m are always 0-adjacent. Thus,
if ∀k ∈ Z, ∃(i, j) ∈ Z2, (i, j, k) ∈ D3D(v), then D3D(v) is 0-connected. ��

So for each k ∈ Z, we look for the closest discrete points n = (i, j, k) ∈ Z3 to
D3D(v). Let us now define V3D (Figure 3(a)), a subset of R3 we use to determine
them.

Definition 4. Let P(e3, 0) be the Euclidean plane of normal vector e3 and with
translation parameter 0. Then, V3D is defined as follows:

V3D =
(
B∞

(
1
2

)
\
{
x ∈ R3; ‖x‖∞ =

1
2

and sgn(x1) = −sgn(x2)
})

∩P(e3, 0).

Let k ∈ Z. Let P(e3, k) be the Euclidean plane of normal vector e3 and with
translation parameter k. Let D3D(v) be the Euclidean line through the origin
and directed by v = (a, b, c) ∈ N3 such that ‖v‖∞ = c �= 0 and gcd(a, b, c) = 1.
Let x = D3D(v)∩P(e3, k) be the intersection between the line D3D(v) and the
plane P(e3, k).

V3D centered on x obviously contains at least one discrete point:

(V3D � x) ∩ Z3 �= ∅,

and:

Proposition 1. V3D centered on x contains the closest discrete points, included
in P(e3, k), to D3D(v):

∀n ∈ (V3D � x) ∩ Z3, d2 (n,D3D(v)) = min
m∈P(e3,k)∩Z3

{d2 (m,D3D(v))} (7)
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Proof (Sketch). In order to prove this proposition, we have to evaluate the dis-
tance from the point n to the line D3D(v). The cross product v × n is useful
since its norm 2 is equal to this distance multiplied by ‖n‖2. Then, points x are
of the form

(
ka
c ,

kb
c , k

)
and points n are of the form

(
ka
c + ε1, kb

c + ε2, k
)
. Those

considerations are the key points to demonstrate the proposition. ��
This result allows to geometrically characterize the minimal 0-connected set
D3D(v) of the closest discrete points to the euclidean line D3D(v).

Theorem 2. The minimal 0-connected set D3D(v) of the closest discrete points
to the Euclidean line D3D(v) with normal vector v = (a, b, c) ∈ N3 such that
‖v‖∞ = c �= 0 and gcd(a, b, c) = 1 is:

D3D(v) = (V3D � D3D(v)) ∩ Z3 (8)
=
{
p ∈ Z3; (V3D � p) ∩ D3D(v) �= ∅

}
(9)

Proof. Theorem 2 is a direct consequence of Proposition 1. V3D is normal to
e3. It can contains discrete points only if its component relative to e3 is an
integer. In this particular case, V3D contains only the discrete points of P(e3, k)
for which the euclidean distance to the line D3D(v) is minimal. Thus, for each
k ∈ Z, we select the points, at least one, closest to the line and obtain the
minimal 0-connected set we are looking for. ��

4.2 Naive Discrete Lines in the 3-Dimensional Space

In order to obtain a naive discrete line in the 3-dimensional space, we arbitrarily
select one discrete point when several are possible in D3D(v). From the solution

e1

e3

e2

(a)

e1

e3

e2

(b) (c)

Fig. 3. (a) V3D, (b) The arbitrary point selection which leads to inequalities in (10) , (c)
The resulting naive representation of the line through the origin and directed by (2, 3, 6)
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shown in Figure 3(b) and the cross product v × n we deduce the following
arithmetic definition. Only two components of the cross product are evaluated
since the third one depends on them.

Definition 5. Let v = (a, b, c) ∈ N3 such that ‖v‖∞ = c �= 0 and gcd(a, b, c) =
1. The naive discrete line through the origin and directed by v is the set of
discrete points n = (i, j, k) ∈ Z3 such that:⎧⎨⎩

− c
2 ≤ sgn(ci− ak) (bk − cj) < c

2 ,
− c

2 ≤ sgn(bk − cj) (ci− ak) < c
2 ,

(ci− ak, bk − cj) �=
(

c
2 ,

c
2

) (10)

An example of the resulting set is shown in Figure 3(c) for the line directed by
(2, 3, 6). Its orthogonal projections on planes with normal vector e1 or e2 are
not discrete lines.

Algorithm 1. Naive 3-dimensional discrete line drawing
Input : v = (a, b, c) ∈ N3, 0 ≤ a, b ≤ c, c = 0 and gcd(a, b, c) = 1.
Output : D3D(v), the naive 3-dimensional discrete line trough the origin and

directed by v.

i = 0, j = 0, k = 0;
p1 = 0, p2 = 0, p3 = 0;
select(i, j, k);
for k = 1 to c do

p1 = p1 + b;
p2 = p2 − a;
if |p1| > |p1 − c| then

p1 = p1 − c;
p3 = p3 + a;
j + +;

end if
if |p2| > |p2 + c| then

p2 = p2 + c;
p3 = p3 − b;
i + +;

end if
if |p1| = |p1 − c| and |p3| > |p3 + a| then

p1 = p1 − c;
p3 = p3 + a;
j + +;

end if
if |p2| = |p2 + c| and |p3| > |p3 − b| then

p2 = p2 + c;
p3 = p3 − b;
i + +;

end if
select(i, j, k);

end for
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From the arithmetic definition (10), we design a simple drawing algorithm
described in Algorithm 1. We use the three components (p1, p2, p3) of the cross
product v×n to evaluate the distance from n = (i, j, k) to the line, and not only
p1 and p2 as in the arithmetic definition. p3 allows us to determine incrementally
which of the inequality should be considered large without studying the sign of
p1 and p2. First, the algorithm is initiated with a trivial point of the discrete set,
(0, 0, 0) for which v×n = 0. Then k will be incremented until it reaches the value
c. At each step, four conditions are successively evaluated. Both first are true if
the bounds of inequalities in (10) are not concerned. They check if the current
point (i, j, k) is close to the line or if it has to be updated by incrementing either
i or j or the both. The two last conditions concern the bound of the inequalities
in (10). To choose between them without studying the sign of p1 or p2, we just
study the distance to the line. When |p1| = |p1−c|, changing p1 has no influence
on the distance to the line. Moreover, p2 is fixed and so do not change the
distance either. So, in order to minimize the distance, it is then sufficient to
minimize p3. That’s what is done with the two last conditions. The exclusion of
the point n = (i, j, k) ∈ Z3 such that (bk− cj, ci− ak) = ( c

2 ,
c
2 ) is a consequence

of the strict inequalities |p3| > |p3 + a| and |p3| > |p3 − b|.

5 Conclusion

In the present paper, we have proposed a definition of naive discrete lines in the
3-dimensional space and given geometric, arithmetic and algorithmic character-
izations. The resulting set is the minimal 0-connected set of the closest integer
points to a Euclidean line. This is a significant property since we expect from a
discretization that it approximates as close as possible its Euclidean equivalent.
Previous definitions are unable to fulfill this requirement. Indeed, in order to
simplify the original 3-dimensional problem, they reduce it to the determination
of the discrete points belonging to two naive lines in the 2-dimensional space
and thus loose relationship between the different directions of the space. Our
definition provide naive 3-dimensional discrete line with new geometric proper-
ties. We recover the intrinsic symmetry of line in case where D3D(v) does not
contain simple points. At the opposite, the projections on the planes normal to
the vectors of the basis do not correspond to any particular discrete sets. Con-
sequently, the representation of discrete lines as intersections of discrete planes
do not seem compatible with our approach.

The study of 3-dimensional discrete line not only concern naive ones. The
determination of the best k-connected approximation of a Euclidean line is also
of interest. In the same way, trying to extend results to the d-dimensional case
could confirm or invalidate our approach.

The closed naive model allows discretizations of hyperplanes with geometric
and topological properties. It seems that it is also the case for the largest class
of (d− 1)-dimensional objects as hyperspheres. At the opposite, it leads to noth-
ing when apply on objects of other dimensions. The appropriated discretization
model certainly depends on the dimension of the considered object. It would be
interesting to applied our discretization scheme to other planar objects like circles.
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Abstract. This paper discusses general object recognition by using im-
age set in the scenario where multiple shots are available for each object.
As a way of matching sets of images, canonical correlations offer many
benefits in accuracy, efficiency, and robustness compared to the classical
parametric distribution-based and non-parametric sample-based meth-
ods. However, it is essentially an representative but not a discriminative
way for all the previous methods in using canonical correlations for com-
paring sets of images. Our purpose is to define a transformation such
that, in the transformed space, the sum of canonical correlations (the
cosine value of the principle angles between any two subspaces) of the
intra-class image sets can be minimized and meantime the sum of canon-
ical correlations of the inter-class image sets can be maximized. This is
done by learning a margin-maximized linear discriminant function of the
canonical correlations. Finally, this transformation is derived by a novel
iterative optimization process. In this way, a discriminative way of using
canonical correlations is presented. The proposed method significantly
outperforms the state-of-the-art methods for two different object recog-
nition problems on two large databases: a celebrity face database which
is constructed using Image Google and the ALOI database of generic
objects where hundreds of sets of images are taken at different views.

1 Introduction

In this paper, we consider multiple-shot based object recognition in the general
settings where a set or several sets of images of an object is available. See Figure
1 for examples of two sets of face patterns of the same subject. The objective
of this work is to efficiently classify a novel set of images to one of the training
classes, each represented by one or several sets of vectors. This work does not
explicitly investigate any temporal information between consecutive images or
semantics in images as in [14, 15], but is solely based on learning the labeled
image sets. Therefore, we expect that the proposed method can be applied to
many other problems requiring a set comparison.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 628–637, 2006.
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The previous related approaches for set matching can be broadly partitioned
into parametric-distribution model-based and pair-wise sample-based methods.
In the model-based approaches [1, 2], each set is represented by a parametric
distribution model, typically Gaussian. The closeness of the two distributions
is then measured by the Kullback-Leibler Divergence (KLD) distance. However,
these methods easily fail due to the difficulty of parameter estimation with lim-
ited training data. The other way is based on the matching of pair-wise samples
of sets, e.g. Nearest Neighbor (NN) or Hausdorff-distance matching [7]. However,
they often suffer from outliers (noise) as well as the natural variability of the
sensory data due to the 3D nature of the observed objects. In addition, such
methods are extremely computationally expensive.

Recently, canonical angles [12, 13] has attracted increasing attention for image-
set matching [9-11]. Each set is represented by a linear subspace and the angles
between two subspaces are exploited as a similarity measure of two sets. Compared
with distribution- and sample-based matching methods, the benefits of canonical
angles have been noted in [2,11]. The kernelized canonical angles was proposed in
[10]. A heuristic Constrained Mutual Subspace Method (CMSM) was proposed
in [11]. In CMSM, a constrained subspace is defined as the subspace in which the
entire class population exhibits small variance. It was showed that the sets of dif-
ferent classes in the constrained subspace had large canonical angles. However,
the principle of CMSM is rather heuristic, especially the process of selecting the
dimensionality of the constrained subspace.

Although the previous canonical-angle based methods have achieved some
promising results, however, it is essentially not a discriminative but only a rep-
resentative way of all the previous methods to use canonical angles for comparing
sets of images. This paper presents a novel margin maximizing linear discrimi-
nant analysis of image sets based on canonical angles, called Margin Maximizing
Discriminant Analysis of Canonical Correlations (MMCC). Our goal is to de-
rive a transformation such that, in the transformed space, the sum of canonical
correlations of the intra-class image sets can be minimized and meantime the
sum of canonical correlations of the inter-class image sets can be maximized.
This is done by learning a margin-maximized linear discriminant function of
the canonical correlations. The linear mapping is solved using a novel iterative
optimization algorithm. The discriminative capability of the proposed method
is shown to be significantly better than the method [7] that simply aggregates
canonical correlations and the k-NN methods in the LDA (linear discriminant
analysis) subspace [7]. Compared with CMSM [11], the proposed method achieve
higher accuracy and is more practical due to its simplicity in feature selection.
In addition, it is more theoretically appealing.

2 Canonical Correlations

Canonical correlations, the cosines of canonical angles 0 ≤ θ1 ≤ · · · ≤ θd ≤ π
2

between any two d-dimensional linear subspaces, L1 and L2, are defined as:

cos θi = max
ui∈L1

max
vi∈L2

uT
i vi (1)
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subject to uT
i ui = vT

i vi = 1, uT
i uj = vT

i vj = 0, for i �= j. The SVD solution
[14] is more numerically stable compared with the others, and it is as follows:
Assume that P1 ∈ Rn×d and P2 ∈ Rn×d form unitary orthogonal basis matrices
for two linear subspaces, L1 and L2. Let the SVD of PT

1 P2 be

PT
1 P2 = Q12ΛQT

21 s.t. Λ = diag(σ1, · · · , σd) (2)

where Q12 and Q21 are orthogonal matrices, i.e. QT
ijQij = QijQT

ij = Id. Canon-
ical correlations are {σ1, · · · , σd} and the associated canonical vectors are U =
P1Q12 = [u1, . . . ,ud], V = P2Q21 = [v1, . . . ,vd]. The canonical correlations tell
us how close are the closest vectors of two subspaces. See Figure 2 for the canon-
ical vectors computed from the sample image sets given in Figure 1. Although
the principal components vary for different imaging conditions of the sets, the
canonical vectors well capture the common modes of the two different sets.

(a) (b)

Fig. 1. Two sets of face images of Pierce Brosnan

(a) (b)

Fig. 2. Principal components vs. canonical vectors. (a) The first 4 principal components
computed from the two image sets shown in Figure 1. The principal components of
the different image sets (see each column) show significantly different variations even
for the same objects. (b) The first 4 canonical vectors of the two image sets. Every
pair of canonical vectors (each column) well captures the common modes (views and
illuminations) of the two sets, i.e. the pairwise canonical vectors are almost similar.

3 Margin Maximizing Discriminant Analysis of Canonical
Correlations

Assume m sets of vectors are given as {X1, . . . ,Xm}, where Xi describes the
i-th set containing n-dimensional observation vectors (or images) in its columns.
Each set belongs to one of object classes, Ci. A d-dimensional linear subspace
of the i-th set is represented by an orthonormal basis matrix Pi ∈ Rn×d s.t.
XiXT

i % PiΛiPT
i , where Λi, Pi are the eigenvalue and eigenvector matrices of

the d largest eigenvalues respectively. We define a transformation matrix T, T:
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Xi −→ Yi = TT Xi, so that the transformed image sets are more class-wise
discriminative using canonical correlations.

The orthonormal basis matrices of the subspaces for the transformed data are
obtained from the previous matrix factorization of XiXT

i :

YiYT
i = (TT Xi)(TT Xi)T % (TT Pi)Λi(TT Pi)T (3)

Generally, TT Pi is not an orthonormal basis matrix. Note that canonical cor-
relations are defined only for orthonormal basis matrices of subspaces. There-
fore, a normalization process of Pi to P

′
i is performed as follows so that TT P

′
i

can represent an orthonormal basis matrix of the transformed data. For nor-
malization, QR-decomposition of TT Pi is first performed s.t. TT Pi = ΦiΔi,
where Φi ∈ Rn×d is the orthonormal matrix with the first d columns and
Δi ∈ Rd×d is the invertible upper-triangular matrix with the first d rows. From
(3), Yi = TT Pi

√
Λi = ΦiΔi

√
Λi. As Δi

√
Λi is still an upper-triangular matrix,

Φi can represent an orthonormal basis matrix of the transformed data Yi. As
Δi is invertible,

Φi = TT (PiΔ
−1
i ) −→ P

′
i = PiΔ

−1
i (4)

The similarity of any two transformed data sets are defined as the sum of
canonical correlations by

Fij = max
Qij ,Qji

tr(Mij) (5)

Mij = QT
ijP

′T
i TTT P

′
jQji or Mij = TT P

′
jQjiQT

ijP
′T
i T (6)

as tr(AB) = tr(BA) for any matrix A and B. Qij and Qji are the rotation
matrices defined in the solution of canonical correlations (2).

Maximum Margin Criterion (MMC) [19] is a recently proposed feature ex-
traction criterion. This new criterion is general in the sense that when com-
bined with a suitable constraint it can actually give rise to the most popular
feature extractor in the literature, i.e. Linear Discriminant Analysis. Using the
same representation as LDA, the goal of MMC is to maximize the criterion
J (W) = WT (Sb − Sw)W. Although both MMC and LDA [20] are supervised
subspace learning approaches, the new feature extractors derived from MMC do
not suffer from the Small Sample Size problem [20], which is known to cause
serious stability problems for LDA (based on Fisher’s criterion). Compared with
the other LDA-based methods, e.g., Fisherface [3], Null-space based LDA [4,5],
Direct-LDA [6], MMC-based discriminant analysis does not discard those useful
discriminative information embedded in some specific subspaces1 to ensure the
stable solutions. In addition, the computation of MMC is easier than that of
LDA since MMC does not have inverse operation. The projection matrix W can
be obtained by solving the following eigenvector decomposition problem:

(Sb − Sw)W = WΛ (7)
1 These discarded subspaces are: the null-space of Sw in [3], the range space of Sw in

[4,5] and the null-space of Sb in [6].
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The transformation T is found to maximize the similarities of any pairs of sets
of inter-classes while minimizing the similarities of pairwise sets of intra-classes.
Matrix T is defined by

T = argmax
T

(
m∑

i=1

∑
l∈Bi

Fil −
m∑

i=1

∑
k∈Wi

Fik) (8)

where Bi = {j|Xj ∈ C̄i} and Wi = {j|Xj ∈ Ci}. That is, the two sets Wi and Bi

denote the within-class and between-class sets of a given set class i respectively,
which are similarly defined with [3].

The optimization problem of T involves the variables of Q, P
′

as well as
T. As the other variables are not explicitly represented by T, a closed form
solution for T is hard to find. We propose an iterative optimization algorithm.
Thus, the proposed iterative optimization is comprised of the three main steps:
normalization of P, optimization of matrices Q and T. The normalization of P
has been introduced above, and the optimization of Q and T is as follows:

Table 1. Margin Maximized Discriminant Analysis of Canonical Correlations

Algorithm: Margin Maximized Discriminant Analysis of Canonical Correlations

1. Input: All Pi ∈ Rn×d

2. T ←− In

3. Do the iterations as follows:

4. For each i, do QR-decomposition: TT Pi = ΦiΔi −→ P
′
i = PiΔ

−1
i

5. For each pair, i, j, do SVD: P
′T
i TTTP

′
i = QijΛQT

ji

6. Compute S
′
b = m

i=1 k∈Bi
(P

′
lQli − P

′
iQil)(P

′
lQli − P

′
iQil)

T ,

S
′
w = m

i=1 k∈Wi
(P

′
kQki − P

′
iQik)(P

′
kQki − P

′
iQik)T

7. Solve the eigenvalue problem of (S
′
b − S

′
w)T = TΛ.

8. Output: T ∈ Rn×n

Rotation matrices Qij for every i, j are obtained for a fixed T and P
′
i. The

correlation matrix Mij in the left of (5) can be conveniently used for the opti-
mization of Qij , as it has Qij outside of the matrix product. Let the SVD of
P

′T
i TTT P

′
i be

P
′T
i TTT P

′
i = QijΛQT

ji (9)

where Λ is a diagonal matrix, and Qij and Qji are orthogonal rotation matrices.
The optimal discriminant transformation T is computed for given P

′
i and Qij

by using the definition of Mij in the right of (5) and (6). With T being on the
outside of the matrix product, it is convenient to solve for. The discriminative
function is found by

T = argmax
T
tr(TT (Sb − Sw)T) (10)

Sb =
m∑

i=1

∑
l∈Bi

P
′
lQliQT

ilP
′T
i , Sw =

m∑
i=1

∑
k∈Wi

P
′
kQkiQT

ikP
′T
i (11)
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where Wi = {j|Xj ∈ Ci} and Bi = {j|Xj ∈ C̄i}. For a more stable solution, an
alternative optimization is finally proposed by

T = argmax
T
tr(TT (S

′
b − S

′
w)T) (12)

where S
′
b =

∑m
i=1

∑
k∈Bi

(P
′
lQli−P

′
iQil)(P

′
lQli−P

′
iQil)T and S

′
w =

∑m
i=1

∑
k∈Wi

(P
′
kQki − P

′
iQik)(P

′
kQki − P

′
iQik)T .

Note that no loss of generality is incurred by this modification of the objective
function as AT B = I− 1

2 (A−B)T (A−B) if A = TT P
′
iQij and A = TT P

′
jQji.

The solution of Eq.10 is obtained by solving the following eigenvalue problem,

(S
′
b − S

′
w)T = TΛ (13)

Note that the proposed margin maximizing discriminant learning criterion can
avoid a singular case of S

′
w as in Fisher Linear Discriminant (FLD) [3] where the

Fisher criterion is adopted. No additional steps are required to accommodate the
singularity problem as in [3,4,5,6] and, therefore, no discriminant information
is lost. In addition, the computation complexity becomes simpler by avoiding
solving the inverse of S

′
w. With the identity matrix I ∈ Rn×n as the initial value
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Fig. 3. (a) Convergence after several iterations. (b) Dimensionality selection for the
proposed method and CMSM. The proposed method is more favorable than CMSM
in dimensionality selection. CMSM shows a high peaking. (c) Sample images from the
Celebrity Face Database.

of T, the algorithm is iterated until it converges to a stable point. A Pseudo-code
for the learning is given in Table 1. See Figure 3 (a), it converges fast and stably.
After T is found to maximize the sum of canonical correlations of inter-class sets
and minimize that of intra-class sets, a comparisons of any two sets is achieved
using the similarity value defined in Eq.4.

4 Experimental Results and Discussion

4.1 Experimental Setting for Face Recognition

We have acquired a database called Celebrity Face Database for 160 celebri-
ties all over the world, see Fig.3 (c) for some sample images. All of these face
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images are obtained using Google image searching engine. 240 face images are
gathered for each person with significant variations in pose, illumination and
expressions. All face images are rotated roughly and normalized to the size of
20×20 according to the eye positions. We divide the 240 face images of the same
person into 6 groups with each group containing 40 face images (some groups
have larger variations in lighting conditions than others). For each person, two
groups of face images are used as training sets for the construction of within-class
sets and between-class sets, and the left four groups are for testing. Therefore,
altogether 15 (C2

6) training/test combinations are formed to examine the per-
formance of recognition. We compared the performance of MMCC algorithm to
that of the following algorithms: (1) K-L Divergence algorithm (KLD) [1]; (2) k-
Nearest Neighbours (k-NN) and Hausdorff distance in (i) PCA, and (ii) LDA [3]
subspaces estimated from training data [7]; (3) Mutual Subspace Method (MSM)
[9], which is equivalent to the simple aggregation of canonical correlations; (4)
Constrained MSM (CMSM) [11] used in a commercial system FacePass [21].

In KLD, 95% of data energy was explained by the principal subspace of train-
ing data used. In NN-PCA, the optimal number of principal components was 150
without the first three. In NN-LDA, PCA with 150 dimensions (removal of the
first 3 principal components did not improve the LDA performance) was applied
first to avoid singularity problems and the best dimension of LDA subspace was
150 again. In both MSM and CMSM, the PCA dimension of each image set was
fixed to 10, which represents more than 98% of data energy of the set. All 10
canonical correlations were exploited. In CMSM, the best dimension of the con-
strained subspace was found to be 300 in terms of the test recognition rates as
shown in Figure 3 (b). The CMSM exhibits a peaking and does not have a princi-
pled way of choosing dimensionality of the constrained subspace in practice. By
contrast, the proposed method provided constant recognition rates regardless of
dimensionality of T beyond a certain point, as shown in Figure 3 (b). Thus we
could fix the dimensionality at 250 for all experiments. This behavior is highly
beneficial from the practical point of view. The PCA dimension of image sets
was also fixed to 10 for the proposed method.

The 15 experiments were arranged in the order of increasing K-L Divergence
between the training and test data. Lower K-L Divergence indicates more sim-
ilar conditions. The recognition rates of the evaluated algorithms is shown in
Figure 4. First, different methods of measuring set similarity were compared in
Figure 4 (a). Most of the methods generally had lower recognition rates for ex-
periments having larger KL-Divergence. The KLD method achieved by far the
worst recognition rate. Considering the arbitrary lighting and viewing conditions
across data, the distribution of within-class face patterns was very broad, mak-
ing this result unsurprising. As representatives of non-parametric sample-based
matching, the 1-NN, 10-NN, and Hausdorff distance methods defined in the PCA
subspace were evaluated. It was observed that the Hausdorff-distance measure
provided consistent but far poorer results than the NN methods. 10-NN yielded
the best accuracy of the three, which is worse than MSM by 7.5% on average.
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Its performance greatly varied across the experiments while MSM showed robust
performance under the different experimental conditions.
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Fig. 4. Recognition rates for the 15 experiments. (a) Methods of set matching. (b)
Methods of set matching combined with discriminative transformations. (The variation
between the training and test data of the experiments increases along the horizontal
axis. Note that (a) and (b) have different scales for vertical axis.)

Second, methods combined with any discriminant function were compared in
Figure 4 (b). Note that Figure 4 (a) and (b) have different scales. By taking MSM
as a gauging proxy, 1-NN, 10-NN and Hausdorff-distance in the LDA subspace
and CMSM were compared with the proposed algorithm. Here again, 10-NN
was the best of the three LDA methods. For better visualization of comparative
results, the performance of 1-NN and Hausdorff in LDA was removed from the
figure. 10-NN-LDA yielded a big improvement over 10-NN-PCA but the accuracy
of the method again greatly varied across the experiments. Note that 10-NN-
LDA outperformed MSM for similar conditions between the training and test
sets, but it became noticeably inferior as the conditions changed. The recognition
rate of NN-LDA was considerably inferior to our method for the more difficult
experiments (experiments 11 to 15 in Figure 4 (b) where lighting conditions differ
significantly). The accuracy of our method remained high at 94%. Note that the
experiments 11 to 15 in Figure 4 are more realistic than the first half because
they have greater variation in lighting conditions between training and testing.
The proposed method also constantly provided a significant improvement over
MSM by 5-10% reaching almost more than 97% recognition rate. Compared
with CMSM, the proposed method achieved both higher accuracy and efficiency.
CMSM has to be optimized aposteriori by dimensionality selection. By contrast,
MMCC does not need any feature selection.

4.2 Experiment on Generic Object Recognition

The ALOI database [17] with 500 general object categories of different viewing an-
gles provides another experimental data set for the comparison. The training and
test sets were set up with different viewing angles of the objects, see Figure 5 (a).
Object images were segmented from the simple background and scaled to 20 × 20
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Fig. 5. ALOI experiment. (a) top two rows: the training set of one object; bottom two
rows: two test sets. (b) Cumulative identification plots of several methods.

pixel size. The images for each object is divided into four groups, with viewing an-
gle distributed by {0, 20, 40, ... 340}, {5, 25, 45, ... 345}, {10, 30, 50, ... 350} and
{15, 35, 55, ... 355}. Two sets are for training and the left two for test. The methods
of MSM, NN-LDA and CMSM were compared with the proposed method in terms
of identification rate. The PCA dimensionality of each set was fixed to 5 and thus 5
canonical correlations were exploited for MSM, CMSM and the proposed method.
Similarly, 5 nearest neighbors were used in LDA. See Figure 5 (b) for the cumula-
tive identification rates. Unlike the face experiment, NN-LDA yielded better ac-
curacy than both MSM and CMSM. This might be due to the nearest neighbours
of the training and test set differed only slightly by the five degree pose difference
(The two sets had no changes in lighting and they had accurate localization of the
objects.). Here again, the proposed method were substantially superior to MSM,
CMSM and NN-LDA.

5 Conclusions

This paper presents a margin maximizing discriminant analysis of canonical
correlations for multiple-shot based object recognition. Our goal is to derive a
mapping so that, in the mapped space, the canonical correlations of the intra-
class image sets can be minimized and canonical correlations of the inter-class
image sets can be maximized. This is done by learning a margin-maximized
discriminant function of the canonical correlations. The proposed method is
tested on two large data sets for two object recognition problems, face and
generic object recognition. Experiment results shows its superior performance.
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Abstract. A 3D Partitioned Active Shape Model (PASM) is proposed
in this paper to address the problems of 3D Active Shape Models (ASM)
caused by the limited numbers of training samples, which is usually the
case in 3D segmentation. When training sets are small, 3D ASMs tend
to be restrictive, because the plausible area/allowable region spanned
by relatively few eigenvectors cannot capture the full range of shape
variability. 3D PASMs overcome this limitation by using a partitioned
representation of the ASM. Given a Point Distribution Model (PDM),
the mean mesh is partitioned into a group of small tiles. The statistical
priors of tiles are estimated by applying Principal Component Analysis
to each tile to constrain corresponding tiles during deformation. To avoid
the inconsistency of shapes between tiles, samples are projected as curves
in one hyperspace, instead of point clouds in several hyperspaces. The
deformed model points are then fitted into the allowable region of the
model by using a curve alignment scheme. The experiments on 3D human
brain MRIs show that when the numbers of the training samples are
limited, the 3D PASMs significantly improve the segmentation results
as compared to 3D ASMs and 3D Hierarchical ASMs, which are the
extension of the 2D Hierarchical ASM to the 3D case.

1 Introduction

Deformable models are initially proposed in [1], known as “Snakes”, which im-
pose a constraint of local smoothness derived by elastic forces. However, snakes
are often too flexible, because they tolerate deformation as long as the deforma-
tion is smooth. When models are attracted to spurious edges, the models are not
likely recover this drift, unless this deformation creates sharp peaks. Thus, the
robustness to rough initial positions suffers. Therefore, snakes are more suitable
for human-machine interfaces.

On the other hand, statistical shape models, which constrain the deformation
using statistical priors derived from a set of training samples, overcome these
limitations. Among statistical shape models, the 2D Active Shape Model (ASM)
[2] provide a promise to improve the robustness of the model to local minimum
by restricting the deformation within the allowable region. Hill et al. extend the
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2D ASM to the 3D case for 3D medical image analysis in [3]. Paulsen et al. [4]
build a 3D ASM for testing of gender related difference in size and shape of the
ear canal. Kaus et al. [5] construct 3D ASMs to segment vertebras and femurs
from CT images.

However, in 3D segmentation, 3D ASM often constrains itself from catching de-
tails during deformations. This is because the number of eigenvectors/eigenmodes
cannot exceed the number of training samples, in the case of the dimension of the
model being large, which is usually the case in 3D segmentation, as the dimension
of the model is typically two or three orders of magnitude higher than the num-
ber of training samples. It is difficult to estimate a high-dimensional probability
distribution from a small training set. Therefore, the allowable region spanned by
the relatively few eigenvectors limits the deformation of ASM to catch details. A
solution is by using large training sets. However, it requires manually segmenting
3D images slice by slice, which is very laborious. Therefore it is inconvenient to
build a large training set.

There have been various attempts to address this limitation. ASM combined
with elastic models has been proposed in [6], but the detailed deformations are
regulated by elastic forces, which do not reflect true shape variability. In [7], Da-
vatzikos et al. proposed 2D Hierarchical Active Shape Model (HASM), a hierar-
chical scheme based on 2D curve partition and 2D curve wavelet decomposition
to keep details. Their experiments have shown promising results in this “short
of samples ” scenario. However, in [7], the spatially partitioned representations
of objects, both curve segmentation and wavelet decomposition, introduce shape
inconsistency. Because in [7], the allowable regions/plausible areas of bands are
independent to each other, illegal shapes could be tolerated during model fit-
ting. As a result, this model could be vulnerable to noises and low contrasts.
The authors hierarchical representation and a deformation scheme to subdue
this problem, however the approaches only partially solve this problem.

In this paper, a 3D Partitioned Active Shape Model, which uses curve align-
ment to fit models during deformations, is proposed. In 3D PASM, each training
sample and deformed model is represented as a curve, instead of a point as ASM
and HASM. After the model has deformed to find the best match in the im-
age, the deformed model is projected back. The curve representing the deformed
model is aligned with the closest training sample by affine transformation. Fur-
thermore, to investigate the strength and weakness of 3D PASM, the 2D HASM
in [7] is extended to 3D HASM in this work based on the mesh partitioning
algorithm proposed in this paper.

2 3D Partitioned Active Shape Models

A 3D Partitioned Active Shape Model is described in this section. It is assumed
the vertices of manual segmentations have been corresponded to construct a
Point Distribution Model (PDM). It means thatN training samples are available
as sets of K corresponding landmarks in the 3D space.
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2.1 Construction of Allowable Regions

In conventional ASMs, the training samples are aligned using Procrustes align-
ment. The vectors Xn, n = 1, . . . , N are then formed by concatenating the
coordinates of the K landmark points of N samples. Therefore, the dimension of
X is 3K×N . To reduce the dimensionality of X , Principal Component Analysis
(PCA) is applied to X . The eigenvectors e1, . . . , eN−1, which are corresponding
to the nonzero eigenvalues of the covariance matrix of X , are calculated. In the
3D case, it is typical that N 	 3K. Therefore it is likely that S, spanned by
e1, . . . , eN−1, cannot include the full range of shape variation. As a result, 3D
ASM, which projects the tentative shape by using S, tends to reconstruct a
shape without fine details.

3D PASM solves this problem by a partitioned representation of 3D ASMs.
Because a 3D ASM is represented as a mean mesh and its eigen variations of
individual tiles, the partitioned representation of the ASM is the partitioned
mean mesh and eigen variations of tiles. Mesh partition means that a mesh is
partitioned into a group of surface patches, which are called tiles in this study.

If only the statistical prior of a small tile, which comprises of K
′
vertices, of

the whole mesh is required, N samples will be adequate to include the variation
of this tile, as long as the K

′
is small enough. Thus fine details of this tile could

be captured in the allowable region.
Therefore, the mesh is partitioned into tiles so that the tiles cover all faces

of the mesh and each tile consists of roughly K
′

vertices. The PCA is then
independently applied to each tile to form the statistical prior for each tile.

It is assumed that the model has been partitioned into M tiles. For the jth

tile, Xj
i is the vector obtained by concatenating the coordinates of vertices of

the jth tile. The prior of the jth tile is formed by:

Step 1. Compute the mean of the data,

X̄j =
1
N

N∑
i=1

Xj
i (1)

Step 2. Compute the covariance of the data,

Sj =
1

N − 1

N∑
i=1

(Xj
i − X̄j)(Xj

i − X̄j)T (2)

Step 3. Compute the eigenvectors, φj
i and corresponding eigenvalues λj

i of S
(sorted so that λj

i ≥ λj
i+1).

If Φj contains the tj eigenvectors corresponding to the largest eigenvalues,
then any of the training set can approximate X by using

Xj ≈ X̄j + Φjbj (3)
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where Φj = (φj
1|φ

j
2| . . . |φ

j
tj ) and bj is a tj dimensional vector given by

bj = ΦjT
(Xj − X̄j) (4)

The vector bj defines a set of parameters of a deformable model. By varying
the elements of bj we can vary the shape Xj using Eq. 3.

Therefore, when the model is attracted to their best match, the deformed
model of jth tile is Y j , which can be approximated by the parameters bjY

bjY = ΦjT
(Y j − X̄j) (5)

On the contrary, ASM represents the shape of the whole model by

bY = ΦT (Y − X̄) (6)

2.2 Mesh Partitioning

In this section, an algorithm is described to partition a mesh M into a group
of tiles. A result of applying this algorithm is shown in Fig.1. This algorithm
segments mesh M to tiles τ1, . . . , τs, which cover all faces of M , given a set of
sites positioned at the centroids of the site faces S = f1, . . . , fs. A face of M is
randomly selected as the initial site. Once the tile associated with the site stops
growing, another face of M from faces not covered by grown tiles is selected as
the next site. The procedure is repeated until all faces of M are covered by tiles.

Fig. 1. A partitioned mesh. Tiles are shown in red; boundaries are shown in blue.

A tile τi is a collection of faces for which the closest site face is fi. The measure
of distance between faces is an approximation of geodesic distance over the mesh.
It is defined by constructing a dual directed graph of the mesh M i.e. the nodes
of the graph correspond to faces of M , and the edges of the graph connect nodes
of adjacent faces. The cost of edges in this directed graph is set to the distance
between centroids of the corresponding faces. This distance is defined as the
length of the shortest path in this directed graph.

Constructing a tile is a single-source shortest path problem in the graph,
which is solved by a variant of Dijkstra’s algorithm . The algorithm grows a tile



642 Z. Zhao and E.K. Teoh

until the size of the tile reaches the maximum. The size of a tile is defined as the
number of vertices included in the faces of the tile. The maximum is set so that
the number of tiles is not much bigger than the sizes of individual tiles.

2.3 Model Fitting Scheme

In ASM, after applying PCA, each training sample is represented as one point in
a hyperspace. The training set constructs a cloud in this space. The allowable re-
gion can then be estimated from the distribution of the cloud of points/samples.

When an ASM is partitioned into H tiles, PCA is applied to the H tiles sepa-
rately, instead of the whole model. Therefore, the training samples are represented
as point clouds in the H hyperspaces, which are generated by PCA. If they are
combined independently, like traditional HASM in [7], shape inconsistency could
be introduced because the shape relevancy between tiles are not considered.

To avoid this inconsistency, in 3D PASM, these hyperspaces are combined to
one hyperspace. Samples and the deformed models are represented as curves in
this single hyperspace, instead of point clouds in individual hyperspaces. A curve
alignment scheme is used in model fitting to preclude inconsistent/illegal shapes
during deformations. The detailed description goes as follows.

After PCA is independently applied to the coordinates of vertices of each
tile, each training sample is then represented as points in H hyperspaces, one
point in each hyperspace. To combine the hyperspaces, the indices of tiles are
introduced as another dimension, the H hyperspaces are then combined to one
hyperspace. As a result, each training sample is represented as a curve in the
new hyperspace, instead of a point.

During a deformation, after the model points move to find the best match
in a test image, model points are projected back to the hyperspace as a curve,
called model curve. The closest training sample, in terms of Euclidean distance,
is chosen as the target. The model curve is then transformed to align with the
target by affine transformation. The affine invariant alignment can be estimated
by using the Least Square method in [8].

The model fitting scheme of 3D PASM is shown in the left figure in Fig. 2,
where solid lines indicate models, the broken lines stand for training samples.
Assume that the model/mesh is partitioned into 3 tiles, and the dimensionality
of the 3 hyperspaces is 1D after individual PCA applications. The indices of
the tiles are introduced as another dimension. The two training samples are
then represented by two curves. To fit the deformed model points, the curve
representing the deformed model is aligned with the curve representing training
sample 1 by using affine transformation, which is the closest to the model curve.
As a result, the shape of the fitted model could not be far from the closest sample.
The inconsistency between tiles is avoided, because the relevancy between shapes
of tiles from the samples are enforced. On the contrary, the traditional HASM [7],
which is shown in the right figure in Fig. 2, treats training samples as points in
individual tiles. The deformed model points are fitted to the model by truncation,
which could tolerate shape inconsistency, because the shape of the fitted model
could be different from any training sample.
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Fig. 2. The model fitting schemes of the 3D PASM and the 3D HASM

3 Experimental Results

In this section, the experimental results and quantitative analysis of the perfor-
mance of 3D ASM, 3D PASM and 3D HASM are presented. The 2D HASM in
[7] is extended to 3D HASM based on mesh partitioning in this study to compare
with 3D PASM.

3.1 Image Data

The training sets and images used in this work are from the Internet Brain
Segmentation Repository (IBSR) [9]. The first set is IBSR v1.0. They are 20
normal T1-weighted MR brain 3D images and their manual segmentations. The
second set is IBSR v2.0. They are 18 normal T1-weighted MR brain 3D images
and their manual segmentations. The objects to segment are Lateral Ventricles
extracted from IBSR v1.0, Lateral Ventricles extracted from IBSR v2.0, Left
Thalamus Propers extracted from IBSR v2.0 and Left Hippocampuses extracted
from IBSR v2.0. For simplicity, they are called LV1, LV2, LTP and LH in this
study, respectively.

These four objects and two sets of images are chosen because of their diversity.
This diversity is desired to investigate the performance of 3D PASM. Images of
IBSR v1.0 are noisy, because they were acquired a few years ago. Images of
IBSR v2.0 have higher quality and are free from noise. The contrast of the
region around lateral ventricles is sharp. On the contrary, the contrast of the
region around thalamus propers and hippocampuses is relatively vague, which
means that it is more difficult to segment thalamus propers and hippocampuses
than lateral ventricles.

3.2 A Comparative Study of Object Segmentation Using Different
Deformable Models

Standard 3D ASM, 3D HASM and 3D PASM are applied to segment LV1, LV2,
LTP and LH from test images. For comparison purpose, the initialization and
parameters of the three models are exactly the same, wherever applicable. The
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(a) Manual Segmentation

(b) Initialization: 5.5668 (c) ASM: 10.2965

(d) 3D HASM: 5.4502 (e) 3D PASM:1.1381

Fig. 3. The comparative study on the accuracy of segmentations for LTP by using
different models
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Table 1. The average segmentation errors of the comparative study of object segmen-
tation using different deformable models(in voxels)

LV1 LV2 LTP LH

3D ASM 2.6364 1.5470 4.6983 9.1490
3D HASM 1.6282 1.5609 2.6014 4.4104
3D PASM 1.2469 1.5104 1.1717 4.2943

“leave-one-out” method is used in this experiment. The “segmentation error” is
used to measure the accuracy of the segmentations, which is defined as the dis-
tances between the segmentation results and the corresponding manual segmen-
tations. This metric is defined in [10,11]. If a segmentation error is bigger than 1/3
of initialization error, the segmentation is defined as a “failure” in this study.

For each of the four cases, one example of the manual segmentation, initial-
ization and the segmentation results of models and the quantitative results of
segmentations are illustrated in Fig. 3. The segmentation by models are overlayed
with cross-sections (in gray contours) and the 3D surface of manual segmenta-
tions, where the dark surface is the segmentation by the models and the bright
one is the manual segmentation. Their average is listed in Table 1. The four
figures show the segmentation of objects with high contrast in noisy images, of
objects with low contrast and simple shapes, of objects with low contrast and
complex shapes, and of objects with high contrast in non-noisy images.

In several cases, the standard 3D ASMs failed to find the desired boundaries,
because 19 or 17 samples are not sufficient for ASMs to accurately estimate the
distribution of samples. During iterations, the rigidity of ASMs tends to keep
model points from moving to approximate appropriate shape details. The accu-
mulation of errors in iterations could lead to segmentation failures. Furthermore,
model points have difficulty to find their best match in noisy images. As a result,
during iterations, when a few points find their best matches, the shape of the
model cannot change accordingly to guide other points, because 3D ASMs are
too restrictive.

3D HASMs have partitioned representation, so they do not have this “rigidity”
problem. But they still failed to accurately segment in a few cases because they
tolerate illegal deformations, i.e. their allowable regions are not plausible. On
the contrary, the 3D PASM improved the segmentation accuracy significantly
because of the partitioned representation and the model fitting scheme using
curve alignment. The improvements by 3D PASMs on LV2 are not as significant
as other objects because of the images of LV2 are very clear and the lateral
ventricles have strong contrasts. However, if the images are noisy or the contrasts
are low, 3D PASM brings significant improvements over 3D ASM and 3D HASM.

3.3 On System Sensitivity Study

To investigate the reproducibility of the PASMs, i.e., the sensitivity of the final
segmentation result to the initialization, a study of sensitivity is conducted. The
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leave-one-out experiments are carried out 5 times on LV1. The initialization po-
sition are different for each experiment. The mean and standard deviation of seg-
mentation errors and initialization are listed in Table 2.From the table, when the
initialization position changes radically, reflected by the range of the initialization
errors, the performance of the segmentations using PASM is relatively stable.

Table 2. The mean and STD of final segmentations when initialized with different
initialization error (in voxels).

Indices of experiments Initialization Segmentation
Mean STD Mean STD

No. 1 2.1046 0.4440 1.3307 0.7642
No. 2 8.7399 0.6415 1.2469 0.6165
No. 3 8.8850 0.1030 1.4036 0.8315
No. 4 15.5480 1.1654 1.2701 0.6598
No. 5 17.4330 0.0515 1.4670 0.8765

4 Conclusion and Discussion

The segmentation using small training sets is an important problem. The chal-
lenge is that the statistical prior of high-dimensional features cannot be accurately
estimated from small training sets. However, this estimation is accurate if the di-
mensionality of the features is low. A 3D Partitioned Active Shape Model is pro-
posed in this work to solve this “short of training samples” problem. 3D PASM
uses the partitioned representations to decrease the dimensionality of the features.
To avoid the inconsistency of shapes caused by the partitioned representation, the
relationship of the shapes of the tiles is taken into consideration. 3D PASMs are
applied to segment structures from 3D human brain MRIs. The results show that
when the number of the training samples is limited, 3D PASMs substantially im-
prove the segmentation results as compared to 3D HASMs and 3D ASMs.

A concern is that one vertex in a tile may actually be directly connected to
another vertex in another tile and the motion is coupled while deforming the
mesh. Actually it is why the tiles are projected and matched as curves instead
of points. By aligning the curves, the motion among tiles is kept. Regarding the
question about the nature of the boundaries between the tiles, they are over-
lapping vertices because the tiles are composed of sites/faces instead of vertices.
The reason for setting the cost of the edges to the distance between centroids is
to generate tiles with similar sizes.
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Abstract. Most patch based image completion algorithms fill in missing parts of
images by copying patches from the known part of the image into the unknown
part. The criterion for preferring one patch over another is the compatibility or
consistency of the proposed patch with the nearby region that is known or already
completed. In this paper we propose adding another dimension to this consistency
criterion, namely, scale. Thus, the preferred patch is chosen by evaluating its con-
sistency with respect to smoothed (less detailed) versions of the image, as well as
its surroundings in the current version. Applied recursively, this approach results
in a multi-scale framework that is shown to yield a dramatic improvement in the
robustness of a good existing image completion algorithm.

1 Introduction

The new age of digital images allows us to take a picture and then alter it by removing
an undesired object it contains. The question is then how to complete the missing in-
formation so that the image still looks natural. In recent years many new algorithms for
this problem have been proposed, and yet the problem remains difficult.

The problem is difficult largely because the term “looks natural” is hard to define
mathematically. This difficulty is closely tied with the multi-scale nature of images,
especially images containing complex textures. The aim of this work is to develop a
systematic approach for addressing the latter property. The main idea is that the com-
pleted image must look natural at all (suitably defined) scales of the image. This implies
a certain consistency between a completed image, and similarly completed “smoother”
versions of the image containing less and less texture details. In effect, an additional
dimension—scale—is thus encompassed in the completion process. Employing a given
completion method within a suitable multi-scale framework, that imposes this consis-
tency, should therefore be expected to improve its robustness substantially. We demon-
strate this fact in a set of experiments with synthetic and natural images.

Recent studies on image completion may be divided into a few main categories.
Inpainting methods are designed to repair images by removing small artifacts such as
scratches, small “holes” or overlaid text. These include PDE based methods [1,2,3],
Fast marching [4], diffusion by convolution [5], and other more complicated methods
such as [6,7,8]. The main drawback of all the above methods is that, in large holes,
the data inside the hole is smoothed out. Therefore, they are suitable mostly for small
artifacts.

A second approach is using texture synthesis in order to fill large holes with pure
texture, by sampling the texture and generating a large area with the same texture.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 648–659, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In [9,10,11,12,13] a new texture is synthesized pixel by pixel, by looking for simi-
lar neighborhoods in the example texture. Other methods [14,15,16] copy full patches
(also called “blocks”) of different sizes and shapes from the source image to the target.

Recently, more complex methods have been designed, mainly for object removal and
completion of the complex textures behind it. These variations include different orders
of filling [11,17], segmentation [18], image decomposition [19], rotation and scaling
[20], Gaussian pyramids [21], global consistency measures [22], and user guidance
[23].

The method we shall be using in our experiments is the algorithm proposed by Cri-
minisi et al. in [24]. This is an effective yet computationally efficient approach for
patch based completion. The method uses exemplar based synthesis, where the order of
the filling is determined by the direction and sharpness of gradients impinging on the
boundary of the missing part of the image. Thus, linear structures in the image tend to
be continued into the missing region. Although it is relatively simple, it performs well
for many examples.

Our aim is to show how to improve the robustness of image completion procedures
by incorporating them in a multiscale framework. In section 2 we present the main
ideas and underlying assumptions in an abstract form and propose an approach for im-
plementing them. Section 3 describes a specific implementation, along with a detailed
description of a completion algorithm. Section 4 present experimental results, and sec-
tion 5 is a summary and conclusion.

2 Scale-Consistency

2.1 The Main Ideas and Notation

Let I = I(Ω) : Ω → [0, 1]d×|Ω| denote an image on a set of pixels, Ω. Here, e.g.,
d = 1 for grey-level images and d = 3 for color images. The fact that grey levels
and colors are quantized in practice is unimportant for this discussion. Assume that
Ω is partitioned into two regions: Ω = Ωk ∪ Ωm, where Ωk is the subset of pixels
where I is known, while Ωm is the region where I is missing; see illustration in Fig. 1.
Throughout this paper, missing pixels will be set to 0d (black). An image completion
algorithm is a function, C : [0, 1]d×|Ω| → [0, 1]d×|Ω|, such that I = C(I(Ω)) satisfies
I(Ωk) = I(Ωk). That is, C returns an image that is identical to I wherever the latter is
known. The purpose of C is to introduce values in I(Ωm) such that I(Ω) “looks natu-
ral”. Evidently, this is a subjective term, which is, to a large extent, why this problem is
difficult. Nevertheless, let us suppose that we are in possession of a quality measure,Q,
such that Q[I1] > Q[I2] implies that I1 is a higher-quality completion than I2. In fact,
we assume that we can even compare the qualities of completions of different input
images.

Next, we introduce the notion of smoothing. A smoothing algorithm is a function,
S : [0, 1]d×|Ω| → [0, 1]d×|Ω|, such that IS = S(I) is a less-detailed version of I
retaining the same set of missing values,Ωm, which may or may not be empty. A simple
example is a convolution with a Gaussian (modified such that missing values remain
black), though we are more interested in smoothing algorithms that preserve important
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Fig. 1. An illustration of the known and missing regions and the source and target patches

features, particularly edges. Below we shall be using nonlinear diffusion smoothers for
this, but other methods may also be used, such as the hierarchical segmentation of [25].

The key idea underlying our approach is that a high-quality completion can only be
achieved if the smoothing, S, and completion, C, approximately commute:

C (S(I)) ≈ S (C(I)) . (1)

This assumption is motivated by the fact that both sides of (1) represent images that are
smooth versions of a naturally completed I . It compares between the completions of
the fine-detailed image, I , and that of its smooth version, IS . If (1) is satisfied, we say
that the completion is scale-consistent.

Additionally, we will assume that a smoothed image is easier to complete well than
its more detailed version:

Q[S(I)] ≥ Q[I] . (2)

This is a well-established notion that has been exploited for image completion, e.g.,
in [6,19]. On the basis of these observations, we next describe a general multi-scale
patch-based image completion approach.

2.2 A Patch-Based Scale-Consistent Completion

We restrict our discussion to patch-based completion methods of the following type.
The input is an image, I(Ω), with values missing (blacked out) in Ωm ⊂ Ω, but known
in the complement, Ωk. The output image, I(Ω), is initialized by setting I = I . At
each step of the algorithm, we consider a subset of pixels called a target patch, p ⊂ Ω,
which overlaps with both the known (or already completed) and missing parts of the
image: pm ≡ p ∩ Ωm �= ∅, and pk ≡ p \ pm �= ∅. Usually, the shape and size of p are
pre-defined, and the shape is simple, e.g., a square or a disk of pixels. Next, a source
patch, T (p) ⊂ Ωk is selected, where T is one of a family of simple transformations that
preserve shape and size—usually just translations, but possibly also some rotations.
Then, the missing portion of the image corresponding to pm is completed by setting:
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I(pm) ← I(T (pm)). Finally, the missing part is reduced by redefiningΩm ← Ωm\pm.
This completes one step of the algorithm. The process is repeated for a new target patch,
etc., until Ωm = ∅.

Two key decisions are the choices of p and the corresponding T (p) at each step.
Given a target patch, p, the source patch, T (p), is generally chosen such that I(T (pk))
is “as similar as possible” to I(pk), employing some suitable measure of similarity. We
write this criterion as:

I(T (pk)) ≈ I(pk) . (3)

Different algorithms use different measures of similarity, different allowable sets of
transformations, and/or additional considerations such as preferring “common” patches
over more “exotic” ones, even if the match is not as good. The point here is that, very
often, there are several possible target patches of comparable quality by a given mea-
sure, and the fact that one of these happens to be slightly better than the others is not
very compelling compared to other considerations.

The choice of p at each step is also important. Most algorithms choose a patch whose
intersection with Ωm is relatively small (so that pk is sufficiently rich for gauging the
suitability of T (p) via (3).) Another important consideration is the details of the image
in the vicinityΩm. For example, preference may be given to a region with a strong edge
impinging on the boundary of Ωm.

Next we describe the scale-consistent approach, using just two levels of detail for
simplicity. Later, we generalize to a multi-scale framework. Given a patch-based com-
pletion method, C, and a smoothing function S, denote IS = S(I), and IS = C(IS).
For the latter we use, of course, criterion (3), applied to IS , i.e.,

IS(TS(pk)) ≈ IS(pk) , (4)

where TS(pk) is the source patch selected in the smoothed image.
We would like to complete I while respecting our key underlying assumption, (1).

Since we do not yet know the completed image at this stage, and therefore cannot
evaluate S(I(T (p))), which is required for the right-hand side of (1), we approximate
it by IS(T (p)). This leads to the scale-consistency criterion,

IS(T (p)) ≈ IS(p) . (5)

Equations (3,4,5) represent three criteria that we would like to satisfy simultaneously.
The importance we attach to each will influence the reconstruction. In this work, we
are motivated by (2) to give criterion (4) a higher precedence than the other two. Thus,
we first complete the entire smoothed image, IS , using C, without considering scale
consistency. Only then do we complete I , taking both (3) and (5) into account with
approximately equal weight as described in the next section. Note that giving much
greater weight to (3) would yield the usual completion,C(I). On the other hand, giving
much greater weight to (5) would mean setting T = TS , which completely ignores the
detailed image. By employing both criteria equally, we obtain a completion that is scale
consistent, while still complying with the rules of C.

The approach of completing IS first, and only later completing I in a scale-consistent
manner, has several advantages. It is relatively simple, it is easy to generalize to a multi-
scale framework (i.e., several levels of detail), and it also allows us to use target patches
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(possibly of different sizes) in different orders for I and IS . The disadvantage is that
failure to obtain a high-quality completion of IS will most likely result also in a similar
failure for I . This might be overcome by allowing the fine-detailed image to also influ-
ence the completion of the smoothed image, e.g., by attaching a similar weight to the
three similarity criteria. We leave this for future investigation.

3 A Specific SCIC Completion Algorithm

To implement the ideas proposed in the previous section, we generate a set of im-
ages I0, . . . , In with varying levels of detail, using the smoothing function described
in section 3.1. Here, In = I , the input image. We begin with the image containing the
least detail, I0, and complete the missing region using a patch based completion algo-
rithm, C, which is a modification of the algorithm of [24] (see subsection 3.2). Next,
we progressively complete the finer versions, ending with In. For each version but the
smoothest—Ii for all i > 0—we construct a completion which is consistent with that
of the previous level of detail, Ii−1 (see subsection 3.3). The algorithm can be written
as follows, with the details described below.

Algorithm 1. SCIC
Input:I0, . . . , In = I images at varying levels of detail, and the missing region, Ωm .
for detail level i = 0, . . . , n do

Ωi
m = Ωm.

while Ωi
m = ∅ do

Select target patch, p (see subsection 3.2).
for each allowable patch size do

Find the best matching source patch, T (p) (see subsections 3.2 and 3.3).
end for
Choose the patch size and best match according to subsection 3.2.
Set I(pm) ← I(T (pm)) .
Set Ωi

m ← Ωi
m \ pm.

end while
end for

3.1 The Smoothing Function, S

We generate the progressively smoother images using Perona-Malik flow [26] for grey-
level images, and Beltrami flow [27] for color images. These procedures apply an adap-
tive filter that preserves the strong edges in the image while progressively smoothing
out texture. All the images generated are of the same size.

3.2 The Basic Completion Algorithm, C

Our basic completion algorithm is a modification of the algorithm of Criminisi et al.
[24]. As described in section 2.2, the method is characterized by the choice of target
patch, which determines the order in which the hole is filled, and the similarity measure,



Scale Consistent Image Completion 653

which determines the choice of source patch. We choose the target patch as in [24], by
maximizing the product of two factors: the component of the image gradient tangential
to the hole boundary, and the relative size of the known region within the target patch,
|pk|/|p|.

Next, we describe the modifications we introduce in order to improve the perfor-
mance while also limiting, or even eliminating, user intervention.

Adaptive Patch Size. In [24] the size of p is fixed and predetermined by the user. This
assumes that there is some single size that is suitable for very one of the completion
steps. We prefer to avoid this assumption and limit user intervention. We therefore spec-
ify a set of allowable patch-sizes1 that is independent of the image. At every completion
step, each of the patch-sizes is tested, and the one giving the best match is chosen. The
best match is determined by the weighted mean square similarity described below, but
favoring larger patches over smaller ones, as the latter are more likely to introduce
large-scale errors (e.g., by copying objects into the hole).

The search for the preferred block size employs an efficient hierarchical approach,
such that the computational burden is not much greater than is required for a single
patch size.

Similarity Measure. The choice of source patch, T (p), is determined in [24] by the
mean square of I(pk) − I(T (pk)), which we denote by ||Δ(I, pk)||2. We modify the
algorithm slightly by attaching greater weight to the differences in regions that are close
to the border of pm. The reason for this is that pm will be replaced by T (pm), and a
large difference along the border may create a visible “seam”. The weight is efficiently
calculated using a simple convolution with a kernel that varies with the distance from
the border of pm, which is relatively large at the seam but becomes constant a few pixels
away from the seam.

3.3 The Scale Consistency Measure

We wish to satisfy (3) and (5) with approximately equal weight. Suppose that image
Ii−1 has already been completed. For each target patch, p, selected according to sub-
section 3.2, we search for the source patch, T (p), that minimizes

C−1
1 ||Δ(Ii, pk)||2 + C−1

2 ||Δ(Ii−1, p)||2 ,
where the norms are weighted as described above. Here, C1 and C2 are normalization
constants, given by

C1 =
∑

||Δ(Ii, pk)||2 , C2 =
∑

||Δ(Ii−1, p)||2 ,

where the sum is taken over source patches for which ||Δ(Ii, pk)|| and ||Δ(Ii−1, p)||
are not both dominating (hence, clearly inferior). This means that all source patches
for which the Δ is larger than some other source patch in both images Ii and Ii−1 are
ignored when computing the constants C1 and C2, leaving only candidates that may
turn out to be optimal. Including all the source patches in the normalization instead
would yield irrelevant constants.

1 All our patches, as in [24], are squares centered on pixels that lie on the border between the
missing part of the image and the part that is known or already completed.
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3.4 Computational Complexity

SCIC obviously introduces some computational overhead. Currently, for an search area
of 4002 and a missing region in the size of about 5000 pixels our non-optimized code
runs for about 20 minutes on a 2.8 Gigahertz Pentium IV PC. We use a Matlab code
with a C helper function for the search. However, with proper handling, the overall
cost of completing the n + 1 images, I0, . . . , In, should be just a fraction more than
only completing I0. The lion’s share of work invested in the completion is spent in
searching for the best source patches, which is carried out over a very large number of
different candidate patches in the known part of the image. The vast majority of these
turn out to be poor choices. There is no reason to test these again when we complete
images I1, . . . , In (as the locations of the small percentage of “reasonable” candidates
identified in image I0 can be stored). Due to the scale consistency requirement, a patch
that provides a poor match for the smooth image is extremely unlikely to be the best
choice at a more detailed version of the image, and can therefore be ignored. This
is easy to accomplish if we fill all the images in the same order and with patches of
the same size, which would modify our algorithm somewhat. However, we can also
retain our current algorithm but expand the search to include also patches that are in the
neighborhood of source patches that gave reasonable results on the less detailed image.
Still, we expect the total effort required for completing all but the smoothest image to be
fairly modest compared with the cost of completing just I0. A more precise assessment
of overall cost using this approach is currently being investigated.

4 Experimental Results

We test the SCIC algorithm on both synthetic and natural images, and compare it to our
implementation of the original algorithm of Criminisi et al. [24], and also, in part, with
our modified version. Fig. 2 demonstrates the validity of assumption (2) and the efficacy

Fig. 2. From left to right: original image with hole, completion using the algorithm of Criminisi
et al., completion of I0, and the final SCIC completion
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Table 1. The quality of the completions of our SCIC algorithm are compared with those obtained
using the algorithm of Criminisi et al., and also with the modified version of this algorithm, on
the image of Fig. 3, with the unknown part of the image centered at fifty equally spaced loca-
tions along the diagonal. For the SCIC algorithm we test both Perona-Malik (edge-preserving)
smoothing and isotropic Gaussian filtering.

Q SCIC (Perona-Malik) SCIC (Gaussian) Modified Criminisi Criminisi
1 10% 28% 48% 56%

2 44% 40% 40% 36%

3 46% 32% 12% 8%

(a) (b)

(c) (d)

Fig. 3. Assessing quality: (a) Image with hole. (b) A high-quality completion (Q = 1). (c)
Medium quality (Q = 2): the edge is not completely straight. (d) Low quality (Q = 3): the
edge was not completed correctly. Panels b, c and d are close-ups of the completed region, with
the closed curve marking the boundary of Ωm.

of the SCIC approach for two images: a synthetic image comprised of two textures, and
a natural color image with a curved border between the textures.

Next, we perform a systematic comparison for a set of experiments on a synthetic
image containing two different textures separated by a diagonal border. The unknown



656 M. Holtzman-Gazit and I. Yavneh

Fig. 4. Left: original image with hole. Middle: result using Criminisi’s algorithm. Right: SCIC
final result.

region is centered on the border; see example in Fig. 3a. We compare four algorithms
for 50 equally spaced locations of the hole along the border. For the SCIC algorithm
we used 8 levels of detail generated by the Perona-Malik flow [26]. Then, we repeat the
experiment smoothing instead by a convolution with a Gaussian (again, with 8 levels of
detail), to test the importance of edge-preserving smoothing. We employ the modified
Criminisi algorithm with three allowable patch sizes, both in these two SCIC imple-
mentations and as a stand-alone completion method. Finally, we also apply the original
algorithm of Criminisi et al. for the same 50 tests. A trinary quality measure, Q, is
defined, with Q = 3 corresponding to a high-quality completion (essentially perfect),
Q = 2 for a completion that is slightly flawed but still good, andQ = 1 for completions
with visible defects. Figs. 2b, 2c, and 2d show typical examples of each of these cases.

The results of the 50 × 4 experiments are summarized in table 1. The SCIC algo-
rithm scores a 1 only in 10% of the experiments, and a perfect 3 in 46% of the ex-
periments. The average score for SCIC is 2.36. All the failures happened already at the
smoothest level, suggesting a potential advantage in also letting the detailed levels guide
the smooth-level completions (see discussion in Section 2). The original algorithm of
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Fig. 5. Left: original image with hole. Middle: result using Criminisi’s algorithm. Right: SCIC
final result.

Criminisi et al., in contrast, scores a 1 in 56% of the experiments, and a 3 in only 8% of
the experiments, with an average score of 1.52. We thus find that SCIC exhibits a dra-
matic improvement in robustness for this set of experiments. The modified Criminisi
algorithm receives an average score of 1.64—a moderate improvement over the basic
approach. This demonstrates the crucial role of scale consistency in boosting the per-
formance of a given completion algorithm. Finally, when the Perona-Malik smoother is
replaced by a simple isotropic Gaussian filter, the average score is 2.04—a substantial
degradation in performance, though still significantly better than the single-level results.

We next test natural images, obtained from [28]. The SCIC algorithm employs 6
levels of detail, with 5 allowable patch sizes (102, 152, 202, 302, 402) at the smoothest
level and 3 allowable patch sizes for the rest of the levels (102, 202, 402). Here and in
the previous examples, the patch size for the Criminisi algorithm is 102, which is the
most common patch size in the modified algorithm.

In Fig. 4 we show two examples with color images. SCIC performs far better than the
single-scale approach, which leaves a “bite” in the phone booth and the squirrel’s tail. In
Figure 5 we show a difficult image containing many different patterns at various scales
and a large hole. Again we see that, by using our scale consistent algorithm, all patterns
and the borders between them are well reconstructed. The algorithm of Criminisi et al.
yields a completion that is flawed in many locations, leaving interrupted water curves in
the fountain, mixing patterns, and introducing a part of the building where there should
only be trees.

5 Conclusions and Discussion

A new approach for image completion is developed, which uses multiple levels of detail
of the image. The method is based on a novel concept of scale-consistency, which re-
quires that the processes of smoothing and completing of images should approximately
commute. This framework introduces a new dimension into the patch-based image com-
pletion formalism, namely, scale.
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These ideas are implemented, employing an image completion algorithm based on
[24], and the edge-preserving smoothing algorithms of Perona-Malik for grey-level im-
ages and Beltrami flow for color images. Results of experiments—both systematic tests
with synthetic images and experiments with natural images—demonstrate a very sub-
stantial improvement in the robustness of the completions.

An important issue that requires further investigation is the lack of direct influence of
fine-detail images in the hierarchy on the smooth-image completions. This means that
failure to complete the least detailed image well is likely to result in overall failure.

Another issue that has not yet been investigated thoroughly is how many levels of
detail need to be used, and, more generally, the computational complexity of the algo-
rithm. In light of the expected weak influence of the number of levels on the compu-
tational complexity (see subsection 3.4), it is probably best to choose a relatively large
number of levels, as we do in our tests. Although the issue of efficient implementation
has not yet been thoroughly researched, we expect that the total computational effort
spent in the completion stage will be just a fraction more than the cost of completing
a single image using the standard basic completion method. To this we need to add the
cost of constructing images at varying degrees of detail, which depends on the method
used but is usually much smaller than the cost of completing a single image.
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Abstract. Prosperity of distributed 3D applications on the Web heavily depends 
on the portability and reusability of the content created. Currently, Web3d 
formats often fall short in resolving such issues. This paper introduces 
EXDRAP as a hybrid publishing paradigm for declaratively creating Web-
based collaborative virtual reality applications which we believe improves 
portability and reusability. The major issues concerning the development of 
Web-based CVEs are closely investigated; and an extended dead reckoning 
technique and an optimizing translation mechanism are proposed which reduce 
the latency (lag) and the amount of memory taken by the browser, respectively. 
Based on X3D (the successor to VRML) as the ISO standard for real-time 
computer graphics on the Web, the concepts are successfully implemented and 
integrated into Jakarta Struts Framework. In order to gain maximum portability, 
the integration of the X3D browser and the server-side technology is made 
possible through the use of ECMAScript instead of java on the client end. 

Keywords: Extensible 3D (X3D), VRML, Distributed Behavior, Distributed 
Virtual Environment (DVE), Collaborative Virtual Environments (CVE), 
ECMAScript, Java, JSP. 

1   Introduction 

More than a decade has passed since the introduction of declarative 3D virtual reality 
languages such as VRML to the World Wide Web, yet only few success stories can 
be told. While large scale legacy systems were successfully transferred to the Web 
forming enterprises, the newly born VR languages have failed to bring the same 
media rich and highly interactive content from desktop applications to the Web 
environment. As for the VRML language, part of the blame can be laid on SGI 
restructuring and lack of needed support in the late 90s, but the main reason is the 
language itself. VRML is a declarative language but unlike HTML pages, 3D content 
creation requires a lot of effort even with the most efficient authoring tools at hand. 
Declarative languages hide the complexity and let authors create the content with the 
least programming skills but the side effect is the reduction of reusability and 
extensibility of the content created. As for the HTML pages, it’s not really a big issue 
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to create them from scratch (and if so it’s usually resolved with a simple copy and 
paste) but for the 3D content, it’s indispensable. 

Although sophisticated solutions exist for producing and especially reusing 
dynamic web pages and other media contents, projects with interactive 3D graphics 
including DVEs are often developed from scratch. Probably the most prosperous 
approaches among these (and the one applied in this paper) are those who extend the 
declarative language by defining some higher level nodes and transforming them into 
the target language encoding at runtime before delivery [6], [7], [12], [13]. Such 
approaches let content authors add higher level functionalities to the language and 
resolve some virtual reality related issues by employing these encapsulated pieces, 
and probably extending or reusing them later on. The problem with most existing 
solutions is that they usually tackle with just one proprietary issue and usually don’t 
define a pervasive paradigm covering others. 

Another issue taken into consideration in this paper is the integration of 
VRML97/X3D browser with the server-side technologies. The integration of X3D 
scene and external applications is made possible through SAI (Scene Authoring 
Interface) [25]. According to X3D Specification, this interface is to be supported by 
the conforming browsers using Java or ECMAScript (an internal scripting language) 
bindings. Java is a wonderful cross platform technology, but the portability seems to 
end when it is used with VRML97/X3D browsers. Not all X3D browsers support Java 
since Java support is not required for a conforming implementation of SAI; and if so, 
they might support different java virtual machines. A conforming browser should 
merely support ECMAScript. Additionally unlike java (which has to be compiled 
first, then delivered to the browser), ECMAScript shall be created dynamically at 
runtime which brings a great deal of flexibility to the publishing paradigms applied. 

Many Collaborative Virtual Environments (CVE) have been developed using 
VRML and External Authoring Interface (EAI) to connect the VRML browser to a 
java applet which can communicate with a server [9], [11], [20]. Others do this via 
extensions to the VRML language referred to as SDKs [2], [14]; but few has used 
JavaScript to support such integration [17] which was first suggested by Cowie [4] 
and none has implemented DVEs in X3D format using the new ECMAScript binding 
[27] for supporting distributed behavior. 

This paper is organized as follows: The next section relates our work to existing 
approaches. Section 3 analyzes the applicable paradigms for publishing X3D content 
on the Web, proposes EXDRAP (EXtended Dead Reckoning Architectural Pattern) 
model which applies those paradigms and introduces an extended dead reckoning 
technique on top of the proposed model which would facilitate the development of 
Web-based DVE applications. Section 4 gives details on the application example 
which is a multi-player football game. The paper is finished with a discussion on 
evaluating our work and an outline of future work. 

2   Related Work 

The four levels of behavior, first coined by Roehl, have been frequently referenced in 
literature where: direct modification of an entity’s attributes defines level 0; the 
change of an entity’s attributes over time constitutes level 1; level 2 comprises a 
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series of calls to level 1 behaviors to perform some task; level 3, after all, is 
characterized as top-level decision-making [18]. According to Roehl, the distribution 
of higher levels of behavior over the network results in more limited amount of 
communication among hosts, and hence less network traffic; but since level 2 and 
level 3 behaviors are non-deterministic, it’s not realistic to use them for behavior 
distribution. Roehl recommends level 1 for such behavior distribution, but does not 
suggest how to implement it in declarative virtual reality languages. 

Behavior3D [6], an XML-based framework for 3D Graphic Behavior, which is part 
of the research project CONTIGRA [5], utilizes the level 2 of Roehl’s behavior model 
in order to extend the existing component oriented architecture and additionally 
support behavior encapsulation. Although Behavior3D brings reusability and 
extensibility by defining higher level XML-based behavior nodes for deterministic 
behaviors (such as different states of a virtual laptop or an answering machine), it falls 
short in providing routines on how to distribute either deterministic or non-
deterministic behaviors over the network. However, the idea of content encapsulation 
into higher level nodes and translating them at runtime has influenced this work. 

The first successful implementations of DVE resolving the primary issues 
associated with distributing behaviors over the network emerged in the Distributed 
Interactive Simulation (DIS) systems [8]. DIS resolves these issues by introducing a 
variety of techniques such as the definition of a standard message format, dead 
reckoning, multicasting and virtual zones (also known as cells) [10].  

For more than a decade DIS techniques are being applied to DVE applications to 
resolve the associated issues. In a DIS project for instance, Macendonia exploited 
multicasting groups and hexagonal cells to solve the problem of scaling very large 
distributed simulations [10] and recently Marvie has proposed an extension to 
VRML97/X3D for massive scenery management in virtual environments [12] which 
describes cell-to-cell, cell-to-object as well as hybrid visibility relationships using a 
generic cell representation of static entities in virtual environments and makes it 
possible to represent both massive indoor and outdoor sceneries.  

The DIS Component of X3D is already part of the X3D specification but currently 
few VRML97/X3D browsers care to support it. The DIS component consists of four 
X3D nodes: EspduTransform, ReceiverPdu, SignalPdu, and TransmitterPdu. 
Altogether, these nodes provide the means to send and receive DIS-compliant 
messages, called Protocol Data Units (PDUs), across the network [25]. The DIS-XML 
workgroup is currently working on developing DIS support in X3D. The goal is to 
explore and demonstrate the viability of DIS-XML networking support for X3D to 
open up the modeling and simulation market to open-standard Web-based 
technologies. The DIS in X3D is implemented via Java and XML [26]. 

Roehl implies that deterministic behaviors shall be distributed on higher levels and 
recommends state machines for doing the job. Viewpoint [22] is a proprietary XML-
based format for describing scenes containing so called Scene Interactors for defining 
behaviors. The state machine model used in Viewpoint is suitable for the distribution 
of deterministic behaviors in DVE applications.  

Polys has classified the generation process of Web-based VR content with XML 
and X3D into four publishing paradigms [16]: Identity Paradigm directly visualizes 
the static file format; Composition Paradigm permits the composition and delivery 
of documents “on the fly” in response to the user request; Pipeline Paradigm stores 
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information in an XML-based format and transforms it into the target document on 
delivery, using XML technologies such as XSLT [23]; Hybrid Paradigm combines 
Pipeline and Composition Paradigms to gain the maximum flexibility. The 
publishing paradigm introduced in this paper, relies on the Hybrid Paradigm 
classified by Polys. 

Bitmanagement company, the producer of BS Contact VRML97/X3D browser and 
other 3D related authoring tools, has proposed some authoring approaches as Tips and 
Tricks to optimize the rendering process of the 3D scenes in their browser [3]. Among 
these optimizing approaches, some are also applicable to other browsers, and some 
shall be applied automatically to the 3D content before delivery. The utilization of 
such optimizing translation techniques have been taken into consideration in 
EXDRAP, and are implemented in the application example. 

3   X3D and Web-Based DVE Applications 

The X3D ISO standard defines an XML-based, royalty free file format and a runtime 
engine for real time 3D content and applications running on a network and shall be 
integrated with other technologies to support distributed interactive virtual 
environments and thus is considered a suitable basis for this work.  

In order to maintain such integration, first in the following section, possible 
publishing paradigms for Web-based DVE content generation are analyzed. In section 
3.2, EXDARP, the proposed architectural pattern applied in our work, has been 
discussed. Next we have introduced an extension to dead reckoning applying that 
pattern. 

3.1   Applicable Publishing Paradigms  

In order to publish DVE content on the Web, the paradigm applied must maintain 
maximum flexibility by supporting potential extensions to X3D. It must also make it 
possible to integrate the application with other emerging technologies on the web. 
Probably the most routine approach toward VRML based dynamic content publishing 
on the Web has been to populate static templates with the dynamic contents which are 
usually fetched from data sources [4], [17], [24]. This approach, known as 
composition paradigm, is supported by many well-established and mature server-side 
technologies mainly referred to by server-side scripting languages. 

With X3D (as an XML-based language), the powerful XML related tools and the 
available APIs, alternative approaches shall be additionally taken. These include the 
use of XSLT to transform higher level nodes (extensions to the language) into the 
target language [6], [15] or the employment of XML parsers to traverse the document 
and optimize the result by changing the document structure. All these XML related 
approaches are known as the pipeline paradigm. 

Composition and pipeline paradigms each facilitate different needs and if applied 
jointly can bring highest flexibility to DVE applications. In our work, we have 
proposed a hybrid model which uses these two paradigms as separate layers which are 
discussed in the following section. 
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3.2   The Proposed Architectural Pattern 

EXDRAP (figure 1) applies a model-view-controller (MVC) design pattern in order to 
separate the interface from control logic. The decision maker employs the control 
logic of the DVE application and is made up of two components: controller and 
dispatcher. Controller component provides a centralized entry point for client requests 
which prevents duplicate code, commingled view content and coalescent view 
navigation. Controller applies the domain specific business rules and also stores the 
persistent VR and business related data. Dispatcher component is responsible for the 
synchronization between hosts and collision detection. The dispatcher, in conjunction 
with the controller, resolves race conditions before forwarding the request to an 
appropriate web publisher. 

 

Fig. 1. The architectural pattern proposed in EXDRAP 

Web publisher plays the view part as a double layer component. The first layer 
which applies a composition paradigm contains the elementary static templates which 
are processed and populated at runtime with dynamic data (fetched from available 
data sources) employing various scripting languages. This layer is also responsible for 
employing the avatar’s role in the DVE application. 

In addition to X3D nodes, the output of the composition layer shall be an interleaved 
mixture of any arbitrary higher level XML-based nodes (extensions to X3D). In the 
transformation layer, the XML related technologies, tools and APIs are utilized to 
translate this raw output into a pure VRML97/X3D encoding which is supported by the 
client. Additionally some extra language optimizers shall be applied on the result to 
exceed the performance of the client's browser. As it can be seen in the figure, 
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transformation layer is positioned between the server and client meaning that part of the 
transformation process might be performed by the viewer on the client end. 

While the web publisher component utilizes diverse techniques using a hybrid 
paradigm to form a basis for a more flexible content generation, in order to maintain 
highest portability, the integration of client browser with the server is kept simple and 
is merely done through stateless http requests. 

3.3   Extended Dead Reckoning  

DIS dead reckoning technique is a magnificent approach toward the distribution of 
behaviors in networked virtual environments. Unfortunately this approach works 
particularly well only for the problem domain it's designed for: military simulations. 
Roehl suggests generalizing the technique by supporting the distribution of other 
kinds of his so called level 1 behaviors. 

In VRML97/X3D, level 1 behaviors shall be produced with the use of arbitrary 
combinations of Routes, Interpolator nodes and Event utilities. There are two 
alternatives for initiating such behaviors: the Sensor nodes and the Script node. 
Sensor nodes are embedded event generators of the X3D language which can initiate 
behaviors by triggering events based on user interactions, environmental collisions or 
the passing of time. Script node in contrast is the only access point for programmatic 
scene manipulation. This programmatic interface is provided through the Scene 
Access Interface (SAI) internally from Script nodes (the one applied in our work) or 
externally from other application programs (called scripting environments). In 
addition to programmatic scene manipulation, Script node makes it possible to 
integrate the X3D scene with server-side technologies. 

We have generalized the dead reckoning technique in X3D by assigning for each 
virtual object in the scene (for instance a vehicle or a ball) a script node which 
facilitates the manipulation access to the object’s different dynamic entity attributes 
and maintains a protocol for sending and receiving update and keep-alive messages to 
the server. In the proposed model discussed in section 3.2, such script nodes are 
generated dynamically in the composition layer according to client’s avatar role in the 
virtual environment. In our implementation, explained in detail in section 4, we have 
defined a set of tag libraries which accept an entity’s DEF id, its target fields and their 
type as input attributes and encapsulate the whole generation process of the Script 
node (its fields and the ECMAScript code to connect the server) and the relevant 
Routes, Interpolators, Triggers, Sequencers and Sensors.  

The event flow to support extended dead reckoning in EXDRAP is as follows: Any 
event in the scene, defined as shared behaviors, is routed to pre-generated Scripts 
nodes which results in a message update call to the server as an http request. The 
controller component on the server (if no collision or race condition is detected) will 
add this event and its parameters to a singleton collection for other DVE participants 
to refer to and update their scene accordingly. Since the http request is a one way 
connection (shall not be initiated by the server), each client has to periodically refer to 
server to update their scene. The aspect of each client having to periodically contact 
the server, even when there’s no update message available, is not really a great 
drawback in our approach; since these periodic contacts can act as keep-alives which 
are really crucial to the dead reckoning technique. 
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While update messages of non-shared behaviors shall be reported to server 
asynchronously (send a report to the server and in the mean time apply the change to 
the scene without waiting for server confirmation), in order to handle race conditions 
on shared behaviors and prevent the world instances to get out of sync, the update 
messages have to be reported in synchronous manner. This means that before 
applying any change to the scene in result of user interaction with a shared behavior 
(kicking a ball), client must make sure its update message is accepted (no other user 
has already kicked it in the mean time) by the server and the event is added to the 
singleton collection. This means that the client has to always wait for the server 
confirmation. However, as Presser suggests this would be a trade off between 
synchronization and efficient communication [17]. 

4   Application Example: A Football Game 

Our implemented application which applies the introduced concepts and extends dead 
reckoning is a multi-player football game (figure 2). Four roles were defined for the 
participating avatars: the spectators who can not enter the football field nor interact 
with any entity in the scene; the players who are just able to kick the ball; the 
goalkeeper in addition to kicking can also hold the ball and drop it in the penalty area; 
the referee who can hold the ball at any point of the football field. 

The application was developed under Apache Struts framework [1]. Apache Struts 
is an open-source framework which encourages developers to adopt an MVC 
architecture for developing J2EE web applications. Struts is a very well documented, 
mature and popular framework for building front ends to Web-based Java applications 
and that’s why although there are newer so called light weight MVC frameworks such 
as Spring [19] and Tapestry [21] available, Struts was chosen for our implementation. 

 

 
Fig. 2. A screen shot of the implemented application using EXDRAP 
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The controller and the dispatcher are implemented by ActionForms and 
DispatchAction forming the decision maker component of the proposed framework. 
Update messages populate a singleton collection which is shared between participants 
of the virtual environment. With each update message the current timestamp and the 
message initiator’s session id are assigned so that if no keep-alive arrives to update 
that timestamp the update message will be automatically canceled after a while (A 
Thread checks this periodically). Otherwise other hosts will update their scenes 
according to the update messages provided in the singleton collection and add their 
session id to that message (so that they won’t receive it next time). Another thread is 
also employed to remove the update messages that are already received by all the 
participating hosts from the collection and store them in database. This will be useful 
for the playback of the virtual environment. 

The JSP pages are perfect for the implementation of the composition layer but in 
order to implement the second layer of the web publisher component, we had to add a 
request filter to the framework and chain it to an object which extends the 
HttpServletResponse and overrides its getWriter() method. By doing this we managed 
to acquire the output result of the JSP pages and employ some additional 
transformational processing before delivering the content to the client. 

As mentioned earlier JSP pages generate the needed elements to implement the 
extended dead reckoning, which is mainly done via a set of pre-defined tag libraries: 

<Transform DEF=”ball”> 

  <Inline url=”http://localhost:8988/dve/ball.x3d” /> 

</Transform> 

<dve:dr objGroup=”ballBehavior” sharedBehavior=”true” > 

  <dve:attribute defId=”ball” field=”translation”  

    fieldType=”SFVec3f” behaviorType=”straight” /> 

  <dve:attribute defId=”ball” field=”rotation”  

      fieldType=”SFRotation”  behaviorType=”iterative” /> 

</dve:dr > 

The little piece of code above shows how the distributed behavior of the ball is 
defined in the JSPs. At runtime, the dve tag is replaced by the Routes, Interpolators, 
Triggers, Sequencers and Sensors and a Script node needed to distribute the desired 
behavior over the network. The ECMAScript code generated by the dve tag and used 
by the Script node would be as follows: 

ecmascript:  

function initialize(){} 

function keepAlive(){ 

  reqUrl=new  
MFString("http://localhost:8988/dve/KeepAlive.do"); 
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Browser.createVrmlFromURL(reqUrl,ballBehavior,applyAvai
lableUpdates); 

} 

function ballTranslation(){ 

  reqUrl=new 
MFString(“http://localhost:8988/dve/UpdateScene.do?meth
od=addTranslation&id=ball”); 

  Browser.createVrmlFromURL(reqUrl, ballBehavior,             
applyAvailableUpdates); 

} 

function ballRotation(){ 

  reqUrl=new 
MFString(“http://localhost:8988/dve/UpdateScene.do?meth
od=addRotation&id=ball”); 

  Browser.createVrmlFromURL(reqUrl, ballBehavior, 
applyAvailableUpdates); 

} 

function applyAvailableUpdates(val,ts){ 

  if(val.length!=0){ 

    //applies changes to the scene according to the     
contents recieved 

  } 

} 

In the translation layer we have used one of the techniques suggested by 
Bitmanagement to optimize the result scene a bit for the browser to render. The idea 
is to use DEF/USE as much as possible to reduce delivery content size and run-time 
memory usage especially for Appearance Material ImageTexture, MovieTexture and 
etc. In our implementation we have used JDOM to search the X3D structure and 
remove the url field of the redundant textures and replace them with USE attribute 
referencing the one which was first appeared in the document. 

Since most X3D browsers apply the same policy on the downloading order of the 
external content (first encountered - first loaded) one can even dictate the 
downloading order of the textures by transferring them all to the top of the document, 
applying the ordering and referencing them through the rest of the document. But 
since the usefulness of such ordering highly depends on the semantics of the scene, 
defining such policies is not considered in our work. 

Group {  

  children [  

    DEF A1 Appearance { } DEF A2 Appearance { ...}  

    ....  
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  ]  

}  

Shape { appearance USE A1 }  

Finally before content delivery, based on the encodings supported by the X3D 
browser, it might be needed to use XSLT to transform the language to the proper 
encoding. In our implementation, this has been done via Xalan API [28]. Xalan is a 
popular open source software component from the Apache Software Foundation that 
implements the XSLT XML transformation language and the XPath XML query 
language. 

5   Discussion and Future Work 

In this paper a flexible architectural pattern for the development of Web-based 
distributed virtual reality applications was introduced that shall be applied to non-
distributed applications as well, since the approach itself also enhances the 
development of non-distributed virtual reality application areas such as arbitrary 3D 
visualizations. We believe that in addition to simplicity, this approach will maintain 
the reusability, extensibility and portability of the content created. The composition 
and transformation layers applied in this framework are flexible enough to support the 
implementation of VR applications utilizing any existing or future technique which 
addresses some virtual reality domain related issue. 

In this paper we also introduced an extended dead reckoning technique and a scene 
optimizer mechanism, applying the proposed model and implemented both on Jakarta 
Struts Framework. A rich set of behavior tags was defined and implemented to 
support the automatically generation process of arbitrary shared behaviors. 

The results have been satisfactory. The amount of the latency present in our 
application is inevitable and is much due to the nature of the Web environment 
itself, since even pinging a website with a normal bandwidth link would take about 
half a second. This latency shall be minimized by reducing the periodic request 
intervals on the client end. However, very short intervals result in saturated network 
traffic. 

As future work other successful techniques (addressing the main virtual reality 
domain related challenges) such as virtual zones and multicasting should be taken into 
consideration and implemented in the framework to guarantee scalability. The 
singleton collection of message updates shall be divided into partitions each 
representing a virtual zone in the VR. Then visibility rules shall be applied on the 
server to decide which update messages shall be received by the participating hosts 
according to their location in the virtual environment. 

Finally with the definition of more complex behaviors and the integration of DVE 
applications with other server-side technologies (such as EJB or Web Services), it 
would be possible to offer existing real world Web applications (for instance online 
shopping and E-learing systems) in an innovative fashion. 
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Abstract. The presentation of Bézier surfaces affects the results of ren-
dering and tessellating applications greatly. To achieve optimal param-
eterization, we present two reparameterization algorithms using linear
Möbius transformations and quadratic transformations, respectively. The
quadratic reparameterization algorithm can produce more satisfying re-
sults than the Möbius reparameterization algorithm with degree eleva-
tion cost. Examples are given to show the performance of our algorithms
for rendering and tessellating applications.

1 Introduction

In Computer Aided Geometric Design (CAGD), algorithms for rendering, in-
tersecting and tessellating curves and surfaces are generally based on their pa-
rameterization rather than their intrinsic geometry. The quality of the param-
eterization influences the results of the applications greatly. Uniform speed on
parameter lines-i.e., equal increments in the parameter defining equal increments
in arc length) is identified as an important character of optimal parameteriza-
tions for many applications such as computer numerical control(CNC), texture
mapping and tessellating.

In the past 10 years, how to achieve uniform speed on the Bézier curves
has been extensively studied in many literatures such as [1,2,3,4,5,6,7,8,9,10,11].
Farouki [1] studied the optimal reparameterization of Bézier curves. In [1], arc-
length parameterization is identified as the optimal parameterization of Bézier
curves. By minimizing an integral which measures the deviation from arc-length
parameterization, the optimal representation is obtained by solving a quadratic
equation . Jüttler [2] presented a simplified approach to Farouki’s result by using
a back substitution in the integral. Costantini [3] obtained closer approximations
to arc-length parameterization by applying composite reparameterizations to
Bézier curves.

To the author’s knowledge, little attention has been paid to the Bézier surface
reparameterization. The representation of Bézier surfaces influences the results
of rendering and tessellating applications greatly. Given a Bézier surface (see
Figure 1 (a)), we map a chessboard texture image onto the surface. However
the texture mapping result (see Figure 1 (c)) deviates from our expectation.
There is much unwanted variation in the texture mapping result. Many surface
tessellating algorithms [12,13,14] first triangulate the parameter domain of the

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 672–681, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b) (c)

(d) (e)

Fig. 1. Texture mapping and tessellating results of a Bézier surface: (a) Bézier surface
and its polynomial parameterization; (b) texture image; (c) texture mapping result;
(d) triangulation of the parameter domain; (e) tessellating result by mapping triangles
in (d) to the surface

given surface (see Figure 1 (d)). Then the 2D triangles are mapped onto the
surface to obtain the 3D triangles. Also the representation of Bézier surfaces
affects the final results greatly (see Figure 1 (e)). From our point of view, the
lack of satisfying representation is the bottleneck for rendering and tessellating
algorithms to achieve high quality results.

In this paper, we identify the optimal reparameterizations of Bézier surfaces
within the realm of linear and quadratic reparameterizations. Uniform parameter
line is an important character of optimal reparameterizations. To achieve uniform
speed on parameter lines, linear Möbius transformation is first studied. However
the Möbius reparameterizations can not change the shape of the parameter lines.
What changes is the distribution of the parameter lines. To obtain more uniform
parameter lines, a quadratic reparameterization algorithm is presented. First the
Möbius transformations are applied to some definite parameter lines to yield
uniform speed on the selected lines. By interpolating the Möbius transformation
coefficients using a least square technique, we then get the quadratic reparam-
eterization coefficients. The examples indicate that, in practice, the algorithm
produces significantly more uniform parameter lines across the Bézier surfaces.
The main contribution of our work can be summarized as follows:

– We show that linear Möbius transformations can not change the shape of
the parameter lines. What changes is the distribution of the parameter lines.

– We present a quadratic reparameterization algorithm to obtain more uniform
parameter lines across the Bézier surfaces.
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The paper is organized as follows. Section 2 describes how to obtain uniform
speed on parameter lines using Möbius transformations. Section 3 shows how to
use the quadratic reparameterization to achieve more uniform parameter lines
for Bézier surfaces. In Section 4, we conclude the paper.

2 Möbius Reparameterization

Given a Bézier surface of the following form

X(u, v) =
m∑

i=0

n∑
j=0

Bm
i (u)Bn

j (v)Pi,j , u ∈ [0, 1], v ∈ [0, 1], (1)

where the Pi,j are the control points, the Bm
i (u) and Bn

j (v) are the Bernstein
polynomials, we try to obtain uniform speed for finitely many parameter lines
X(ui, v), for certain constant values of ui, and X(u, vj), for certain constant
values of vj . For these parameter lines, we take the uniform speed functional
used in Farouki’s paper [1]. To start with, we just consider the four boundary
curves and try to obtain uniform speed there. To obtain uniform speed on the
four boundaries, the following integral function

J(α, β) =

1∫
0

||∂X(u, 0)
∂u

||2du+

1∫
0

||∂X(u, 1)
∂u

||2du

+

1∫
0

||∂X(0, v)
∂v

||2dv +

1∫
0

||∂X(1, v)
∂v

||2dv (2)

is adopted. The integral measures the deviation of the four boundaries from
the uniform-speed paramterizations of the four boundaries. It is convenient to
adopt normalized coordinates for the four boundaries such that J = 4 if the four
boundary curves are of arc-length parameterization, otherwise, J > 4 [1]. Each
parameter is subjected to a Möbius transformation as follows.

u = u(s) =
(α − 1)s

2αs− s− α, (3)

and

v = v(t) =
(β − 1)t

2βt− t− β . (4)

Applying the transformations (3) and (4) to surface (1) results in the rational
Bézier surface

X(s, t) =

m∑
i=0

n∑
j=0

Bm
i (s)Bn

j (t)ωi,jPi,j

m∑
i=0

n∑
j=0

Bm
i (s)Bn

j (t)ωi,j

, s ∈ [0, 1], t ∈ [0, 1],
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with ωi,j = (1 − α)iαm−i(1 − β)jβn−j . Here we want to choose the transforma-
tions (3) and (4) such that J(α, β) becomes as small as possible. With the help
of the chain rule, we get from Equation (2)

J(α, β) =

1

0

||∂X(s, 0)

∂s
||2 (1 − α + 2sα − s)2

α(1 − α)
ds+

1

0

||∂X(s, 1)

∂s
||2 (1 − α + 2sα − s)2

α(1 − α)
ds

+

1

0

||∂X(0, t)

∂t
||2 (1 − β + 2tβ − t)2

β(1 − β)
dt +

1

0

||∂X(1, t)

∂t
||2 (1 − β + 2tβ − t)2

β(1 − β)
dt

The solution satisfies the following two equations

0 =
∂J(α, β)

∂α
, (5)

and

0 =
∂J(α, β)

∂β
. (6)

First, we simplify Equation (5) as follows.

0 =
∂J(α, β)

∂α
=

1∫
0

||∂X(s, 0)
∂s

||2−B
2
0(s)B2

0(α) +B2
2(s)B2

2(α)
α2(1 − α)2

ds+

1∫
0

||∂X(s, 1)
∂s

||2−B
2
0(s)B2

0(α) +B2
2(s)B2

2(α)
α2(1 − α)2

ds =
P1B

2
0(α) +Q1B

2
2(α)

α2(1 − α)2

with the coefficients

P1 =

1∫
0

−(||∂X(s, 0)
∂s

||2 + ||∂X(s, 1)
∂s

||2)B2
0(s)ds,

and

Q1 =

1∫
0

(||∂X(s, 0)
∂s

||2 + ||∂X(s, 1)
∂s

||2)B2
2(s).

Note that P1 < 0 < Q1 holds. Hence we get exactly one root of P1B
2
0(α) +

Q1B
2
2(α) = 0 with 0 < α < 1. Equation (6) can be solved using a similar

method. Also the polynomial form of the coefficients can be easily obtained.
In Figure 2, we give an example to show the improved parameter speed that
can be realized by the Möbius reparameterizations. The parameter lines corre-
sponding to a fixed parameter increment in another parameter for the original
representation and the optimal rational representation are given in Figure 2(a)
and Figure 2(b) respectively. For the surface in Figure 2(a), the original poly-
nomial representation has J = 5.139. The optimal reparameterization occurs for
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(a) (b) (c)

(d) (e) (f)

Fig. 2. Texture mapping and tessellating results of a Bézier surface: (a) Bézier surface
and its polynomial parameterization; (b) Bézier surface and its optimal parameteri-
zation; (c) texture mapping result of the surface; (d) texture mapping result of the
reparameterized surface; (e) tessellating result of surface (a) by mapping Figure 1(d)
to the surface; (f) tessellating result of surface (b) by mapping Figure 1(d) to the
reparameterized surface

α = 0.274, β = 0.311 - yielding a value, J = 4.019 that yields satisfying results
for rendering and tessellating applications. For the Bézier surface in Figure 2(a),
the original polynomial parameterization has J = 4.524. The optimal reparam-
eterization occurs for α = 0.482, β = 0.432 - yielding a value, J = 4.469 that
yields a surface similar to the original surface (see Figure 3). From Figures 2
and 3, we can see that the linear Möbius transformations can not change the
shape of the parameter lines. What changes is the distribution of the parameter
lines. Thus the parameter lines will not become more uniform after linear Möbius
reparameterizations for some surface cases. Also the Möbius reparameterizations
are not expected to yield dramatic improvements in the parameter speed for ar-
bitrary Bézier surfaces. The optimal reparameterization coefficients (using the
integral in [1]) for the four boundary curves are shown in Table 1. We can see
that if the changes of the parameter speed across the two opposite boundaries
are not consistent (the optimal reparameterization coefficient for one boundary
is greater than 0.5 while the reparameterization coefficient for another opposite
boundary is less than 0.5), the Möbius transformations take little effect.

Table 1. Optimal reparameterization coefficients for Bézier curves

Curve S(u, 0) S(u, 1) S(0, v) S(1, v)

surface in Figure 2(a) 0.268 0.279 0.294 0.324
surface in Figure 1(a) 0.290 0.676 0.435 0.428



Optimal Parameterizations of Bézier Surfaces 677

3 Quadratic Reparameterization of Bézier Surfaces

Given a Bézier surface, each parameter is subjected to a transformation as fol-
lows.

u = u(s) =
(α − 1)s

2αs− s− α, (7)

and

v = v(t) =
(β − 1)t

2βt− t− β , (8)

where
α = α1t+ α2(1 − t) and β = β1s+ β2(1 − s).

Here in order to achieve more uniform parameter lines, we need additional free
parameters. We choose α in (7) as a linear function of t, with coefficients α1

and α2, and β in (8) as a linear function of s, with coefficients β1 and β2. This
will lead to an optimization problem with 4 variables, and it will also raise the
degree of the surface accordingly.

(a) (b) (c)

Fig. 3. Texture mapping and tessellating results of a Bézier surface: (a) Bézier surface
and its optimal parameterization; (b) texture mapping result of reparameterized surface
(a); (d) tessellating result by mapping Figure 1(d) to the reparameterized surface

3.1 Computing the Control Points and Weights of the
Reparameterized Surface

The new surface would be of degree (m+n)× (m+n). The new Bézier functions
are computed as follows.

Bm
i (s) =

Bm
i (u)(α2v − α1v − α2)m−i(α1v + α2 − α2v − 1)i

(2uα1v + 2uα2 − 2uα2v − u− α1v − α2 + α2v)m

(α2v − α1v − α2)m−i(α1v + α2 − α2v − 1)i can be expressed as
m∑

l1=0

cl1,iB
m
l1

(v)

by a linear matrix solving. Thus we have

Bm
i (s) =

m∑
l1=0

cl1,iB
m
l1

(v)Bm
i (u)

(2uα1v + 2uα2 − 2uα2v − u− α1v − α2 + α2v)m
(9)
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(a) (b) (c)

Fig. 4. Texture mapping and tessellating results of a Bézier surface: (a) Bézier sur-
face and its optimal parameterization; (b) texture mapping result of reparameterized
surface; (c) tessellating result by mapping Figure 1(d) to the reparameterized surface

Similarly, we have

Bn
j (t) =

n∑
l2=0

al2,jB
n
l2

(u)Bn
j (v)

(2uβ1v + 2vβ2 − 2vα2u− v − α1u− α2 + α2u)n
(10)

From Equations (9) and (10), we obtain

Bm
i (s)Bn

j (t) =

m∑
l1=0

n∑
l2=0

cl1,ial2,j

m
l1

n
j

n
l2

m
i

m+ n
l1 + j

m+ n
l2 + i

Bm+n
l1+j (v)Bm+n

l2+i (u)

D1D2

where D1 = (2uα1v+2uα2 − 2uα2v−u−α1v−α2 +α2v)m and D2 = (2uβ1v+
2vβ2 − 2vα2u − v − α1u − α2 + α2u)n. Thus the (k1, k2) control point of the
reparameterized surface is

k1∑
i=max(k1−n,0)

k2∑
j=max(k2−m,0)

ck2−j,iak1−i,j

m
k2 − j

n
j

n
k1 − i

m
i

m+ n
k2

m+ n
k1

Pi,j

k1∑
i=max(k1−n,0)

k2∑
j=max(k2−m,0)

ck2−j,iak1−i,j

m
k2 − j

n
j

n
k1 − i

m
i

m+ n
k2

m+ n
k1

.

the weight of the (k1, k2) control point is

k1∑
i=max(k1−n,0)

k2∑
j=max(k2−m,0)

ck2−j,iak1−i,j

(
m

k2 − j

)(
n
j

)(
n

k1 − i

)(
m
i

)
(
m+ n
k2

)(
m+ n
k1

) .

Thus we get the reparameterized surface with degree (m+ n) × (m+ n).
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3.2 Determining the Coefficients

The four coefficients α1, α2, β1 and β2 influence the parameterization of the
resultant surface greatly. α1 and α2 affect the shape and distribution of v curves
while the β1 and β2 affect the shape and distribution of u curves. To obtain
a satisfying representation (more uniform parameter lines), we compute the αi

for some u curves X(u, vi) firstly. A least square technique is then applied to
interpolate the αi to get α1 and α2. β1 and β2 can be computed similarly. For
most surface cases, the quadratic reparameterizations can produce more uniform
parameter lines. For the surface shown in Figure 1(a), the rendering and tessel-
lating results of the reparameterized surface using quadratic reparameterization
are shown in Figure 4.

(a) (b) (c)

(d) (e) (f)

Fig. 5. Texture mapping and tessellating results of Bézier patches: (a) an arbitrary
network of bicubic Bézier patches; (b) triangular mesh of the parameter domain; (c)
texture mapping result of surfaces (a); (d) texture mapping result of the reparameter-
ized patches; (e) tessellating result of (a) by mapping (b) to the patches; (f) tessellating
result of (a) by mapping (b) to the reparameterized patches
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From Figure 4, we can see that the quadratic reparameterization can change
the shape of the parameter lines as well as the distribution of the parameter
lines. The example shown in Figure 5 illustrates the application of quadratic
reparameterization in animation industries. In Figure 5, we use a bicubic B-
spline surface to approximate the original face model with 1024 triangles. Then
the B-spline surface is split into 196 bicubic Bézier patches (see Figure 5(a)).
After the quadratic reparameterization, the curves shared by two Bézier patches
should have the same control points and the same weights. To achieve this, the
coefficients of the quadratic reparameterization are determined by interpolating
the reparameterization coefficients of the boundary curves directly. No interior
u(or v) curves are involved in the computation. For the rendering and tessellating
applications, the quadratic reparameterization produces more satisfying results
with a cost that the degree of the surface patches is raised to (m+n)× (m+n).

4 Conclusions

We have shown that linear Möbius transformations can not change the shape
of the parameter lines. What changes is the distribution of the parameter lines.
In order to obtain more uniform parameter lines, a quadratic reparameteriza-
tion algorithm is presented to reparameterize the Bézier surfaces. The examples
indicate that, in practice, the algorithm produces significantly more uniform
parameter lines across the Bézier surfaces.
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Abstract. An algorithm for constructing constrained Delaunay trian-
gulation (CDT) of a planar straight-line graph (PSLG) is presented.
Although the uniform grid method can reduce the time cost of visibil-
ity determinations, the time needed to construct the CDT is still long.
The algorithm proposed in this paper decreases the number of edges
involved in the computation of visibility by replacing traditional visi-
bility with Delaunay visibility. With Delaunay visibility introduced, all
strongly Delaunay edges are excluded from the computation of visibility.
Furthermore, a sufficient condition for DT (CDT whose triangles are all
Delaunay) existence is presented to decrease the times of visibility de-
terminations. The mesh generator is robust and exhibits a linear time
complexity for randomly generated PSLGs.

1 Introduction

Triangulation of a planar straight-line graph (PSLG) [1] plays an important
role in surface visualization[2], stereolithography[3], garment design [4], pattern
recognition [5], surface reconstruction [6,7,8] and finite element analysis [9,10,11].
Quality of the mesh strongly influences the accuracy and efficiency of design
and analysis. Delaunay triangles have desirable properties such as maximum
minimum angle and suitability for Delaunay refinement algorithms [12]. Delau-
nay triangulations[13](Fig. 1(b)) are convex. However, PSLGs usually are not.
PSLGs have edge constraints that must be respected by the mesh (Fig. 1(a)). To
address this problem, two methods have been established: conforming Delaunay
triangulation and constrained Delaunay triangulation (CDT).

Conforming Delaunay approaches [14,15,16] repeatedly insert Steiner points
into the mesh, while the mesh is Delaunay refined accordingly, until constraints
are respected by the mesh: each edge is represented by a union of contiguous
sequence of Delaunay triangulation edges. All triangles in the resulting mesh are
Delaunay. The problem of where to insert points to obtain constraint conformity
is difficult to solve. Edelsbrunner [14] shows that for any PSLG, there exists a
Delaunay triangulation of O(m2n) points that conforms to the PSLG where m,
n are the number of constrained edges and the number of points in the PSLG
respectively. Whether there exists a PSLG that really needs so many Steiner

G. Bebis et al. (Eds.): 2006, LNCS 4291, pp. 682–691, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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(a) (b)

(c) (d)

Fig. 1. A PSLG and its triangulations. (a) A PSLG (the interior square is a hole).
(b) Delaunay triangulation. (c) Conforming Delaunay triangulation. (d) Constrained
Delaunay triangulation.

points is not confirmed. But PSLGs for which O(mn) augmenting points are
needed are known. It is an open problem to close the gap between O(m2n) and
O(mn) bound.

CDT [9,10,17,18,19,20]involves a set of edges and points while maintaining
most of the favorable properties of Delaunay triangulation (such as maximum
minimum angle). Compared with conforming Delaunay triangulation, Steiner
points and unnecessary short edges are not involved in CDT. An example is
given in Fig. 1 to illustrate the differences between conforming Delaunay tri-
angulation and CDT. For the PSLG shown in Fig. 1(a), CDT (Fig. 1(d)) has
no Steinter points involved compared with conforming Delaunay triangulation
(Fig. 1(c)). Delaunay triangulation of the PSLG is also given (Fig. 1(b)) to illus-
trate the differences between Delaunay triangulation and CDT. Lee and Lin [10]
present a divide and conquer algorithm with O(nlgn) time complexity which has
touched the lower bound of CDT. Bentley [21] uses a uniform grid to solve the
nearest neighbor searching problem and proves that, under the assumption that
points are chosen independently from a uniform distribution on the unit square
in 2D, the nearest neighbor of a query point can be found by spiral search in con-
stant expected time. Piegl[20] uses a uniform grid to accelerate two-dimensional
constrained Delaunay triangulation for multiply connected polygonal domains.
Exterior triangles generated during the triangulation process are removed from
the output by a labeling procedure. Based on the uniform grid method, Klein[19]
uses a divide and conquer paradigma to compute the constrained Delaunay tri-
angulation of polygonal domains. No excess triangles are generated and the
algorithm exhibits a linear time complexity for randomly generated polygons.
However, extra operations are needed for multiply connected polygons.
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Based on the uniform grid method, an advancing front algorithm to construct
the constrained Delaunay triangulation of a PSLG is presented in this paper. In
order to decrease the number of edges involved in the computation of visibility,
Delaunay visibility is introduced. Two points are Delaunay visible from each
other if the segment between the two points intersects no edges of the PSLG
except strongly Delaunay edges, which are transparent for Delaunay visibility
determinations. Furthermore, to decrease the times of visibility determinations,
a sufficient condition for DT (CDT whose triangles are all Delaunay) existence
is presented. Once the sufficient condition is satisfied during the triangulation
process, no more visibility determinations are performed. The algorithm is fast
and easy to implement.

This paper is organized as follows. In Section 2, some fundamental definitions
used in this paper are presented. Section 3 describes how to construct constrained
Delaunay triangles. Delaunay visibility as well as edge protection is presented in
Sections 4 and 5 respectively. Section 6 gives some examples and analyzes the
effects of Delaunay visibility and edge protection, followed by Section 7, which
concludes the paper.

2 Fundamental Definitions

Definition 1 (Delaunay visibility). Given a PSLG X, two points p1, p2 ∈ P
are Delaunay visible from each other if the segment ẽ(p1, p2) intersects no edges
e ∈ E except strongly Delaunay edges. Two points p1, p2 ∈ P that are Delaunay
visible from each other are not always visible from each other as the segment
ẽ(p1, p2) may intersect some strongly Delaunay edges. An example is given in
Fig. 2. There exists a circumcircle C of edge e(p3, p4) which doesn’t have any
other points except points p3 and p4 in its interior or on its boundary. Then
e(p3, p4) is strongly Delaunay. Thus p1 and p2 are Delaunay visible from each
other. However p1 and p2 are not visible from each other.

Definition 2 (Triangulation of a planar domain). If the PSLG X is a planar
domain, the triangulation of the planar domain is composed of triangles in T(X)
that are inside the polygonal domain.

Fig. 2. p1 and p2 are Delaunay visible from each other, however not visible from each
other



Constrained Delaunay Triangulation Using Delaunay Visibility 685

Definition 3 (Constrained Delaunay triangulation). For any PSLG X = (P,E),
the CDT of X, denoted by CDT(X), is a triangulation T(X) in which each
triangle is constrained Delaunay.

Definition 4 (Edge protection). Given a PSLG X = (P,E), X is edge protected
if each edge e ∈ E is Delaunay.

3 Constructing Constrained Delaunay Triangles

Before describing the details of constructing constrained Delaunay triangles,
we define the orientation of triangles and edges. For a triangle denoted by
'(p1, p2, p3), its vertices p1, p2 and p3 are listed in counterclockwise order. For
a directed edge denoted by e(p1, p2), the edge is oriented p1 → p2 and the third
point is searched for in the half plane to its left. If the PSLG is a polygonal
domain, the boundary edges have a single orientation (thus, a triangle will be
constructed only on their “inward” side) and internal edges have a double ori-
entation (thus, triangles will be constructed on both sides). With the above
orientation definitions, the constrained Delaunay triangles are constructed using
the advancing front method as follows. First, all edges in E are designated as the
front list. If the front list is not empty, the first directed edge in the current front
list is selected as the active edge and a constrained Delaunay triangle is formed
as follows. Let C̃(pi1 , pi2 , pi3) denote the region strictly inside the circumcircle
C(pi1 , pi2 , pi3) of triangle '(pi1 , pi2 , pi3). Then we have:

Lemma 1 [19]. For a constrained Delaunay edge e(pi1 , pi2), triangle '(pi1 , pi2 ,
pi3) is constrained Delaunay if and only if

(1) pi3 ∈ Vi1i2 where Vi1i2 = {p ∈ P |(ẽ(pi1 , p) ∪ ẽ(pi2 , p)) ∩ ej = ∅, ∀ej ∈ E −
{e(pi1 , p), e(pi2 , p)}}. That is, if segments ẽ(pi1 , pi3) and ẽ(pi2 , pi3) are drawn,
they have no intersections with constrained edges excluding the segments
themselves.

(2) C̃(pi1 , pi2 , pi3) ∩ Vi1i2 = ∅. That is, the circumcircle of '(pi1 , pi2 , pi3) does
not contain any point that is visible from pi1 and pi2 .

If a point satisfying Condition (1) is found, the point satisfying Conditions (1)
and (2) of Lemma 1 can be obtained by repeatedly replacing pi3 with an arbitrary
point p ∈ C̃(pi1 , pi2 , pi3)∩Vi1i2 . Given a PSLG X = (P,E), all points and edges
are put into a uniform grid to accelerate the Delaunay point search [19].

4 Delaunay Visibility

In Section 3, all edges e ∈ E are involved in the visibility determinations between
points p ∈ P . Though the grid structure method can constrain the intersection
judgments in a local area around the current active edge, visibility determination
is still time consuming. In order to decrease the number of edges involved in
visibility determinations, Delaunay visibility is put forward.
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(a) (b)

Fig. 3. Delaunay visibility (the bold line denotes an edge that is not strongly Delau-
nay). (a) A PSLG. (b) Delaunay triangulation.

In order to use the Delaunay visibility, we should identify the strongly Delau-
nay edges. Whether an edge is strongly Delaunay can be judged as follows. If
an edge is involved in Delaunay triangulation of the PSLG, it is Delaunay, but
not always strongly Delaunay. Thus symbolic perturbation [24] is introduced to
simulate the circumstance where no four points are on a common circle. With
perturbation involved, an edge is also strongly Delaunay if it is Delaunay. In
Fig. 3(a), e1 is not involved in the Delaunay triangulation while e2 is involved in
the Delaunay triangulation (as Fig. 3(b) shows). So e1 is not strongly Delaunay
and e2 is strongly Delaunay. Since strongly Delaunay edges are apparent for De-
launay visibility determinations, p2 and p3 are Delaunay visible from each other
while p1 and p2 are not Delaunay visible from each other. p1 and p2 as well as
p2 and p3 are not visible from each other. In Section 3, all constrained edges
are involved in the visibility determinations. If visibility is replaced with Delau-
nay visibility, all strongly Delaunay edges are excluded from Delaunay visibility
determinations. The crucial problem brought is whether the CDT criteria is sat-
isfied when visibility is replaced with Delaunay visibility. The following theorem
gives a positive answer to this question.

Theorem 1. Let E1 denote the strongly Delaunay edge set of the PSLG. For
a constrained Delaunay edge e(pi1 , pi2), triangle '(pi1 , pi2 , pi3) is constrained
Delaunay if and only if

(1) pi3 ∈ DVi1i2 , where DVi1i2 = {p ∈ P |(ẽ(pi1 , p) ∪ ẽ(pi2 , p)) ∩ ej = ∅, ∀ej ∈
E − {e(pi1 , p), e(pi2 , p)} − E1}. That is, the point Pi3 can be joined to pi1

and pi2 without intersecting any non-strongly Delaunay edges (excluding the
segments themselves).

(2) C̃(pi1 , pi2 , pi3) ∩ DVi1i2 = ∅. That is, the circumcircle of '(pi1 , pi2 , pi3)
contains no points that are Delaunay visible from points pi1 and pi2 .

Proof. Theorem 1 can be understood as: if we delete strongly Delaunay edges
from the constrained edge set of the PSLG X , the CDT is unchanged. This as-
sertion can be demonstrated by the following statements. Let E1 be the strongly
Delaunay edge set of the PSLG X . Then we have E1 ⊆ E. Also let P̃ and Ẽ de-
note the point and edge set of the PSLG X̃ derived from PSLGX by subtracting
E1 from the edge set. Thus we have P̃ = P and Ẽ = E−E1. Given the CDT of
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X denoted by T (X), we will show that T (X) is also a CDT for X̃. Because T (X)
is a triangulation of the PSLG X , from Definition 7, we have E1 ⊆ E ⊆ ET (X)
where ET (X) denotes the edge set of T (X). From Remark 14, we know that all
edges of ET (X) are either in E or locally Delaunay. Because E1 ⊆ E, thus each
edge of ET (X)−E1 is either in E −E1 or locally Delaunay. Because each edge
of E1 is strongly Delaunay, from Remark 9, every edge is locally Delaunay. Thus
we have that each edge of ET (X) is either in E − E1 = Ẽ or locally Delaunay.
From Remark 14, T (X) is the CDT of PSLG X̃ . �
From Theorem 1, strongly Delaunay edges are excluded from visibility determi-
nations. If E1 in Theorem 1 is replaced with set E2 ⊂ E1 , Theorem 1 still holds.
With Delaunay visibility introduced, another problem that must be handled is
how to judge whether an edge is Delaunay. If the judgments are time consuming
compared with the merit introduced by Delaunay visibility, Delaunay visibility
is meaningless. Luckily, we mainly use the information brought by the construc-
tion of constrained Delaunay triangles. The details are shown as follows. First,
the initial front list is just composed of directed edges of E, which is admin-
istrated by a linked list. New generated edges are appended to the list. Each
time the first undelaunay edge in the list is selected as the active edge. Thus
edges of E are processed first. Whether an edge of E is Delaunay can be judged
after the derived triangle is formed. During the construction of constrained De-
launay triangles, we should judge whether C̃(pi1 , pi2 , pi3) ∩ DVi1i2 = ∅ holds.
Any point p ∈ C̃(pi1 , pi2 , pi3) ∩ P is tested whether it is Delaunay visible from
the active edge. Thus whether C̃(pi1 , pi2 , pi3) ∩ P = ∅ holds is obtained by the
way. If C̃(pi1 , pi2 , pi3) ∩ P = ∅ holds for the active edge e(pi1 , pi2), e(pi1 , pi2) is
a Delaunay edge. Then eliminate e(pi1 , pi2) from edge lists of the uniform grid
cells. If there exists some empty circumcircle (not necessarily C̃(pi1 , pi2 , pi3)),
edge e(pi1 , pi2) is Delaunay. So C̃(pi1 , pi2 , pi3) ∩ P = ∅ is only a sufficient but
not necessary condition for edge e(pi1 , pi2) to be Delaunay.

5 Edge Protection

Shewchuk [12] presents edge protection to guarantee the existence of CDT in
3D. If edge protection is introduced to CDT in 2D, we will get a sufficient and
necessary condition for DT (CDT whose simplexes are all Delaunay) existence.
Given a PSLG, we have:

Theorem 2. A PSLG X has a DT if and only if X is edge protected.

Proof of theorem 2 follows directly from the definition of edge protection (Defi-
nition 4). If all edges in the current front list are Delaunay, the front (a domain
bounded by all current front edges) is edge protected. Then from Theorem 2,
the front has a DT. No visibility determinations are needed to triangulate the
interior of the front. Now the test of edge protection is the most crucial prob-
lem for the application of Theorem 2. It is the same as for the application of
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Theorem 1. We use the information brought by the construction of constrained
Delaunay triangles. Few extra operations are introduced in this approach. To
use this approach, the front advances further than necessary . Now we give the
main flow of our algorithm. There are two main loops in the algorithm. The first
loop triangulates all edges labeled undelaunay in the front. After the first loop,
all edges in the current front list are Delaunay. Thus no visibility determinations
are needed during the second loop processing. Given a PSLG, the following steps
are performed.

1. Add all directed edges of E to the initial front list and label all edges as
undelaunay. Calculate the size of E and assign it to the variable number.
Assign ∅ to E1. Select the first edge of the initial front list as active edge.

2. For the active edge e(pi1 , pi2), find the Delaunay point pi3 with the following
properties:
(1) pi3 ∈ DVi1i2 ,where DVi1i2 = {p ∈ P |(ẽ(pi1 , p)∪ ẽ(pi2 , p))∩ ej = ∅, ∀ej ∈

E − {e(pi1 , p), e(pi2 , p)} − E1};
(2) C̃(pi1 , pi2 , pi3) ∩DVi1i2 = ∅.
That is, Step 2 finds a point pi3 for the active edge such that pi3 can be joined
to the two endpoints pi1 , pi2 of the active edge without intersecting any of
the constrained edges excluding identified Delaunay edges, and forms with
them a triangle, whose circumcircle contains no points that are Delaunay
visible from pi1 and pi2 .

3. If e(pi1 , pi2) ∈ E and C̃(pi1 , pi2 , pi3) ∩ P = ∅, label e(pi1 , pi2), e(pi1 , pi3)
and e(pi2 , pi3) as Delaunay and perform E1 = E1 ∪ ({e(pi1 , pi2), e(pi1 , pi3),
e(pi2 , pi3)}∩E). That is, if the circumcircle of formed triangle in Step 2 has
no points inside, each edge of the triangles is labeled as Delaunay, and added
to Delaunay edge set E1 if it is a constrained edge. Update front and the
variable number according to two generated edges.

4. Choose the first edge labeled undelaunay from the current front as active
edge and repeat Steps 2-4 until the variable number becomes zero.

5. Choose the first edge from the current front as active edge.
6. For the active edge e(pi1 , pi2), find the third point pi3 with the following

properties:
(1) pi3 lies in the left half plane to e(pi1 , pi2);
(2) C̃(pi1 , pi2 , pi3) ∩ P = ∅.
That is, Step 6 finds a point pi3 for the active edge such that circumcircle
of the formed triangle '(pi1 , pi2 , pi3) contains no points.

7. Update the front according to two generated edges.
8. Choose the first edge from the current front as active edge and repeat Steps

6-8 until the front list is empty.

Determinations of Delaunay visibility are needed only when edges labeled unde-
launay are processed. Each time an edge labeled undelaunay is processed, a new
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triangle is generated. Front and the variable number are updated accordingly.
Whenever number becomes zero, the current front can be triangulated without
determinations of Delaunay visibility (as Step 6 shows).

6 Results

Three examples of CDT are given in Fig. 4. Time comparison between proposed
algorithm without symbolic perturbation with Klein’s algorithm [19] and Piegl’s
algorithm [20] is listed in Table 1.

Fig. 4. Three examples of CDT

Table 1. Time (ms) comparison between proposed algorithm without symbolic pertur-
bation with Klein’s algorithm and Piegl’s algorithm for randomly generated polygons
of different size

Size 200 400 600 800 1000 1200 1400 1600 1800 2000

Piegl’s algorithm 24 62 143 179 228 272 304 375 418 592
Klein’s algorithm 17 33 51 69 87 103 118 135 153 172
Our algorithm 5 10 16 22 26 29 35 38 44 53

It can be seen that the proposed algorithm, CDT utilizing DV (Delaunay vis-
ibility) and EP (edge protection), is faster than Klein’s algorithm and Piegl’s al-
gorithm. Furthermore, the proposed algorithm exhibits a linear time complexity
for randomly generated polygons (see Table 1). Delaunay visibility can be used
extensively to accelerate two-dimensional CDT algorithms [5,10,19]. Edge pro-
tection can be applied for CDT algorithms utilizing advancing front or shelling
method [5,11,20]. Introduction of symbolic perturbation [24] can handle degen-
eracies, thus simplify the programming and enhance robustness of our algorithm.
So the time listed in the following tables is measured for presented algorithm
with perturbation involved.

All above algorithms are run in the environment with Intel Pentium IV CPU
2.0GHz, 256Mb, Microsoft Windows 2000 and Microsoft Visual C++ 6.0.
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7 Conclusions

A fast and easy to implement algorithm is presented for CDT construction of
a PSLG. Visibility determinations between the points of a PSLG are time con-
suming. In order to decrease the number of edges involved in visibility determi-
nations, Delaunay visibility is presented. Furthermore, in order to decrease the
times of visibility determinations between the points of a PSLG, a sufficient con-
dition for DT is presented and used combined with uniform grid and advancing
front techniques in our algorithm.
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Abstract. In a collaborative system, the level of co-presence, the feeling of be-
ing with the remote participants in the same working environment, is very im-
portant for natural and efficient task performance.  One way to achieve such co-
presence is to recreate the participants as real as possible, for instance, with the 
3D whole body representation.  In this paper, we introduce a method to recreate 
and immerse tele-operators in a collaborative augmented reality (AR) environ-
ment.  The method starts with capturing the 3D cloud points of the remote op-
erators and reconstructs them in the shared environment in real time.  In order 
to realize interaction among the participants, the operator’s motion is tracked 
using a feature extraction and point matching (PM) algorithm.  With the partici-
pant tracking, various types of 3D interaction become possible.  

1   Introduction 

Remote collaboration has been one of the key applications of shared virtual environ-
ments [1].  Mixed (or augmented) reality presents even more potential for remote 
collaboration, for instance, if it would be possible to recreate the remote operators in 
the real environment.  In this situation, contrast to the virtual environment, both the 
operating environment and the participants are (or look) real, rather than graphical 
representations.  Recreating and immersing the remote operators would undoubtedly 
improve the co-presence (the feeling of being with the remote participants in the same 
working environment [2]) among the collaborators and improve the efficiency of the 
group task performance. 

In this paper, we introduce a method to recreate and immerse tele-operators in a 
collaborative augmented reality (AR) environment in a realistic manner, e.g. with 3D 
whole body representation.  The two main issues in this research are (1) capturing and 
presenting a natural and photo-realistic whole body  representation of the participants 
to the shared users, and (2) tracking participants motion (at least partially) for realiz-
ing 3D interaction among the users, all in real time.  Our method starts with capturing 

* Corresponding author.  
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the 3D cloud points of the remote operators using a 3D camera.  The captured 3D 
clouds can be displayed in the shared augmented environment at a designated or 
marker tracked locations.  Then, the operator’s motion is partially tracked using a 
feature extraction and point matching (PM) algorithm.  The feature extraction algo-
rithm first finds important body features (or points) from the 3D camera and based on 
this information, the point matching algorithm is iteratively run to track them in real 
time.  In order to start the point matching algorithm and converge to a good solution, 
the initial pose of the actor is estimated by inverse kinematics.  Because a 3D camera 
is used for capturing the 3D point clouds, the users can have a limited range of views, 
rather than an image with a single point of view.  In summary, the system provides a 
natural looking imagery (e.g. video captured whole body participants registered in a 
real environment) resembling a situation in which all the participants are present and 
interact-able within the same environment.

This paper is organized as follows.  First, we review previous research related to 
this work in section 2.  In section 3, we present each important step in capturing, dis-
playing and reconstructing 3D information of the remote participants for the shared 
augmented environment.  Finally, we conclude the paper with an executive summary 
and future directions.   

2   Related Work 

One of the typical remote collaborative systems is tele-conferencing. Tele-conferencing 
naturally focuses only on the exchange of words (voice) and 2D video rather than 
physical interaction [3]. In terms of providing the presence of the participants, conven-
tional tele-conferencing systems only offer imagery of faces or upper body with a single 
view point.  Several works have addressed this problem by employing eye or motion 
tracking and image warping to provide a more natural platform for conversation with 
mutual gaze [4, 5].  However, most teleconference systems are still 2D based.  Hauber 
et al. have developed an AR based teleconference system in which 2D video objects 
were placed (or registered) in the real (3D) environment [6].  However, the 2D videos 
were taken from a single view camera showing only faces of the participants.

On the other hand, shared networked virtual reality systems have been a popular 
platform for remote collaborative systems [7, 8, 9, 10].  VR based remote collabora-
tion frameworks have the strength in enabling 3D physical collaborative tasks among 
the shared users.  However, it has limitations in providing photo-realism of the par-
ticipants and the working environment, and natural avatar control.  Many researches 
have pointed to the importance of co-presence as an important factor in improving 
collaborative task performance [11], and identified, among others, the role of gaze, 
body gestures and whole body interaction as key elements [12]. 

Not too many attempts for remote collaboration have been made in the augmented 
reality area.  Most AR based collaboration systems have been on-site (i.e. participants 
are all locally present) and focused on augmenting the real world to assist the collabo-
ration [13].  Even though the participants are physically present, the imagery is still 
not natural, because the collaborators are seen wearing sensors and head mounted 
displays.  Prince et al. has developed a system called the “3D-Live” [14].  In this 
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work, a participant was captured by a multi-camera system and can be placed on a 
hand-held marker to be manipulated.  While it has been reported such a style of tele-
conferencing has improved the social presence compared to the traditional audio and 
video teleconferencing interfaces [15], natural physical 3D interaction is still not 
possible and the participants are not life-sized as in the real world.  

3   Immersing the Tele-operator 

Fig. 1 shows the overall framework for immersing tele-operators (the client in the left 
part of the figure) in the shared augmented workspace (right part of the figure).  There 
are three main steps to register the client co-worker into the shared environment, 
namely, actor extraction, actor tracking, and reconstruction.  In the actor extraction 
stage, the client’s 3D cloud data is obtained using a 3D camera and important feature 
points are extracted and analyzed.  The analyzed data is used as a basis for feature 
point tracking in the second stage.  The 3D cloud and motion data of the client are 
compressed and transmitted to the local workspace where the collaboration is needed.  
At the local workspace, the 3D cloud and motion data are used to display and recon-
struct the client and allow 3D interaction.  The procedure of extracting actor was 
similar to that of our previous research [16].  

Static background modeling

Background removal

Actor extraction

Actor tracking

Client 2 Client 3 Client N

Remote
Collaborator
(Client 1)

Data compression
Data decompression

3D data reconstruction

Color, depth info.
Camera info.
Voice data.

Multiview Camera

Interfaces

Control 
events

Local 
Workspace

 

Fig. 1. The overall framework for immersing tele-operator in the shared AR workspace 

3.1   Actor Extraction 

We use a multi-view camera to capture color and 3D depth information simultane-
ously in real-time.  The multi-view camera that we use is called the Digiclops™ and 
provides color and depth information in real time (at about 19 fps in a resolution of 



 Immersing Tele-operators in Collaborative Augmented Reality 695 

320 X 240).  The disparity estimation of the multi-view camera is based on a simple 
intensity-based pixel matching algorithm.

We have implemented a color-based object segmentation algorithm for extracting 
the actor (client) from the video image.  We separate the actor from the static back-
ground by subtracting the current image from a reference image (i.e. the static back-
ground).  The subtraction leaves only the non-stationary or new objects. The  
proposed segmentation algorithm consists of the following three steps: (1) static back-
ground modeling, (2) moving object segmentation, and (3) shadow removal.  After 
segmentation, we correct the final image by, for instance, filling in holes. 

3.1.1   Static Background Modeling 
To separate moving objects (e.g. actor/client) from the natural background, we exploit 
the color properties and statistics of the background image.  We first set up the multi-
view camera with known extrinsic (estimated with initially measured values) and 
internal (estimated with values given by the camera specification) camera parameters.  
Then, the color statistics over a number of static background frames, N(m, ) where m
and  denote the pixel-wise mean and standard deviation of the image, are collected.  
Let an arbitrary color image be denoted as I(R,G,B).  The mean image, Im(R,G,B), is 
used as the reference background image and the standard deviation, I (R,G,B), is used 
for a threshold based extraction of the actor (moving object).  The mean image and 
standard deviation are calculated as follows: 
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where, L denotes the total number of image frames used to estimate the statistics.  We empiri-
cally choose L to be 30. 

              (a) Original Image               (b) Object segmentation               (c) Shadow Removal 

Fig. 2.  Moving object segmentation 

3.1.2   Moving Object Segmentation
Each pixel can be classified into objects or background by evaluating the difference 
between the reference background image and the current image in the color space in 
terms of (R,G,B) (Fig. 2). To separate pixels of the moving objects from pixels of the 
background, we measure the Euclidian distance in the RGB color space, and then 
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compare it with the threshold. The threshold is adjusted in order to obtain a desired 
detection rate in the subtraction operation.  

3.1.3   Shadow Removal
Normally, the moving objects make shadows and shading effects according to (chang-
ing) lighting conditions. However, the RGB color space is not a proper space to deal 
with the (black and white) shadow and the shading effects.  Instead, we use the nor-
malized color space, which represents the luminance property better.  In the normal-
ized color space, we can separate the shadows from the background. The difference 
between the normalized color image It(r,g,b) and the normalized mean of the refer-
ence image Im(r,g,b) is calculated. If the difference of the pixel is less than a thresh-
old, the pixel is classified as part of the background.  Note that we can speed up the 
process by only checking the difference in the normalized color space, if the pixel was 
classified as a part of the objects.  If the pixel is classified as objects (in the normal-
ized color space), then we further decompose the color difference into the brightness 
and chromaticity components.  Then, based on the observation that shadow has simi-
lar chromaticity but slightly different (usually lower) brightness than that of the same 
pixel in the background image, we can label the pixels into shadows.  We also exploit 
the depth information to reduce misclassification, while segmenting out the moving 
object.  The underlying assumption is that the moving objects have a limited range of 
depth values (i.e. relatively small or thin).  Using this assumption, we can remove 
spot noises in the segmented object.  In addition, we apply two types of median filters 
(5 x 5 and 3 x 3) to fill the hole while maintaining sharp boundaries.

3.1.4   Depth Correction
Often the multi-view camera exhibits errors in the depth estimation.  Therefore, we 
implemented a depth recovery algorithm similar to the method of hierarchical block 
matching.  That is, for given a pixel, we search its neighborhood depth information on 
a 16 x 16 pixel block. The mean value of available neighborhood disparity values is 
set to disparity of the pixel. 

3.1.5   Data Compression and Transmission
Even though the capture client 3D data is much less than what was originally captured 
by the 3D camera (whole scene), for faster network transmission and scalability, the 
client 3D data is compressed.  The color image of the actor has a size of (number of 
pixels considered as actor) x (rgb(3 bytes)) bytes and the size of the depth information 
is (number of pixels considered as actor) bytes (because depth can be expressed using 
gray level after 8-bit quantization).  In total, each participant will result in approximately 
(number of pixels considered as actor) x 4 bytes.  We used the JPEG compression 
method, and Table 1 shows the reduced amount data by the compression.  

Table 1. Decreased data size after JPEG compression (KB/frame) 

Raw Data / Actor  
(Worst Case) 

100% JPEG 90% JPEG 80% JPEG 

< 307 KB < 87 KB < 27 KB < 16 KB 
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3.2   Actor Tracking 

The heart of our actor tracking is in the use of the point matching (PM) algorithm as our 
system uses 3D point clouds as raw input.  PM algorithm calculates body poses of a 
client by matching the 3D point clouds (as segmented out from the steps described in 
3.2) and a pre-defined and appropriately scaled skeleton geometry (a 3D model made of 
cylinder, boxes and ellipsoids).  While the pre-defined and scaled geometric model is 
not a true reflection of the actual client, such an approximation still proves effective in 
realizing 3D interaction without wired sensors.  In order to apply the iterative PM algo-
rithm efficiently, the initial pose of the client (or 3D model) is estimated by inverse 
kinematics specified by strategic body points identified by feature extraction. 

3.2.1   Feature Finding 
After background extraction, with the segmented client image, we can compute its 
contour on the mask image sequences[17].  By analyzing this contour image, we can 
infer lots of useful information such as the position of body center, head, hands and 
feet (Fig. 3).  

Fig. 3. Feature points on the contour 

Fig. 3 shows all the feature points.  Furthermore, we can extract regions of the 
body parts based on these feature points.  For example, to find a left arm region, we 
trace the contour points from the left arm pit point to the left neck point.  Then, we 
make a minimally enclosing rectangle for the traced contour points.  Similarly, we 
define six body part regions for the left and right arms (trace arm pit to neck), left and 
right legs (from crotch to pelvis), chest (polygonal region bounded by next, arm pit 
and two closest points from center of mass of contour image) and head (from left neck 
to right neck) (See Fig. 4). 

Fig. 4. Region of each body parts based on finding features 
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3.2.2   Base Human Modeling 
To apply the PM algorithm and estimate the client’s motion, there must be a 3D 
model in the first place and it must be scaled appropriately according to the client’s 
physical dimensions.  We developed an ellipsoid based human modeling tool for 
this purpose and scaled the 3D model according to the Korean Standard Body Size 
Index database (KSBSI) [18].  The age and height of the client is used as input and 
a appropriately sized 3D human model with a pre-defined skeleton structure is 
generated. 

3.2.3   Point Matching 
In our work, we applied a well known point matching algorithm called the Iterative 
Closet Point algorithm (ICP).  ICP finds a transformation matrix that aligns two sets 
of 3D points [19] and involves the following procedures.  Given correct correspon-
dences, the ICP offers an algebraic solution (i.e. no iteration is needed).  However, 
when the correspondence information is only approximated as in our case, ICP is 
executed iteratively.  More specifically, ICP iteratively minimizes an error metric 
established between two sets of corresponding 3D point sets.  Thus, it is vital to estab-
lish good correspondences between two point sets in the first place for fast conver-
gence to a reasonable pose.   

Given the extracted features and regions by the process described in 3.2.1, it is 
possible to approximate the 3D poses and positions of the coordinate systems of the 
skeleton (and thus the limbs too) using inverse kinematics (IK).  The actual corre-
spondence among two points (one from 3D cloud segmented as a certain part in the 
body and the other from the points that belong to the corresponding limb) is made 
based on the closest distance measure.  For fast computation, a method called cyclic 
coordinate descent (CCD) method was used [20].  Observe that the inverse kinematics 
alone may generate unnatural poses that does not match that of the actual user as 
illustrated in Fig. 5 (left, lower legs).   With the application of the ICP, a more correct 
body tracking is achieved (right, lower legs).  The subsequent application of the ICP 
algorithm overcomes this problem by quickly registering the 3D point cloud to the 
predefined 3D human model. 

(a) IK method (b) PM method

Refinement

Fig. 5. Pose estimation based on IK and PM methods 
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3.3   Reconstruction: Display and Interaction in AR Environment 

After receiving the client 3D model and motion, a client representation is recon-
structed in the shared AR environment.  The segmented image data of the client is 
decompressed and restored at a designated location within the AR environment.  We 
use a marker to register the client into the AR environment.  The marker tracking was 
realized by using the ARToolKit [21].  Fig. 6 shows the implementation result.  Note 
that as in the 3D-Live system, the participant can be moved freely and offers limited 
view points.  

Fig. 6. A Reconstructed remote user in the local AR workspace: view from front (left) and view 
from top (right)  

Fig. 7. Multiple participants in the shared AR environment (left).  A remote user interacting 
with a virtual 3D car (right) 

Fig 7 shows a case of multiple users and a virtual object all situated in the same 
workspace.  With the 3D information of the clients, 3D interaction is possible as illus-
trated in the right part of Fig. 7 with the hand of the client inserted into the virtual car.  

4   Conclusion 

In this paper, we have presented a method for capturing and immersing a 3D tele-
operator into a shared AR environment.  The proposed system not only provides a life 
sized video based representation of the participants, but also their approximate 3D 
information for closer physical interaction.  The system runs in real time on commod-
ity computing and network hardware (although it requires a 3D camera) and is ex-
pected to be scalable to support more participants.  We believe that the provision of 
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life-sized and 3D representation of the participants is a key to making remote collabo-
rative AR an effective platform for improved level of presence, and shared task per-
formance.  The proposed system can find many applications such as in medicine, 
training and entertainment.   We are planning to further formally investigate its us-
ability and scalability. 
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Abstract. Object segmentation is a crucial task for image analysis and
has been studied widely in the past. Most segmentation algorithms rely
on changes in contrast or on clustering the same colors only. Yet there
seem to be no real one-and-for-all solution to the problem. Nevertheless
graph-based energy minimization techniques have been proven to yield
very good results in comparison to other techniques. They combine con-
trast and color information into an energy minimization criterion. We
give a brief overview of two recently proposed techniques and present
some enhancements to them. Furthermore a combination of them into
the GrayCut algorithm leads to suitable results for segmenting objects
in infrared images.

Keywords: Image Segmentation, Energie Minimization, Graph-based
Techniques, Infrared Images.

1 Introduction

There has been a long road on the search to the holy grail of image segmentation
[1], [2], [3], [4]. Most segmentation algorithms rely on changes in contrast or on
grouping the same colors only. Yet there seem to be no real one-and-for-all
solution to the problem.

Recent advances show graph-based techniques are superior in terms of quality
and user interaction compared to other algorithms [5], [6], [7]. They combine
contrast and color information into an energy minimization criterion. We will
explain them in the following section in a little more detail, before we show how
our now proposal fits into this evolution.

After the following short introduction into two graph-based algorithms, the
next section contains the core description for our new segmentation algorithm,
called GrayCut. Some experimental results and examples show the usage of our
proposed method for segmentation of objects in gray-valued images - especially
for infrared (IR) images. Finally, we conclude with a summary and give a brief
outlook on future work.

1.1 GraphCut

The idea of using an energy minimization technique for image segmentation and
solving it with graph-based algorithms was first described by Greig, Porteous

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 702–711, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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and Seheult in 1989 [8]. We will describe the GraphCut as it was later refined
by Boykov and Jolly [5].

It combines the two already known approaches for image segmentation: algo-
rithms based on colors (or more precisely gray-levels) and segmentation based
on the contrast in different regions of an image. For successful segmentation the
energy formulation

E(z) = P (z) + γ · C(z) (1)

has to be minimized. The weighting parameter γ controls the importance of one
term over the other.

The fidelity term P (z) gives rise to a cost function, which penalizes false
classification of a pixel z of the image I to the foreground α = 1 or to the
background α = 0. Since the user provides a so-called trimap, where two regions -
sure foreground and sure background - has to be defined, one can easily calculate
a probability distribution and cost functions pz,α from the gray-valued pixels and
the image histograms of these two regions to be

P (z) =
∑
z∈I

pz,α . (2)

Costs can be calculated from the negative log-likelihood of the probability be-
longing either to the foreground or to the background.

Second a prior term C(z) representing the pairwise interactions between
neighboring pixels is calculated from the contrast between each two neighboring
pixels z and ẑ

C(z) =
∑

(z,ẑ)∈N

cz,ẑ . (3)

The neighborhood N is chosen such that only neighboring pixels around the
segmentation boundary are summed up. These are only pixels z and ẑ belonging
to two different foreground/background maps: αz �= αẑ. Only a 4-way neighbor-
hood is used here. Therefore, the minimization criterion is to find the shortest
possible segmentation border that gives the smallest sum over its contrast terms.

The contrast between neighboring pixels z and ẑ can be expressed as

cz,ẑ = exp

(
− (Iz − Iẑ)2

2σ2

)
, (4)

where Iz is the gray-value of the pixel z in the range 0 . . . 1. The variance σ2 over
all differences in intensity can be seen as the noise floor present in the image.
Choosing this parameter carefully lets the contrast term successfully switch be-
tween almost zero for high contrast and one vice versa. However, other functions,
separating noise from real contrast in the same manner, are also possible.

From these two properties of each pixel - one belonging to the object or the
background, the other being an edge or not - an undirected graph is built [9].
More precisely a so called S/T -graph is built, where the two terminals S and T
represent the object respectively the background. Edges from and to these ter-
minals are weighted with the corresponding foreground/background costs pz,α.
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Neighboring pixels are connected with edges in 4-way neighborhood, weighted
with the corresponding contrast terms cz,ẑ.

Finally using a standard minimum-cut/maximum-flow (MC) algorithm has
been proven to give the optimal segmentation border in terms of the energy
formulation E(z) defined in (1). The segmentation border corresponds to the
edges representing the minimum cut in the graph.

1.2 GrabCut

GrabCut published in 2004 by Rother, Kolmogorov and Blake [6] extends this
useful scheme to color images. Instead of gray-level histograms, it makes use
of Gaussian mixture models (GMM). Background and foreground are each de-
scribed with five full-covariance Gaussian components Mz,k. So the fidelity term
P (z) is now calculated from the superposition of the Gaussian components

Mz,k =
1

2π
√
Σk

exp
(
−1

2
(Iz − μk)TΣ−1

k (Iz − μk)
)
, (5)

where the term Iz now reflects a three-valued RGB color of the pixel z. The
μk are the mean color of each component and Σk are full-covariance matrices
reflecting color dependencies between the three color layers. Adaptation of the
probability distributionsMz,k to the RGB colors is carried out with the iterative
expectation maximization (EM) algorithm [10], according to a predefined trimap
given by the user.

Due to the three-dimensional color space, the contrast cz,ẑ is now calculated
as

cz,ẑ = exp
(
− ||Iz − Iẑ | |2

2σ2 · ||z − ẑ||

)
, (6)

where the norm ||Iz − Iẑ || is the Euclidian distance in RGB space and ||z − ẑ||
indicates the spatial (Euclidean) distance between two neighboring pixels z and
ẑ (GrabCut uses a 8-way connectivity).

In this manner, the whole algorithm is laid out in an iterative way: after each
EM iteration, an S/T-graph is built up like in the GraphCut and solved with the
minimum-cut algorithm. The resulting segmentation border is used to update
the trimap describing foreground and background regions. This new trimap is
used for the next EM iteration and so on.

The alternating usage of EM steps and MC solutions guarantees the proper
monotonic energy minimization over time. The amount of changes in the overall
energyE(z) between two iterations might be used as a suitable stopping criterion
for the algorithm.

2 GrayCut for Infrared Images

Infrared images are gray-level representations of infrared emissions that cannot
be seen directly by a human observer. The colorization is therefore purely virtual,
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almost like in x-ray images, where bright gray-values represent dense materials.
Colorization is normally chosen such that warm (hot) regions are displayed in
a bright gray-value, whereas cold regions are shown in darker gray-values, but
this mapping can also be inverted.

Furthermore, the relative infrared emissions depend on weather and climate
conditions. In our application of naval ship images, the objects itself - the ships
- might be warmer (or brighter) than the surrounding water, or even colder
(i.e. darker) than the rest of the image. So using predefined colors for image
segmentation will not work at all.

Additionally infrared images in general are not that sharp in displaying objects
than daylight images. In fact the noise floor present in the images is always much
greater than in typical man-made pictures. Therefore, pure edge-based image
segmentation will not be sufficient at all, too.

We already used image segmentation with a GrabCut-related algorithm to
separate ships in marine images from their surrounding water [7]. Nevertheless,
this segmentation was carried out on RGB images. Now the infrared (IR) image
comes into play. Since they are only gray-values, we combine the advantages of
both algorithms: GraphCut which is gray-level-based, and GrabCut, that uses
an iterative optimization scheme.

2.1 Gaussian Mixture Models

As in GrabCut we use Gaussian mixture models again, but this time only to
find distributions in the two gray-scale histograms - the one for the user-defined
background and one for the (unknown) rest. The possible range of values is
reduced from the three-dimensional space of RGB colors to the purely one-
dimensional gray-scale histogram. So the covariance-matrix Σ reduces to the
simple scalar variance σ2

Mz,k =
1

2πσk
exp

(
− (Iz − μk)2

2σ2
k

)
, (7)

Using five Gaussian components for each model gives too much fragmentation.
We found that using two or three components each is more suitable for gray-value
segmentation.

2.2 Iterations

Adaptation of the Gaussian mixture models is of course carried out again by
expectation maximization, so the whole algorithm is of an iterative nature.

Starting with a random distribution for EM learning as in GrabCut is not a
good starting point for the segmentation task. We apply the very first EM step
before the whole algorithm starts. This guarantees a proper initial distribution
of the mixture models, but also ensures the adaptation to changes in the trimap
based on intermediate segmentation results.

Since the possible range of values and the total number of components has
been reduced, the overall algorithm performance haven been slightly increased.
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Fig. 1. An example infrared image and the segmentation results after the first five
iterations: The first row shows the input image and the background selection (black
line) as applied by the user. The next two rows show the segmentation result (white
line) after the first four iterations of the GrayCut algorithm.

Moreover, less iterations are needed for the Gaussian components to adapt the
gray-level histogram. Usually good results are already achieved after the first
three to five iterations. Subsequent iterations only change few pixels directly at
the segmentation border.
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2.3 Post-processing

In same cases, the segmentation can be improved by applying additional post-
processing operations between subsequent iteration steps. We have already shown
in [7] that widening the calculated segmentation border with a morphological di-
lation operation gives superior results, when the color information in the image is
too low for the fast adaptation by the EM algorithm.

We have successfully used the dilation operation with a disc-like structuring
element. However, other structuring elements might be more usable to represent
certain image content. For example, many vertical edges from mast and antennas
present on many ships. This is scope of ongoing research.

Other morphological operations, like cleaning up small separated pixels in the
foreground-map and leaving only the main object part, may be applied too in
some cases. We found using these kind of post-processing techniques is more
suitable when dealing with color images, than when segmenting gray-valued IR-
images.

2.4 Don’t-Care Map

When dealing with real-world applications, (infrared) images may contain sev-
eral optical symbols laid over the original image. These lines and symbols are
generated synthetically and therefore provide a very high contrast with sharp
edges. Segmentation algorithm would normally react very strong on these sharp
edges. Typically, this would lead to wrong segmentation results.

Since these synthetically added symbols always remain at the same position,
we introduce an additional map called don’t-care-map. This map distinguishes
image regions with these special symbols from the rest of the real image and is
used to exclude this pixel from the further algorithm.

These don’t-care-map influences the construction of the S/T-graph in several
ways: First sharp edges from this optical overlays don not carry any information
for the segmentation task and should be rejected. Contrast terms cz,ẑ belonging
to this edges are set to 1, simulating a homogeneous region with no edge at all.

Moreover the gray values of these pixels should not be adapted by the Gaus-
sian mixture models, since it is not known whether the part of the image behind
the optical symbol belongs to the object or to the background. Therefore pixels
present the don’t-care-map are not used during the EM-steps.

In addition to this uncertainness, any classification of pixels to the foreground
or to the background has to be undone before the next minimum-cut can be
solved. All pixels from the don’t-care-map are set back to the unknown-state
again, allowing the assignment of edge weights to the S/T-links again.

These slight modifications enable the algorithm to ignore special (predefined)
parts of the image. The missing parts of the segmentation can move around freely
inside the don’t-care-regions, since all constraints from the contrast terms are
cleared. Therefore solving the minimum-cut connects all valid parts of the seg-
mentation with the shortest possible segmentation border through this unknown
region.
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2.5 User Interaction

We want to have as few user interactions as possible needed to carry out the
segmentation task. Defining only a rough background region seems to satisfy our
goal, but further improvements into fully automated segmentation are desirable.

Nevertheless, the iterative algorithm structure enables the user to redefine his
trimap with additional background or additional foreground regions. Defining
foreground in the beginning is usually not very helpful for the segmentation
task, and slows down the whole process from the user point of view.

Only in the rare case of difficult images, the user has to give additional con-
straints to the algorithm and apply few more iterations to achieve the desired
result.

3 Experimental Results and Discussion

Our experiments on infrared images showing navy ships demonstrate the usabil-
ity of the proposed GrayCut algorithm.

Figure 1 shows an example segmentation on one of the infrared ship images.
The first four iterations are shown. The black line indicates the originally drawn
background box by the user and evolves over time to the segmentation border
in white. The difference between each iteration step is getting lower and lower
and more than five iterations are not needed at all.

Figure 2 demonstrates the evolution of the six Gaussian components during
five iterations. In the beginning, all six distributions show an almost equal be-
havior due to the random initialization. In each iteration, the components tend
to separate from each other by the expectation maximization. The dotted Gaus-
sians represents the background, the solid lines are components of the foreground
model. Again, only the first few iterations are usable. The last (fifth) iteration
does not bring any real gain in the overall segmentation quality.

Fig. 2. Evolution of the Gaussian mixture model components (left) over five iterations
for the foreground (solid) and for the background (dotted) and the real gray-value his-
tograms (right) of the foreground (solid) and the background (dotted)
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Fig. 3. More segmentation results on different images: The black line indicates the
background region as defined by the user, the white line shows the segmentation result
of the proposed GrayCut-algorithm after 10 iterations (or no result at all as in the last
case in the lower right corner)

The right part of figure 2 shows the real histogram of the example image.
Again, the dotted parts indicate the background and solid bars show the his-
togram of the foreground. It is clearly visible, that the amount of information
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present in the object is clearly less than in the rest of the image: the number
of pixels belonging to the dark background region is much greater than the few
ones corresponding to the foreground object. This is one reason for applying
two different Gaussian mixture models describing foreground and background
separately.

We used a set of 79 infrared images showing different levels of quality. Figure 3
shows some examples of the segmentation results. The black rectangle is the
initial background selection by the user, whereas the white line shows the final
segmentation result (after 10 iterations). The left image in the third row shows
an example application for the don’t-care-map where the black lines overlaid in
the rear part of the ship are ignored by the segmentation border.

The proposed GrayCut algorithm is able to give 23 out of 79 suitable results
without the need of additional user interaction. Additional 25 results can be
improved with refinement of foreground and background regions by the user.
The last 31 images result in wrong or even no segmentation borders at all. This
is mainly due to the bad signal-to-noise ratio of the infrared images. We presume
even a human user might have difficulties in drawing a suitable segmentation
border in images of the last type seen in figure 3.

4 Conclusions and Future Work

We have used already known algorithms to derive a new method called GrayCut
for segmenting in gray-level images. Some special extensions to the basic algo-
rithm have been introduced, especially the don’t-care-map to ignore some parts
of the image. The development was mainly driven by infrared ship images, but
we think this is also applicable in other fields if image processing and analysis,
like in X-ray images for medical applications.

User interaction is reduced to the absolute minimum, i.e. only the background
region is needed and has to be given by the user. The overall goal is to yield a
perfect segmentation without additional user input, but the user can correct bad
results by giving more constraints. Since the scene structure - a ship in the water
- is nearly always the same, a fully automated algorithm is desirable, where no
user input at all is needed.

The previous experiments show the usability of the proposed GrayCut algo-
rithm. Nevertheless, different enhancements and parameter tuning have been
shown to yield superior results. As a drawback, these parameters have to be
adjusted carefully by the user before applying the segmentation and depend on
the image content and the image quality. Currently no automatic parameter ad-
justment and post-processing selection is available. This is still scope of future
research.

On the other hand, pre-processing steps might be useful to improve the image
quality before applying the segmentation algorithm. Namely noise reduction as
already proposed in [11] might be a very suitable step. An integration of these
image enhancement algorithms has to be investigated in the future.
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Abstract. A new method for unsupervised clustering of shapes is here
proposed. This method is based on two steps: in the first step a preliminary
clusterization is obtained by considering the distance among shapes after
alignment with procrustes analysis [1],[2]. This step is based on the min-
imization of the functional θ(Ncluster) = αNcluster + (1/Ncluster)dist(ci)
where Ncluster is the total number of clusters, dist(ci) is the intra-cluster
variability and α is an appropriate constant. In the second step, the curva-
ture of shapes belonging to clusters obtained in the first step is examined
to i) identify possible outliers and to ii) introduce a further refinement
of clusters. The proposed method was tested on the Kimia, Surrey and
MPEG7 shape databases and was able to obtain correct clusters, corre-
sponding to perceptually homogeneous object categories. The proposed
method was able to distinguish shapes with subtle differences, such as
birds with one or two feet and to distinguish among very similar animal
species. . . .

1 Introduction

Computer vision aims at building machines able to recognize and categorize
objects as the human brain does [3]. Recognition and categorization should be
fast and efficient also with very cluttered and complex images. Finding a solution
to this problem is rather difficult for several reasons. Firstly, the required level of
categorization is not obvious: do we want to distinguish a bird from a bat? Or are
we aiming at recognizing a juvenile finch from a male adult finch? Based on the
research carried out by some cognitive scientists [4], categorization is performed
at several levels. Secondly, there is a natural variability within different categories
and the expected variability does not necessarily match the real one. Thirdly,
characterization should be invariant to rotation, scale and, translation, to certain
deformations and most important to partial occlusions.

Objects have several properties that can be used for recognition, like shape,
color, texture, brightness. Each of these cues can be used for classifying objects.
Biederman [5] suggested that edge-based representations mediate real-time ob-
ject recognition. In his view, surface characteristics such as color and texture
can be used for defining edges and can provide cues for visual search, but they
play only a secondary role in the real-time recognition. There are two major ap-
proaches for shape-based object recognition: 1) boundary-based, that uses con-
tour information [6], [7], [8], [9], [10], [11] and 2) holistic-based representation,

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 712–720, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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requiring more general information about the shape [12], [13]. Categorization is
often obtain by clustering [14], [15], [16]. Although all these methods, provides
very reasonable results, they do not have an automatic way to find the number
of clusters.

In this manuscript we address the issue of unsupervised clusterization of
shapes by using the contour information in a global and local way. Our pro-
cedure consists of a first preprocessing of shapes which are aligned pairwise and
scaled using the procrustes shape analysis [1], [2]. This preprocessing provides
the requested invariance for scale, rotation, symmetric mirroring or flipping.
Shapes are then clustered by minimizing the functional (9), based on the global
computation of the distance between contour shapes. Subsequently, the curva-
ture is analyzed for the detection of possible outliers and for the identification
of further clusters based on local differences in the curvature.

2 Initial Pre-processing of Shapes

Let (xi, yi)Sk
i = 1, ...,M be the contour of the shape Sk with k=1,...,N, where

N is the total number of shapes to be categorized or, more formally, clusterized.
Shape contours are interpolated so that they have a common number (m) of
points (such as 100 points per contour) and contours are aligned in pairs by using
procrustes analysis [1]. Given two contours S1 and S2 with the same number of
points N, the Procrustes analysis finds the best transformation T of one contour,
i.e.:

S2
∗ = T (S2), (1)

such that the distance between the two contours S1 and S2
∗ is minimum [17]:

‖S2
∗ − S1‖2. (2)

Restricting transformation to the similarity case, we have:

T

(
x

y

)
=
(
a − b
b a

)(
x

y

)
+
(
tx
ty

)
. (3)

If the two shapes have the same center of mass located in the origin, the
optimal transformation is:

((tx, ty) = (0, 0)), (4)
a = (S1S2)/‖S1‖2, (5)

b = (
∑

(xiyi′ − yixi′)/‖S1‖2), (6)

where S1 = (xi, yi) and S2 = (xi′, yi′). Since we do not have the optimal cor-
respondence for the two point sets, it is necessary to consider N possible cyclic
renumbering for each shape, so the optimal alignment will be obtained when
the full Procrustes distance is minimal regarding these renumbering. Given two
aligned shapes Sk and Sh, the distance between them, d(Sk, Sh) is defined as the
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χ2 test between histograms of point distributions computed by shape contexts
[10]:

d(Sk, Sh) =
1
2

mI∑
i=1

(hk(i) − hh(i))2

hk(i) + hh(i)
, (7)

where hk(i) and hh(i) denote the I-bin normalized histograms of pairs of aligned
points and m the number of points over the contour. In this way one obtains all
pairwise distances d(Sk, Sh) k, h = 1, . . . , N . An other possible way to compute
the pair distances is by using the Euclidean distance:

d(Sk, Sh) =

√√√√ m∑
i=1

(xki − xhi)2 + (yki − yhi)2, (8)

where (xki, yki) and (xhi, yhi) are the aligned contour points. Shape context
usually gives more precise results, because it represents better the general prop-
erties of shapes. For each aligned contour Sk we compute its curvature κk(i)
i = 1, . . . ,m by using a B-spline interpolation as described in [18].

3 First Clustering Based on Intra-shape Distance

Let us consider N shapes, which we want to cluster in different categories. The
main idea is to minimize the functional:

θ(Ncluster) = αNcluster +
1

Ncluster

Ncluster∑
1

dist(ci), (9)

where Ncluster is the number of clusters, dist(ci) is the intra-cluster distance,
i.e. the scaled average squared distance between shapes in the cluster ci and α
is a parameter controlling the grain of the clustering. For large values of α the
Ncluster will be small and viceversa for small values of α, Ncluster approaches
the value of N. The intra-cluster distance dist(ci) is defined as:

dist(ci) =
2
Nci

∑
Sk,Sh∈ci,k<h

d(Sk, Sh)2. (10)

Intuitively the correct number of clusters Nc is found when the addition of
an other cluster does not reduce significantly the average intra-cluster distance
avdis(Nc):

1
Ncluster

Ncluster∑
1

dist(ci), (11)

i.e. the correct number of clusters Ncluster is found when θ(Ncluster + 1) −
θ(Ncluster) is very small. This condition implies that α must be close to:

avdis∗

(Ncluster
∗ + 1)

, (12)
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where avdis∗ is the desired intracluster average distance and Ncluster
∗ the ex-

pected number of clusters. Minimization of the functional (9) is obtained by a
progressive creation of new clusters. Initially two clusters with approximately
the same number of shapes are created by a random selection. Having the initial
clustering functional (9) is minimized by a gradient descent type algorithm, in
which, at every iteration, the optimal clusterization of each shape is considered.
This procedure continues until the value of (9) became stable for the complete
cycle in which all shapes Sj are considered. Then a new cluster is created and
the entire procedure is repeated.

4 Second Clustering Using Distance Between Curvatures

As we have observed during our experimentation the unsupervised clustering
described in section 3 does not always provide a categorization which appears
to be perceptually correct. Indeed, in a cluster of fish for instance, other animals
may often be present because the similarity measure corresponding to (7) or (8)
is not adequate or the minimum found during the minimization of (9) is simply
a local minima. Therefore a second step, based on an other similarity measure is
necessary to find outliers and to refine the obtained categorization/clusterization.
This second step is based on the analysis of the curvature κk(i) of shapes. For
each cluster Cm - in which shapes have been aligned as described in [4] - we
compute the average curvature κm

∗(i) and its standard deviation s.d.κm
∗(i).

For each shape Sjm within cluster Cm , we compute:

d(κjm
∗, κm

∗) =
∑

i

(κjm
∗, κm

∗)2. (13)

If d(κjm
∗, κm

∗) is larger than a threshold the shape Sjm is considered an
outlier and is either moved to an other cluster or a new cluster is created.

5 Experimental Results

5.1 Estimating the Parameter of α with Kimia Database

A subset of 25 different shapes of Kimia database ( see Fig.1A) from 6 different
classes was used as ground truth to estimate the parameter α of functional (9).
When α was set equal to 0 - as expected - θ decreased with Ncluster (Fig.1B).
When the value of α was 3.1714 ∗ 106 - with the shape context distances - θ
had a minimum for Ncluster equal to 6, as required (Fig.1C). Therefore a good
estimate for avdis∗ is 2.9 ∗ 107.

5.2 Comparison with a Small Example

In [15], a small number of shapes consists of 25 shapes from the Surrey fish
database [19] has been used for clustering. The proposed method is based on
pairwise similarity clustering like ours, but for the pairwise similarity measure
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Fig. 1. A) Clustering of Kimia database with the algorithm described in the text. B)
The energy function θ(Ncluster) defined in (9) with α equal to 0. and C) The energy
function θ(Ncluster) with α equal to 3.1714 ∗ 106.

they use geodesic path between two shapes, which is the path that uses minimum
energy to bend one shape into the other. For their method, they need to fix
the number of clusters or they can obtain hierarchial clustering. In this small
example they set the number of clusters to 9. Fig.3 shows the result of clustering
proposed in [15]. In Fig.4 we show the result of applying our method by fixing
the number of cluster to 9, and Fig.5 presents the result of the unsupervised
clustering using the estimated parameters from the previous part (The optimal
number of clusters has obtained to be 7 with the algorithm). For all three Figures,
each column represents a cluster.

Fig. 2. A clustering of 25 fish shapes into 9 clusters reproduced from [15]
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Fig. 3. A clustering of 25 fish shapes with the proposed method in this paper having
fixed the number of clusters to 9

Fig. 4. A clustering of 25 fish shapes with the unsupervised clustering method proposed
in this paper. The optimal number of clusters has obtained to be 7 with the algorithm.
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5.3 Removing the Outliers with the Second Clustering

Fig.5A illustrates a cluster obtained from the MPEG7 Database of cows, birds,
camels, flat-fish and fish. Inside the cluster corresponding to the flat-fish one
camel is present. As shown in Fig.5B after alignment, the shape of this outlier
camel is as close to a flat-fish as two different flat-fish are close to each other
(see Fig.5C and D). By analyzing the curvature of the shapes of the cluster of
fig.5A, the outlier is easily detected (see Fig.5E).

Fig. 5. A) Cluster of shapes corresponding to different flatfish obtained by using the
first clustering algorithm B) Alignment of the Camel with two flatfish C and D) the x
and y component respectively of the contours shown in B. The same colour was used
for the same shape. E) Alignment of curvatures identify the outlier, i.e. the camel.

5.4 Some Result with MPEG7 Shape Database

400 different shapes from 20 different classes in the MPEG7 shape database were
clustered according to the proposed procedure. Some of the clusters obtained by
the first clustering step are shown in Fig.6. In red are indicated the outliers in
the different identified clusters. These outliers were easily identified by analyzing
the curvature described in section 4.

6 Discussion

The proposed method for clustering shapes is based on two steps: in the first
step a preliminary clusterization is obtained by minimizing the functional (9).
In the second step, the curvature of shapes is examined in order to identify
possible outliers. This method was tested successfully on the Kimia, Surrey and
MPEG7 shape databases. The suggested clusterization in conjunction with image
segmentation [20] maybe also suitable for recognizing shapes in cluttered real
images.
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Fig. 6. Clusters from the MPEG7 database. In red are indicated the outliers detected
by the analysis of the curvature described in the text.
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Abstract. In this paper a new approach is presented for markerless pose tracking
in augmented reality. Using a tracking by detection approach, we estimate the 3D
camera pose by detecting natural feature points in each input frame and building
correspondences between 2D feature points. Instead of modeling the 3D environ-
ment, which is changing constantly and dynamically, we use a virtual square to
define a 3D reference coordinate system. Camera pose can hence be estimated
relative to it and the calculated 3D pose parameters can be used to render vir-
tual objects into the real world. We propose and implement several strategies for
robust matching, pose estimation and refinement. Experimental evaluation has
shown that the approach is capable of online pose tracking and augmentation.

1 Introduction

The main concept behind augmented reality (AR) is to integrate extra perceptible el-
ements such as sound, graphics, image, video, force feedback, etc., into a user’s real–
world environment, for the purpose of improved understanding and interaction. Since
vision plays an important role in human perception, most AR applications need to ren-
der computer generated graphics into a user’s field of view. One option for allowing
visual perception of the virtual objects is to let the users wear head–mounted dis-
plays (HMD). Through the HMD, users can see both the virtual and real world, with
the virtual world aligned seamlessly to the real environment.

AR requires accurate registration and visualization of virtual objects in 3D. In or-
der to render a virtual object into the real world, a virtual camera has to be placed in
the same position and orientation as the real camera. In other words, at the location
through which a person observes the surroundings. This results in a problem of the 3D
localization of the HMD.

With the improvement of computer vision algorithms and the emergence of low–cost
optical sensors, mounting a camera on the HMD has become common practice. Once
the 6–DOF (degree of freedom) pose of the camera has been estimated, the pose of the
HMD as well as that of the virtual camera can be computed easily.

In AR, pose tracking of the head–mounted camera is quite a challenging task. The
motion of the camera is very dynamic and quite unpredictable. The 3D camera pose
must be estimated online for each video frame. The computational complexity of the
pose estimation algorithm should be reasonable, and the robustness as well as accuracy
has to be ensured. In this work, we contribute to the state of the art by introducing a
robust markerless tracking approach which can support accurate online augmentation
in unconstrained environments.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 721–730, 2006.
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2 Previous Research

In the computer vision community, much research has been carried out on issues re-
lating to tracking and pose estimation. One approach is based on structure from mo-
tion [1]. Some authors [2] [3] [4] try to solve simultaneously both structure and mo-
tion by using a whole image sequence that has been captured beforehand. While ca-
pable of modeling the environment and estimating camera parameters, the complex-
ity of the algorithms and the offline nature made them unsuitable for real–time AR
applications. Optical flow and template matching based methods [5] [6] [7] use as a
measure the sum of squared difference (SSD) for the estimation of the motion of an
image template. In common with the probabilistic or prediction based approaches [8]
[9] [10], camera motion is parameterized using models with low–order dynamics and
the tracking systems can only handle situations where the frame–to–frame motion is
regular and predictable. While real–time tracking can be achieved, these approaches
work well only when changes of viewpoint do not occur rapidly. Another drawback is
that the tracking system must be initialized properly and reinitialization has to be car-
ried out frequently due to the drift problem. In contrast to the frame–to–frame tracking
approach, most of the present camera-based tracking systems in AR apply a tracking
by detection approach, where some reference objects are detected in each input frame
and camera pose is estimated based on the known 3D configuration of these reference
objects. The reference objects are called markers since they are designed and added
manually to the tracking environment for the special purpose of easy detection and
registration.

In the past, different markers have been designed for AR applications using either
circular or planar markers. Interested readers may refer to [11] for some examples of
marker–based tracking. One popular and also publicly available marker–based tracking
software is the ARToolkit developed by [12]. Similar markers are used in [13], where a
digital coding scheme is proposed for marker detection and recognition.

Based on image segmentation, marker–based tracking system is able to perform fast
detection and identification of the markers. As a result, it can achieve real–time perfor-
mance. However, one of the inherent drawbacks of such a system lies in the fact that
marker detection is very sensitive to occlusion. Tracking stops immediately even if only
a tiny portion of a marker is occluded. Although the use of multiple markers can provide
a workaround, the occlusion problem remains unsolved.

An alternative to markers and image segmentation is the use of local features. In the
field of object recognition, much research has been conducted into feature–based object
descriptions and several interest point detectors aiming at reliable feature detection and
matching have been proposed [14] [15] [16] [17] [18]. Recently, a comparative study
has been carried out by [19], and the scale invariant feature transform, also known as
SIFT [16], has been identified as one of the best feature detectors.

SIFT is relatively invariant to illumination and viewpoint changes, and is a good
candidate for developing model–based tracking. In [20], SIFT features are used for es-
tablishing point correspondences between the input frame and those lying on a model
which has to be built offline. The recent work of [21] also uses SIFT for tracking indus-
trial parts in small environments. In common with [20], a CAD model of the scene has
to be built beforehand.
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There are approximately three strategies which have been used in developmenting
markerless camera tracking. The first one uses localized features in combination with
a 3D model of the environment [20] [21] [22] [23]. The second one requires manual
initialization, and tracking is based on frame–to–frame differences [24] [25] [26]. The
third one applies a strategy of sensor fusion and may use the first one for (re–) initial-
ization and the second one for temporal registration [27] [28]. At the time of writing,
the performance of current markerless tracking approaches is still beyond that of the
marker based ones.

3 Approach and Technical Contribution

We built our tracking system by using the approach of tracking by detection. The system
does not suffer from the drift problem, as pose estimation is carried out without the
use of past frames. Moreover, it does not place assumption or constraint on camera
motion. With a single off–the–shelf camera, no additional sensor is needed for the 6–
DOF pose tracking. Unlike some of the previously mentioned works where manual
initialization is needed at the beginning of the tracking process, our tracking system
works full automatically.

In common with [20], we use SIFT for the detection of localized features from the
natural environment. But our feature descriptor is more compact. Once local features
are detected, we match them against each others based on a distance measure built upon
the descriptors. To facilitate robust matching, outliers are deleted based on different cri-
terion and by applying several robust algorithms. Based on the inliers, the initial pose
of the camera is calculated, and is subsequently refined with a more advanced algo-
rithm.

As indicated, most of current markerless tracking approaches require a 3D model
of the environment for matching 2D features to those lying on the model. In addition
to the complexity of building a model, such a strategy would result in performance
problems when the model is very complex or the environment is dynamic. In contrast,
our approach does not need to perform 3D engineering of the environment. Also since
we do not need a 3D model, the matching of feature points is carried out completely in
2D, which increases the matching speed and simplifies the offline preparation.

For the robust tracking of the camera pose, we developed a new markerless approach
that combines information from both the real and virtual world. We use a simple virtual
model, a virtual square 1 with known size, to define a reference coordinate system. The
virtual square can be embedded anywhere in the real world. This makes it possible to
specify the 3D camera pose P = [R|t] relative to the reference coordinate system.

With the help of the virtual square, the 3D camera pose can be solved using a model–
based approach. The model is not a 3D model of the environment, but a virtual model
with simple configuration that is detectable from the real world.

During the offline stage, some reference frames can be captured, and the 2D position
of the four corner points of the virtual square in the reference images can be determined.
During the online tracking stage, once the 2D point correspondences are established

1 We would like to point out that the “virtual square” used for registration purpose does not need
to be a real square, it can also be a rectangle whose two sides have different length.
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between the current camera image and one of the reference images, a 2D transform
can be applied to locate the virtual square in the current camera frame. Based on the
calculated 2D position as well as the 3D configuration of the virtual square, camera
pose P can be calculated reliably. Once the 3 × 4 transform matrix P is computed,
it can then be used for rendering virtual objects into the real world for augmentation
purposes.

To our knowledge, the idea of using natural features together with a virtual model
for 6–DOF pose tracking of a dynamic camera has not been explored before. These and
the other features presented in this section constitute our main contributions.

4 Feature Detection and Description

Detection of salient feature points is done by using the original SIFT detector. The main
purpose is to use DoG (difference of Gaussian) to detect and localize salient structures
in the Laplacian scale space. A set of different scale levels are established by recursive
filtering with variable Gaussian kernels, resulting in a set of DoG images {D(x, y, σ)}.

On eachD(x, y, σ), local maxima/minima are sought at both the current and adjacent
scales in order to identify feature points. Once feature location is found, a detail fit is
carried out using a 3D quadratic function based on Taylor expansion. Through such
a fitting process, it is possible to reject unstable extrema with a low contrast. At the
same time, it allows a sub–pixel localization of the feature points. A further operation
is carried out to eliminate those points that lie along edges. A principal curvature of
D(x, y, σ) at the feature location is determined based on a ratio of the two eigenvalues
of a 2 × 2 Hessian matrix H . The final set of feature points are obtained by keeping
only those points that have a small ratio between the two eigenvalues.

After the feature points are located, the next step is to build a descriptor to measure
the distance between different features. In order to achieve a scale invariant description,
it is important to record not only the location but also the scale σ at which a feature
point is found. A further possibility is to have the descriptor calculated in a way which
is relative to its orientation [16].

The calculation of the orientation of a feature point is based on the changes of inten-
sity occurring in a neighborhood around the point in the Laplacian image L(x, y, σ).
Suppose the input image is F (x, y), the Gaussian kernel is

G(x, y, σ) =
1

2πσ2
exp{−x

2 + y2

2σ2
}, (1)

then the Laplacian image can be expressed as

L(x, y, σ) = G(x, y, σ) ∗ F (x, y) . (2)

From L(x, y, σ), a magnitude image M(x, y, σ) and an orientation image Θ(x, y, σ)
can be calculated as

M (x, y, σ) = |L(x+1, y, σ)−L(x−1, y, σ)|+ |L(x, y+1, σ)−L(x, y−1, σ)| (3)

Θ(x, y, σ) = arctan{L(x, y + 1, σ) − L(x, y − 1, σ)
L(x+ 1, y, σ) − L(x − 1, y, σ)

} (4)
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For each point detected, an orientation histogram with 16 bins is formed within a
neighborhood around the point. The highest peak of the orientation histogram gives
the dominant direction and is regarded as the orientation of the feature point. While
the method in [16] allows for multiple feature points created at the same location and
scale but with different orientations, our method provides a unique feature point whose
orientation is dominant.

With the position, scale and orientation of each feature points identified, a rotation
invariant descriptor can be built based on the M(x, y, σ) and Θ(x, y, σ) images. We
sample a 8 × 8 region around each feature point. The region is divided into four 4 × 4
subregions. On each of these subregions, an orientation histogram with 8 bins is built,
resulting in a vector whose dimension is equal to 8. The feature point can hence be
represented with a 4× 8 = 32 dimensional vector, which is normalized in a subsequent
step to a descriptor of unit length to make it invariant to affine changes in illumination.

5 Matching and Pose Estimation

The term matching refers to the matching of feature points to each other and matching
of the current frame with those reference frames f i, i = 1, . . . , N . Matching of two
feature points is based on the Euclidean distance between the pair of descriptors. Can-
didates of matched pairs are selected based on a global threshold as well as the ratio
between the closest distance and the second closest distance.

The same principle is applied to the matching of two frames. For each of the ref-
erence frames in the database, we calculate two measures. One is the total number of
matched points ni (i = 1, . . . , N ) between a reference and the current frame. The other
is the average distance of matched points between the two frames, which can be denoted
as di (i = 1, . . . , N ).

Usually a unique reference frame fκ can be identified by finding the best match that
has the biggest number of matched points as well as the smallest value of the average
distance. This means, if κ1 = argmax {ni}, κ2 = argmin {di}, then κ = κ1 = κ2.

If κ1 �= κ2 , then we just keep both reference frames fκ1
and fκ2

as candidates.
Generally speaking, the frame fκ1 with more matched pairs is the better candidate. But
due to outliers, it could happen that fκ1

is not the correct one. For this reason, we keep
fκ2

as another candidate and wait until next step for a single solution.
The matched pairs of feature points belonging to the current and the candidate refer-

ence frames are further verified by fitting an affine transform to those matched points.
An affine transform A has six unknowns and can be solved by using three point cor-
respondences. We use RANSAC [29] to initialize the transform matrix A based on
randomly selected three point pairs. After initialization, we use a robust measure based
on linear least squares to find the best affine transform between the current and a ref-
erence frame. Meanwhile, outlines are identified and only those points that agree with
the transform are kept. Based on these inliers, a refined matrix A and an average devia-
tion ε are calculated, which make it possible to find the best matched frame fκ as well
as the best transform matrix Aκ by keeping the candidate with the smaller ε.

As already mentioned in Section 3, we use a virtual square with known size for the
purpose of pose estimation. Based on the plane on which the virtual square lies, we



726 C. Yuan

can define a world coordinate system whose origin is the center of the square. Having
this as reference coordinate system, the 3D position of the four corner points Xj (j =
1, . . . , 4) of the virtual square can be identified. From the set of reference frames, the
2D position of the four corners in each of them, i.e., xi

j (i = 1, . . . , N, j = 1, . . . , 4),
can also be determined.

During the on online tracking stage, suppose the current image has been found to
be matched to the frame fκ and the 2D affine transform between the two frames is
Aκ. This transform can be applied to the virtual square to find its 2D position in the
current frames as x̂j = Aκxκ

j . Now the problem becomes finding the 3D camera pose
with four coplanar points whose 2D image coordinates and 3D world coordinates are
known.

3D pose estimation based on 2D coplanar points is a special case of perspective–n–
point (PnP) problem, which has been studied by [30] [31] [32]. For the estimation of
the initial camera pose, we use the coplanar version of the POSIT (pose with iteration)
algorithm [32]. Pose estimation based on a single projective image may suffer from the
problem of pose ambiguity, resulting in the the initial calculated pose being inaccurate.
In order to refine the initial pose, we use the robust estimation method proposed in [33]
for pose refinement.

6 Experimental Evaluation

To evaluate the approach, we performed some experiments in an office environment.
During the offline stage, two images are captured as reference frames. Displayed in
Fig. 1 (a) is one reference frame that we captured. From these two images, features were
detected using SIFT. For each feature point detected, a descriptor is calculated using the
algorithm presented in Section 4. All the descriptors are then stored in a database.

Our goal was to perform 6–DOF pose tracking of a moving camera in the office
environment. As shown in Fig. 1 (b), the virtual square is the one sitting on the tele-
phone (drawn in yellow). Although the four corner points of the virtual square creates a
plane, the plane does not belong to the real environment, as the surface of the telephone
is a curved one. The world coordinate system is defined by the virtual square, with the
center of the square as the world coordinate origin (x axis pointing to right and y axis
pointing up). Once the virtual square is specified, we can locate the four corner points
of it in the reference frames. These 2D coordinates are also stored in a database.

During the online tracking stage, feature points were detected in the current camera
frame. Based on the descriptors built from these feature points as well as those stored
in the database, the 3D camera pose can be calculated using the approach presented in
Section 5. Using the calculated pose matrix P , we projected a virtual cube into the real–
world scene for augmentation purposes. Depending on application needs, we can also
use the calculated camera pose to render other virtual objects into the real world. For the
purpose of visualizing the accuracy of the registration, we have shown the augmentation
as a virtual cube. As can be seen from Fig. 1 (b), the virtual cube has the virtual square
as its bottom surface and is aligned with the world coordinate system.

During tracking, the augmented cube remains on the telephone, even when the en-
vironment and viewpoint changes. In Fig. 1 (b)–(c), the camera has been moved to a
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(a) (b)

(c) (d)

Fig. 1. Tracking and augmentation in an office environment. (a) The reference frame captured
offline. (b)–(d) Online augmentation of the telephone with a virtual cube under viewpoint and
environmental changes.

different pose to the one shown in Fig. 1 (a). Fig. 1 (d) illustrates that even when occlu-
sions and the changes of viewpoint have occurred, the augmentation remains correct,
which proves that pose estimation has been calculated accurately.

Further examples are shown in Fig. 2. As can be seen, despite large viewpoint changes,
high degrees of occlusions, and environmental changes caused either by adding new
objects into the environment or by moving the objects around, correct registration and
augmentation can still be achieved due to the robust calculated camera pose.

To measure the tracking performance, we compute an “augmentation rate” which is
equal to the ratio of correctly augmented frames to the total frames captured. A frame
with a visually correct augmentation indicates not only the proper detection and match-
ing of the feature points but also the correctly estimated 3D camera pose. We capture
several sequences (each with about 1000 frames), containing dynamic environmental
changes, occlusion as well as abrupt camera motion. In all cases, the achieved augmen-
tation rate remains above 80%. The best rate attained was 95%.

Because we use a scale invariant feature detector, the detection of feature points
has to be carried out on several scales. This results in a relatively slow detection of
feature points. Fortunately, our compact feature descriptor compensates this factor. For
example, matching and pose estimation take only one-third of the time used for feature
detection. As a consequence, the tracking system can run at about 5 frames/s on a DELL
M20 Precision laptop together with a Logitech webcam.
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(a) (b)

(c) (d)

(e) (f)

Fig. 2. Further examples of tracking and augmentation. (a) Large viewpoint change and occlusion
have occurred. (b) New object comes into the environment. (c) Another scene with the position
of some objects changed in the environment. (d) A different environment with new and similar
objects as well as with occlusions. (e) Occlusion changes the scene substantially. (f) High–degree
occlusions occur.

7 Conclusion

A new approach has been presented for 6–DOF pose tracking of a camera in an uncon-
strained environment. We use a localized feature descriptor for the matching of salient
feature points belonging to the current camera frame with those extracted from the ref-
erence frames. A virtual square with known size is attached to the real–world scene so
that a reference coordinate system is defined relative to both the real and virtual world.
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With such a virtual model and the established 2D point correspondences, camera pose
can be calculated using robust matching and estimation algorithms. The accurately es-
timated pose can be used to render any type of 3D object into the scene.

Currently we are working on the development of a new feature detector for achieving
real–time performance. Detailed analysis of the tracking precision as well as compara-
tive study with other tracking approaches (either marker–based or markerless) will be
carried out shortly. In the future, we will apply this approach in several mobile and
outdoor AR applications.
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Abstract. In this paper we propose a lip detector based on adaptive threshold-
ing for hue-transformed face images. The adaptation is performed according to 
the confidence values of the estimated lip regions. The confidence of lip means 
how much similarity exists between the detected lip region and a true lip. We 
construct simple fuzzy rules of the confidence using true lip statistics of center 
position, width and height. The threshold value is adaptively changed so that 
the confidence of a renewed lip region is maximized. By lip detection experi-
ments with VidTimit database we demonstrate the performance enhancement of 
our proposed method. 

1   Introduction 

Lip detection is a very important issue in audio-visual (AV) signal processing such as 
automatic lip reading, AV speech recognition and AV speaker recognition and au-
thentification [1-3]. The misdetection of lips degrades the performance of lip reading 
and speaker identification. 

Several methods of lip detection have been proposed [1, 4-8]. Those methods are 
classified into two groups: One is based on the active shape model (ASM) [4] and the 
other is to utilize color information [5-8]. ASM-based methods need more compli-
cated calculation than color-based approaches (CBA). Thus CBAs are widely used in 
the areas of audio-visual signal processing. CBAs of lip detection represent the obser-
vation that lips have a much redder color than the surrounding area. Most CBAs use 
the color information of hue to detect lip regions. Usually pseudo hue information is 
used since the hue transformation needs much more calculation amount. The basic 
idea of lip detection, using the hue-transformed image, is to convert it into the binary 
image with for a given threshold. The threshold is set only for the lip region for a 
survival after thresholding.  But this thresholding method often makes errors since 
faces have different color distributions for each person and different illumination 
conditions. Therefore, non-fixed thresholds are adopted in most CBAs. To determine 
the threshold, histogram or probability of hue samples is used [1, 6]. Because the size 
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and the color of lips are dynamical variables, there are still errors even though non-
fixed thresholds are adopted.  

In [9] the concept of confidence was used in a person tracking problem. The esti-
mated face regions were provided using neural networks. In other words, they calcu-
lated the confidence value of candidate images for the output of the neural network. In 
the previous papers the detected lips have not been tested with the concept of confi-
dence. Thus we think that the performance of lip detection could be enhanced by 
applying confidence.  

In this paper we propose an adaptive thresholding method for color-based lip de-
tection. The threshold value is changed to increase the confidence value of the lip 
candidate region. The problem is how to measure the confidence of detected lips. In 
this paper, as a preliminary study, we propose a fuzzy rule based confidence measure 
determined from lip region statistics. Our approach is evaluated by lip detection ex-
periments with VidTimit database [10]. 

2   Baseline System for Lip Detection 

In this section we describe the baseline lip detector based on common image processing 
techniques. The baseline system of lip detection is constructed with the operations of 
hue transformation, the conversion of the hue image to the binary image by threshold-
ing, RGB-to-gray transformation and thresholding, and x and y projections. Figure 1 
shows the procedures of lip detection. Each procedure is as follows: 

- First, an RGB colored face image is converted to the hue image. According to the 
reference [5], it is easier to detect lips in hue/saturation color space because 
hue/saturation color for the lip region is fairly uniform for a wide range of lip colors. 
One of our purposes is to implement a lip detector with a small calculation amount 
if possible. Thus we use a pseudo-hue space instead of the true hue space. The 
pseudo-hue is calculated by Eq (1) [5]. 

( , )
( , )

( , ) ( , )

R i j
P i j

R i j G i j
=

+
, (1) 

where ( , )R i j  and ( , )G i j are the red and green color values of the i-th and j-th 

pixel, respectively and ( , )P i j is the pseudo-hue value of the pixel.  

- Second, the histogram of the hue image is estimated against the lower area of face 
image, in which every possible lip is included. Then the normalized cumulative his-
togram is obtained as follows: 

1 1

( ) ( ) ( )
i K

k k

CH i H k H k
= =

= , (2) 

where ( )H i is the histogram of the image, K is the total number of histogram bins, 

and ( )CH i is the normalized cumulative histogram. The i-th bin represents the 
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number of pixels whose hue values are between Vi and Vi+1. Then we can determine 
the threshold with a given percent coverage value as follows:  

min( )   ( )

( )

L i such that CH i

Th V L

α= >
=

 (3) 

where α is the coverage threshold, and V(L) is the representative value of L-th bin. 

- Third, the hue image is converted to the binary image with the threshold obtained by 
Eq. (3). That is, pixels which have hue values bigger than the threshold are assigned 
as 1. Of course, pixels with smaller values are marked as 0. 

- Fourth, the RGB image is transformed to the gray image. Then the gray image is 
converted to the binary image with a threshold. This procedure is added to include 
dark inner regions of lips into the lip area. This binary image is merged with the hue 
based binary image. 

- Fifth, x and y projections are performed to the binary image. Let ( , )B i j  be the ma-

trix representation of the binary image. Then, the projections are defined by Eq. (4). 

( ) ( , )

( ) ( , )
i

j

Xprj j B i j

Yprj i B i j

=

=
 (4) 
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Fig. 1. Procedure of the baseline lip detection 
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Fig. 2. Example of lip detection with the baseline system ( =0.85). (a) face image (b) binary 
image (c) x-projection (d) y-projection. 

Lastly, the height and the width are estimated from the information x and y projec-
tions by a maximum value detection and thresholding with cut-off thresholds. 

Figure 2 shows the procedure of lip detection in the case of a well-operated face 
image. As shown in Figure (c) and (d), we can determine the width and height of the 
lip by finding the main lobe of projection profiles. In many cases, however, it is not 
easy to detect the lip region with the fixed coverage threshold although the hue 
threshold is changed with the fixed coverage threshold in each face image. Figure 3 
shows the case of the mis-detected lip. It is observed that the upper and lower lips 
in Figure 3 (b) are separated. Also, the size of the detected lower lip is smaller than 
that of the true lip. By the experiments with some face images the followings are 
observed. 

(1) The lower and upper lips are separated in the binary image of the hue image. 
So the lower or upper lip is missing. 

(2) The surround pixels of the lip region have very similar hue values to the lip’s 
hue values. Thus the estimated lip region is larger than the true lip region. 

From the above observations we conclude that it is necessary to control the cover-
age threshold adaptively. But it is very difficult to change the coverage threshold 
adaptively, because in a real application we don’t know whether the detected lip is 
correct or not. Thus, to adaptively change the threshold, we have to have a measure 
with which the confidence of the detected lip can be estimated. If we can calculate a 
confidence of the detected lip, we can develop a confidence maximization approach 
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for lip detection. In section 3, we will discuss our proposed confidence measure and 
its application to lip detection. 

 

Fig. 3. Example of  mis-detected lip. (a) face image (b) binary inage 

3   Adaptive Thresholding Based on Confidence 

In section 2 we discussed the problems with the previous thresholding method. In this 
section we describe our proposition of an adaptive thresholding based on confidence. 
First, let’s discuss the main ideas of our approach. After some experiments we ob-
served the followings in the case of mis-thresholding.  

(1) The center point (Cx,Cy) of the detected lip is far from the center of the true lip. 
(2) The width, height or size of the detected lip region is larger or smaller than the 

true lip region. 

Our approach is to use the above observations for developing a confidence of a de-
tected lip. With what method can we measure how the detected lip is different from 
the true one? Our idea is to use the statistics of the true lips in face images. Even 
though the hue distributions of lips are different from each other, the geometrical 
positions and sizes of lips are similar for people. Thus it makes sense to use the lip 
geometrical statistics as a candidate of confidences.  

To gather the information of true lips, first, we performed the face detection based 
on boosting algorithm [11]. By the algorithm in [11] we extracted the squares of face 
regions from VidTimit database images. And then we marked the true lip region 
manually for about 1,000 face images. Table 1 shows the statistics of lip regions ob-
tained from the lip images. The parameters are normalized so that the width and the 
height of detected face image have the unit length in Table 1. Note that the mean of 
Centerx is not 0.5. The reason, we think, is that the detected faces are a little biased. 
That is, this error is generated by the face detector. The statistics of Table 1 reflect the 
error made by the face detector. 

Using the data in Table 1, we can calculate the probability of the detected lip. And 
then we can change the coverage threshold so that the detected lip region’s probability 
can be maximized. The problem can be represented as follows: 

* max ( ( ))
C

C Lip C
Th

Th Prob R Th=  (5) 

where 
CTh  is the coverage threshold and 

LipR  is the detected lip region. 

(a) (b)
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Table 1. Geometrical statistics of true lips in face images 

 Centerx Centery Width Height 

Mean 0.530 0.727 0.289 0.150 

Standard deviation 0.020 0.030 0.035 0.036 

But there is a problem when the formulation (5) is used as a maximization criterion. 
Figure 4 shows the graphs of lip statistics. Because the standard deviation of lip width 
is 0.035, the lip region of which the width is in the range of [0.289-0.035*3, 
0.289+0.035*3] is possibly a lip. According to Figure 4 (b), the maximum value is 
11.38 and the probability at the value of ( +3 ) is 0.1266. If we use lip statistics as a 
maximization criteria, lip detection almost results in lip regions with the average lip 
statistics. Thus we conclude that the probability density functions of lip statistics 
cannot be used as a confidence function. Therefore we transform the pdfs into fuzzy 
membership functions using a simple clipping method, as shown in (6).  

1,             if ( )

( ) ( )
, otherwise

( )

pdf x T

x pdf x

pdf T

>
Μ = , (6) 

where ( )xΜ  is a membership function, ( )pdf x is a probability density function of 

Centerx, Centery, width or height, and T  is a threshold for transferring pdf into mem-
bership function. 

Figure 5 shows the example of width’s membership function. As shown in the fig-
ure, the membership function has the value of unity in the range where the detected 
lip can be considered a reasonable result. 

Now, we can redefine our problem by the membership functions as follows: 

* max ( ( ))
C

C Lip C
Th

Th M R Th=  (7) 

 

(a) Centerx                (b) Width  

Fig. 4. Probability density functions of lip statistics 
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Fig. 5. Membership function of width (T=0.15) 

The problem is to find the coverage threshold and the lip candidate region so that 
the membership function is maximized. On the other hand, the problem to be consid-
ered is how we can decide the direction of the threshold change. We assume that the 
membership value of the candidate is low. Then we should increase or decrease the 
threshold. What is the criterion for that? To control the threshold, we adopt the size 
information of the candidate lip.  

_

_

,  if the size of the detected lip is less than 

,   if the size of the detected lip is less than 

,         otherwise

C size low

C C size high

C

Th th

Th Th th

Th

δ
δ

−

= + , (8) 

where δ is a step size and 
_ { }size low highth  is the threshold for breaking the threshold 

adaptation. Figure 6 shows our proposed algorithm in this paper. In the figure is thM1 
and thM2 are the stopping thresholds for escaping from the iteration.  As shown in the 
figure the coverage threshold is adaptively changed depending on lip confidence rep-
resented by membership functions.  

 

Fig. 6. The proposed lip detection algorithm 

ThC=THC; 
delta=DELTA; 
 
for i=1:Maxiter 

1) Estimate lip region Rlip; // (section 2) 
2) Calculate the membership functions of Rlip; // Eq. (6) 
3) If Mcenter>thM1 and Msize>thM2, break; 

else, change ThC; // (Eq. 8) 
end 
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(a) iteration number = 1                                             (b) iteration number = 3 

    
(c) iteration number = 5                                      (d) iteration number = 7  

Fig. 7. Iterative lip detection with an adaptive threshold 

4   Experimental Results and Discussion 

We tested our algorithm with several face images of VidTimit database. The VidTimit 
database consists of video and corresponding audio recordings of 43 people (19 fe-
male and 24 male), reciting short sentences selected from the NTIMIT corpus. 

The data were recorded in three sessions, with a mean delay of seven days between 
Sessions 1 and 2, and of six days between Sessions 2 and 3. In this paper we selected 
the data of 20 persons (10 female and 10 male) from the database. We tested the pro-
posed method to the images, which are about five percent of these face image frames, 
that is, that is, approximately a thousand face images were tested. 

Figure 7 shows the results of performing our algorithm. As shown in Figure 7, the 
detection of lips gets correct after seven iterations. In this experiment ThC and delta 
are set to 0.83 and 0.003, respectively. Maxiter number in Figure 6 is chosen as 10. 
Observing the binary images in each step, we find that the number of white pixels 
increases as the coverage threshold decreases. Figure 8 shows the changes of 
membership functions of lip center and size with the iteration. From Figure 8 we can 
observe that in the first two iterations no enhancement is achieved. But the member-
ship values of lip center and size converge to 1 from the third iteration. Comparing 
Figure 7 (d) with Figure 7 (a), the widths of the upper and lower lips get thick. So, 
according to the examples shown in Figure 7, the widths of the upper and lower lips 
are more accurately estimated using our algorithm, if this information is targeted. 
Because our purpose in this paper is to detect lip regions, we do not perform any spe-
cific lip parameter estimation. 

Table 2 shows the performance of the proposed lip detector. According to Table 2, 
the performance enhancement of a 5.5% detection rate has been achieved with an 
adaptive thresholding based on confidence. 
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Fig. 8. Change of membership values with iteration number (M_cen : lip center membership, 
M_size : lip size membership) 

Table 2. Detection ratio of lip without and with an adaptive thresholding 

 
Without 

adaptive thresholding 
With 

adaptive thresholding 

Detection rate 91.3% 96.8% 

The results shown in Table 2 are preliminary. We will perform the experiments 
with the whole VidTimit face images. Anyhow we think that our proposed approach 
was successfully evaluated.  

Even though we achieved the improvement of lip detection, we found that some 
problems need to be solved in the future.  

(1) The dark regions estimated from the gray image include not only the regions 
surrounded by the upper and lower lips but also beard or mustache areas. In that 
case, the gray-level based inner region detection should be excluded.  

(2) The step size of delta decides the convergence speed of our algorithm. So we 
need more experiments on the parameter setting. 

We will cope with the problems revealed by these experiments in near future. 

5   Conclusion 

In this paper we proposed an adaptive thresholding method for lip detection. To con-
struct our algorithm, we suggested a confidence function measuring how accurately 
the lip detection is performed. Also, we introduced the concept of maximizing confi-
dence measure in the lip detection area. The experimental results showed that the 
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proposed algorithm is very promising in lip detection, allowing not only accurate lip 
detection but also a small calculation amount. We only use the operations of thresh-
olding and projections.  

However, there needs to be further research in the future. First, our algorithm needs 
to be verified with many other face images. Second, more reasonable confidence 
functions should be developed, especially based on lip’s symmetricity and roundness. 
Lastly, lip confidence could be adopted as a reference parameter in AV speech and 
speaker recognition. That is, detected lips with low confidence can be discarded from 
the AV recognition procedure. In the future study, we will evaluate our approach in 
the AV recognition area.  

Acknowledgement 

This paper is supported by the 2005 sabbatical grant of Chonnam National University.  

References 

1. Peter C,  Zelensky M.: Using of Lip-Reading for Speech Recognition in Noisy Environ-
ments, Proc of the 13th Czech-German Workshop on Speech Processing (2004)  

2. Gowdy, J.N.; Subramanya, A.; Bartels, C., Bilmes, J.; DBN Based Multi-stream Models 
For Audio-visual Speech Recognition. Proc of ICASSP’04 (2004) Vol. 1, 17-21 

3. Tieyan Fu; Xiao Xing Liu; Lu Hong Liang; Xiaobo Pi; Nefian, A.V.: Audio-visual speaker 
identification using coupled hidden Markov models. Proc of ICIP03 (2003), Vol3, 14-17 

4. Caplier A.: Lip Detection and Tracking. Proc. of 11th International Conference on Image 
Analysis and Processing (2001), 8-13 

5. Chetty G, Wagner M.: Automated Lip Feature Extraction. Proc. Image and Vision Com-
puting (2004) 17-22 

6. Zhang J.M, Tao H, Wang L.M., Zhan Y.Z.: A Real-time Approach to the Lip-motion Ex-
traction in Video Sequence, Proc of 2004 IEE International Conference on Systems, Man 
and Cybernetics (2004), 6423-6428 

7. Luthon F., Leivin M.: Lip Motion Automatic Detection, Proc of Scandinavian Conference 
on Image Analysis (1997), Vol 1, 253-260. 

8. Jacek C., Wojde l., Rothkrantz J.M.: Using Aerial and Geometric Features in Automatic 
Lip-reading, Proc of Eurospeech02 (2002), Vol.4, 2463-2466 

9. Kim J.Y., Song M.G, Na S.Y., Baek S.J, Choi S.H, Lee J.H.: Skin-Color Based Human 
Tracking Using a Probabilistic Noise Model Combined with Neural Network, LNCS Vol. 
3972, Springer-Verlag Berlin Heidelberg New York (2006), 419-428. 

10. Sanderson C.: VidTimit database documentation. http://users.rsise.anu.edu.au/ 
~conrad/vidtimit/ 

11. Fasel I, Fortenberry B., Movellan J.: A Generative Framework for Real Time Object De-
tection and Classification.  Computer Vision and Image Understanding (2005), Vol. 98, 
182-210 



Optic Flow Integration at Multiple Spatial

Frequencies - Neural Mechanism and Algorithm

Cornelia Beck, Pierre Bayerl, and Heiko Neumann

Dept. of Neural Information Processing, University of Ulm, Germany
{cornelia.beck, pierre.bayerl, heiko.neumann}@uni-ulm.de

Abstract. In this work we present an iterative multi-scale algorithm
for motion estimation that follows mechanisms of motion processing in
the human brain. Keeping the properties of a previously presented neu-
ral model of cortical motion integration we created a computationally
fast algorithmic implementation of the model. The novel contribution
is the extension of the algorithm to operate on multiple scales without
the disadvantages of typical coarse-to-fine approaches. Compared to the
implementation with one scale our multi-scale approach generates faster
dense flow fields and reduces wrong motion estimations. In contrast to
other approaches, motion estimation on the fine scale is biased by the
coarser scales without being corrupted if erroneous motion cues are gen-
erated on coarser scales, e.g., when small objects are overlooked. This
multi-scale approach is also consistent with biological observations: The
function of fast feedforward projections to higher cortical areas with large
receptive fields and feedback connections to earlier areas as suggested by
our approach might contribute to human motion estimation.

1 Introduction

The detection of motion in our environment is part of our everyday life. Humans
are capable to estimate motion very precisely and very fast. While ongoing re-
search tries to resolve the detailed processing mechanism in the human brain,
it is agreed on that areas V1, MT and MST play important roles in the mo-
tion processing pathway [1]. In contrast to the simple task of motion detection
for a human, implementing motion detection in technical applications remains
a difficult problem (see [2] for an overview of existing technical approaches).
For instance, a moving robot provided with cameras should be capable to de-
tect moving objects in its environment in real-time to avoid collision. Therefore,
the motion estimation has to be fast, of high quality, and the motion estimates
should be available for every position of the surrounding.

We developed a model for motion estimation that is based on the mechanisms
observed in human motion processing (see Sect. 2) [3]. This neural model sim-
ulates areas V1 and MT, including feedforward as well as feedback connections
[4]. To shorten the computing time, we reimplemented the model in an algorith-
mic version [5] and improved its results by adding multiple processing scales as
described in Sect. 3. Furthermore, we will explain the biological motivation of
this new approach.

G. Bebis et al. (Eds.): 2006, LNCS 4291, pp. 741–750, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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2 Neural Model

Approaches in computer vision for optic flow estimation use, e.g., regularization
or Bayesian models to achieve globally consistent flow fields [6,7]. Another pos-
sibility to approach this problem is to build a model corresponding to the neural
processing in our visual system. We previously presented such a model for optic
flow detection based on the first stages of motion processing in the brain [3].
Therein, areas V1 and MT of the dorsal pathway are simulated. In model area
V1 a first detection of optic flow is realized, model area MT estimates the optic
flow of larger regions and is thus, e.g., capable to solve the aperture problem
[8]. The principle processing components of this neural model are feedforward,
feedback and lateral connections.

Both modules V1 and MT comprise at each spatial location a certain number
of neurons tuned to different velocities. For efficient computation, we need to
discretize and limit the velocity space. Each neuron has a certain activity rate
describing the likelihood of its represented velocity. The input netIN for module
V1 of the model represents the similarity of the image structure of two images at
different time steps that is calculated using modified Reichardt detectors [9]. It
is modulated with the feedback netFB from module MT (1). This multiplicative
feedback only enhances activated neurons, but will not create new activities. In
the process of feedforward integration, signal v(1) is integrated with Gaussian
isotropic filters in both the velocity and the spatial domain (2), “*” denotes the
convolution operation. Finally, lateral shunting is effected at each location to
strengthen the activity of unambiguous motion signals (3). The equations are
identical for module MT, but the integration process (2) uses a larger spatial
neighborhood and there is no feedback to MT.

δtv
(1) = −v(1) + netIN ·

(
1 + C · netFB

)
. (1)

δtv
(2) =

(
v(2)

)2

+ v(1) ∗G(space) ∗G(velocity) . (2)

δtv
(3) = −0.01 · v(3) + v(2) −

(
1/ (2n) + v(3)

)
·
∑
Δx

v(2) . (3)

3 Algorithmic Multi-scale Model

A technical problem of the neural algorithm is the fact that the high number of
neurons leads to large memory costs and to long simulation times. Thus, starting
from the neural model for optic flow estimation, we have previously developed
an efficient algorithmic version that behaves similar to the neural model [5].

A limitation of the neural as well as of the algorithmic model is that the optic
flow is only evaluated on a single scale, i.e., the similarities in the input images
are calculated on a single spatial resolution of the input image. This leads to
problems when spatially low-frequency areas are moving in an image sequence.
On a fine scale, this “coarse” motion may not be detected, as there exist many
ambiguities when calculating the similarity measure for V1 between pairs of
frames (see example in Fig. 2). To solve this problem we extend the algorithmic
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Fig. 1. Iterative model of optic flow estimation: First, the similarity of two input frames
is calculated using the Census values. The hypotheses of V1 influence the creation of
the initial optic flow hypotheses, if the number of Census values is bigger than hmax.
Locations in V1 are spatially integrated and subsampled for the optic flow estimation
of MT. The feedback of MT modulates the likelihood of hypotheses in V1.

model with coarser scales of motion estimation. Such a “multi-scale processing”
scheme was proposed, e.g., by Simoncelli [10]. In general, these algorithms are
realized with “image pyramids” where motion estimation of coarser scales in-
fluences the estimation of finer scales as “initial guess” [10,11]. The processing
of the input image in resolutions of different spatial frequencies provides more
information for the motion estimation.

Considering the biological basis of our model, coarser processing scales can
be integrated in a plausible way. We believe that fast motion processing on a
coarser scale can modulate the feedforward projection within the fine scale of
motion estimation from V1 to MT [1]. This can be accomplished via feedback
of the processing of a coarser representation of the input image from area V1 to
MST. Our approach is in line with the “facilitation” of visual object recognition
in human brain via expectations in the prefrontal cortex which act as “initial
guess” as proposed by Bar [12]. In the following subsection we will explain the
algorithmic version of the neural model with one processing scale. Thereafter,
the extension of this model from one scale to two and more scales is presented,
that combines fast optic flow estimation with improved qualitative performance
due to the integration of multiple scales.

3.1 Algorithmic Single-Scale Model

The algorithmic model consists of two different modules V1 and MT like the
neural model (see Fig. 1). For the extraction of motion correspondences between
two frames of an image sequence the algorithm uses a similarity measure of
the class of rank-order approaches: The “Census transform” [13] provides an
implicit local description of the world. Accordingly, possible motion correspon-
dences between two frames of an image sequence can be extracted at locations
with the same Census values in both frames. Initially, we extract motion corre-
spondences (hypotheses) in V1 for identical Census values which show less than
hmax possible correspondences in the second frame. Each hypothesis includes a
likelihood initialized to 1.0 which indicates the likelihood of a particular velocity
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Fig. 2. Optic flow detection with the algorithmic model with one scale. First row: Re-
sults for an input image containing a spatially low frequency structure. Second row:
Results for an input image with a small moving object in front of the moving back-
ground. The object is indicated by the black circle (not part of the input image). The
second column represents the ground truth of the input. In the third and the fourth
column the resulting flow fields of MT are shown after the first iteration using a fine
and alternatively a coarse scale. Black positions indicate positions without motion es-
timation, white positions represent movement to the left, gray positions to the right.
One iteration of the fine scale algorithm takes about 0.6 seconds, using the coarse scale,
one iteration takes less than 0.1 seconds (Pentium IV, 3GHz).

at a certain position. The restriction on hmax identical Census values results
in at most hmax correspondences selected at each pixel (we use hmax = 4).
This means, in comparison to the neural model, that we only simulate the hmax
neurons representing the velocities with the highest likelihood at each position.
The extracted motion hypotheses include a lot of wrong hypotheses in addition
to the correct ones caused, e.g., by the motion aperture problem. To improve
the estimations, the hypotheses of the first module are spatially integrated to
generate the hypotheses for the second module MT, which represents motion at
a coarser spatial resolution. Hypotheses that are supported by adjacent positions
have an advantage during the subsampling process in comparison to spatially iso-
lated motion hypotheses. Again, only the hmax hypotheses with the strongest
likelihood are kept at each position in the second module. These hypotheses
are iteratively used as feedback for motion estimation in the first module. The
recurrent signal modulates the likelihood of predicted hypotheses in the first
module as in the neural model. In addition, the feedback influences the input to
V1: Hypotheses are also created at positions with ambiguous motion hypotheses
(Census value appears more than hmax times in the second image) if the veloc-
ity at this position corresponds to one of the velocities of the feedback (i.e., the
velocity is expected). This procedure is necessary in the algorithmic model to
compensate that only hmax hypotheses are represented at a position in contrast
to the neural model where each possible velocity is computed at a position.

3.2 Integration of Multiple Scales

In the first row of Fig. 2 the results of the single-scale algorithm are presented for
an input image (320x144 pixel) consisting of a spatially low-frequency texture
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like clouds that are moving to the left. Only few hypotheses are generated in V1
and MT when using the algorithm on the fine scale. In comparison to this, using
the same algorithm but a coarse version of the input images, all the positions
of MT show (the correct) motion hypotheses. This is due to the fact that the
movement in the coarse scale is less ambiguous.

However, single-scale models operating only on a coarse scale have another dis-
advantage: Small moving objects with minor luminance contrast are overlooked
by the model, as they are effaced during the subsampling and the motion inte-
gration process. An example is given in the second row of Fig. 2, where a small
rectangle (17x17 pixel) is moving to the right in front of a background moving
to the left. Whereas the model using the coarse scale completely overlooks the
objects after the first iteration, the object is detected in the fine scale.

To combine the advantages of the fine and the coarse scale we need to inte-
grate the feedback of at least one coarser scale (e.g., V1-MST) to our single-scale
model. In doing so, the estimations of the fine scale need to be protected. For this
reason, the coarser scales in this algorithm do only contribute to the estimation
of motion in the next finer scale where the ambiguity is high. The calculation of
motion estimation in a model with two scales will be calculated by the following
way: In a first step, motion hypotheses of the coarse scale are created. There-
after, the motion correspondences in V1 of the fine scale are calculated. Just if
the motion at a position is ambiguous (i.e., more than hmax = 4 hypotheses),
the feedback of the coarse scale is used for the selection of possible motion hy-
potheses. Thereby it is combined with the feedback of MT of the fine scale (i.e.,
both modules contribute to the creation of new hypotheses at ambiguous posi-
tions). Adding more scales can be realized in an analog way. A technical detail
to keep fast processing in the algorithm that has to be considered is that the
resolution of the feedback from the coarse scale has to be in the same resolution
as the motion hypotheses of the module receiving the feedback (fine scale). This
can easily be realized if the motion hypotheses of the coarse scale are created of
frames with greater temporal distance Δt (subsampling rate (fine scale to coarse
scale) corresponds to Δt). In the neural model this would not be necessary.

4 Results

The following results are obtained with a multi-scale model of the presented
algorithm containing two scales of motion detection. In the coarse scale the
input images processed are four times smaller than the original ones. For this
subsampling process, the image is blurred with a Gaussian filter (sigma = 4).
The integration of motion hypotheses of the second module of the coarse scale
(module MST) reduces its size to a fourth of its subsampled input image from
V1. The images shown here always represent the hypotheses of MT (the second
module of the fine scale), as these are the final results of the motion estimation.
First, we tested the developed multi-scale model with spatially low-frequency
image sequences where the motion is not detected in the fine scale (see Fig. 2/first
row). The detected motion hypotheses of the multi-scale model are presented
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Fig. 3. Motion hypotheses of MT of the two scale model. The input images (first
column) are the same as in Fig. 2. In the second column the motion hypotheses of
module MT are shown. Black positions are positions where no movement was detected,
white positions indicate movement to the left, gray positions represent movement to
the right. One iteration of the multi-scale algorithm takes about 0.7 seconds.

Fig. 4. Detection of background and object for input image sequence with moving ob-
ject. The percent of the positions of the background and the object with the correct
detected direction are shown. The dashed line at 100 percent represents the reference.
(a) The fine scale model detects the movement of the complete object after the first
iteration, but it needs 4 iterations to cover the main parts of the background. (b) shows
the results for the coarse scale model that detects the background movement immedi-
ately, but completely misses the object, independently of the number of iterations. (c)
In the two scale model about 85 percent of the background movement is detected after
one iteration as well as the main parts of the object.

in Fig. 3/first row. In contrast to the results of the fine scale model nearly
all positions represent a motion hypothesis. The direction of the hypotheses is
also correct. The result is close to the optimal result of the coarse scale model.
Second, the image sequence with a small moving object not detected within
the coarse scale model was used as input to the multi-scale model (see Fig. 2/
second row). Whereas the coarse scale model ignores the movement of the small
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Fig. 5. (a) One input image of the Yosemite Sequence (t = 3), (b) ground truth for
the optic flow of frame 3 and 4. For the motion in the sky we assume horizontal motion
to the right as proposed in [2]. (c) shows the median angular error in degree of module
MT. The motion estimations in MT for the Yosemite sequence using the fine scale
algorithm are shown in the second row. (d) After the first iteration a lot of positions
in the sky do not contain a motion hypothesis (black positions). Furthermore, there
are some wrong motion hypotheses in the lower left. (e) After the second iteration the
positions representing motion hypotheses in the sky is higher, the flow field contains
less errors. (f) After three iterations more than 98 percent of the positions represent
motion hypotheses, the flow field is similar to the ground truth. In the third row the
results for the multi-scale algorithm are presented. (g) After the first iteration almost
every position holds a motion hypothesis, even in the coarse structure of the sky the
movement to the right is correctly indicated. The flow field contains only few errors.
(h)(i) the positions disturbing the smoothness of the flow field are corrected in the
second and third iteration.

object opposite to the background, the multi-scale model clearly indicates a
rectangle in the center of the image moving to the right as depicted in Fig.
3/second row. The proportion of detected movement at the positions of the
object and the background in the input image is shown in Fig. 4. Only the
multi-scale model is close to 100 percent detection for both the background and
the object after only one iteration.
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We further compared our multi-scale approach to the fine scale model using the
Yosemite Sequence (316x256 pixel, version with clouds) as input images [2]. An
exemplary image of this sequence is presented in Fig. 5(a). For this artificial se-
quence the ground truth of the optic flow is provided which enables us to evaluate
the quality of extractedmotionhypotheses (seeFig. 5(b)).Graypositions represent
movement to the right, white positions movement to the left, at black positions no
motion hypothesis is created. The results of module MT of the fine scale model are
presented in Fig. 5(d)-(f) for three iterations of the algorithm. After the first itera-
tion the positions in MT representing at least one motion hypothesis add up to 85
percent. Similar to the texture in input image of Fig. 2 the spatially low-frequency
texture of the sky causes problems to the fine scale model. Thus, mainly positions
in the sky do not have motion hypotheses (black positions). At the same time, in
comparison to the smooth original flow field (see Fig. 5(b)), there are some wrong
hypotheses especially in the lower left area of module MT caused by the aperture
problem when using only a small scale.

The motion hypotheses of MT for three iterations of the multi-scale algorithm
are shown in Fig. 5(g)-(i). Just after one iteration, 98 percent of the MT positions
represent motion hypotheses. The flow field contains only few positions which
represent motion hypotheses that differ from the smooth flow field of the image.
The aperture problem is solved due to the coarse scale added. Thus, only one
iteration of the multi-scale algorithm provides a flow field comparable to the
ground truth for nearly every position. A comparison of the quality of the motion
hypotheses of the two algorithms is presented in Fig. 5(c). The multi-scale model
achieves better results in the median angular error of the motion hypotheses than
the fine scale model in MT. The better results of the multi-scale model after the
first iteration is even more significant, if we take into account that 98 percent
of all positions in MT of the multi-scale model cause a lower error than the 85
percent of positions with hypotheses of the fine scale model.

5 Discussion and Conclusion

We presented a multi-scale algorithm for optic flow estimation based on a neural
model. In contrast to other multi-scale approaches [10], this algorithm does not
propagate the error of coarser scales to the fine scale. This is ensured by the
way coarse scales influences the motion estimation in the fine scale. Only if the
estimation in the fine scale is highly ambiguous and if the motion estimation
of the coarse scale is compatible with the motion correspondences in the fine
scale, then the additional information of the large scale will be used. This avoids
that small objects are overlooked on the fine scale [10]. Moreover, the extraction
of the motion hypotheses is implemented in a way that the search space for
corresponding positions in each scale comprises the entire image. This is not
realized in many other multi-scale approaches [2].

In the examples presented for the multi-scale model we restricted the model
to two scales. This is due to the fact that for the employed input sequences a
combination of one coarse and one fine scale was sufficient to get estimations for
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all positions after one iteration. Thus, adding coarser scales would not further
improve the estimations. Nevertheless, the algorithm can be extended to more
scales in a straightforward way. Concerning the computing time of the algorithm,
more scales do not increase the time for one iteration considerably. This follows
from the faster processing of coarser scales where estimations for less positions
have to be calculated. Furthermore, the time for the calculation could be further
reduced by limiting the positions of the images to be processed. This could be
done by a preclassification (e.g., corners [13]) or a limitation to positions with a
certain minimum contrast.

The biological motivation of the multi-scale model is based on the observa-
tions that V1, MT and MST are main components of the motion processing
pathway that includes feedforward and feedback connections [4]. While in V1
motion is detected only in a very small neighborhood, its projections to MT
lead to an integration of the detected motion within a larger region [14]. Mo-
tion estimation in an even coarser spatial resolution is accomplished in MST,
its neurons respond to planar, circular, and radial motion as well as to complex
patterns of motion [15]. Low latencies of the first responses in V1, MT and MST
[16] indicate a possible computation of a quick initial guess in higher areas, such
as MST, which may in turn influence information processing in earlier areas such
as V1 or MT via feedback connections. Because area MST receives its primary
afferent inputs from area MT, such a computation may probably be realized in a
feedforward manner via MT, but also direct connections from V1 to MST have
been observed [1]. The prediction through a fast and spatially coarse “initial
guess” is compatible to theories predicting that the context (here a large spatial
context of motion information) may influence initial feature extraction [17,12].

In conclusion, we presented a biologically motivated algorithm for optic flow
integration on multiple processing scales that generates fast and reliable motion
estimations.
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Abstract. In this paper, we study the application of the box counting
method (BCM) to estimate the fractal dimension of 3D plant foliage. We
use artificial crowns with known theoretical fractal dimension to char-
acterize the accuracy of the BCM and we extend the approach to 3D
digitized plants. In particular, errors are experimentally characterized
for the estimated values of the fractal dimension. Results show that,
with careful protocols, the estimated values are quite accurate. Several
limits of the BCM are also analyzed in this context. This analysis is used
to introduce a new estimator, derived from the BCM estimator, whose
behavior is characterized.

1 Introduction

Plant geometry is a key factor for modeling eco-physiological interaction of plant
and the environment. These interactions may concern either the abiotic (resource
capture, heat dissipation) or the biotic (disease propagation, insect movement)
environment. Depending on applications, plant geometry has been abstracted
in various ways [1] : simple volumic shapes (like ellipsoids, cones, or big leaves
used in turbid medium approaches) or detailed models to render realistic trees.
Global descriptions are simple and contain few parameters; however, they do not
capture the irregular nature of plant shapes which severely limits the generaliza-
tion capacity of the model. On the other hand, detailed descriptions tentatively
address this problem but require over-parameterization of geometry, leading to
non-parsimonious models. Characterizing the irregularity of plant shapes with a
few parameters is thus a challenging problem.

ractal geometry was introduced as a new conceptual framework to analyze
and model the irregular nature of irregular shapes [2]. This framework has been
applied in different occasions to the modeling of plant structure. Generative ap-
proaches use fractal concepts to illustrate how intricate vegetal-like structures
can be generated using parsimonious models [3,4,5]. Such models were used to
generate artificial plants in modeling applications [6,7]. Fractal geometry was
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also used to analyze the irregularity of plants by determining their supposed
fractal dimension. This parameter is of major importance in the study of irreg-
ularity: it characterizes the way plants physically occupy space. Most of these
studies were carried out using the classical box counting method (BCM) [2] on
woody structures, and especially on root systems [8,9,10]. This method consists
of immersing the studied object in a grid with uniform cell size and studying the
variation of the number of grid cells intercepted by the plant as the size of the
cells decreases.

For practical reasons, in most works, fractal dimension is estimated from
2D photographs [11,12]. Unfortunately, such a technique always under-estimates
the actual fractal dimension [13], and so is not accurate. Recently BCM was
used on 3D digitized root systems [10]; however, the accuracy of the estimated
values could not be evaluated. In this paper, we study the application of the
BCM to both artificial and real 3D plant foliage. We use artificial crowns with
known theoretical fractal dimensions to characterize the accuracy of BCM and we
extend the approach to 3D digitized plants. The limits of BCM is then analyzed
and discussed in this context.

2 Plant Databases

Nine 3D plants were included in the study. Four real trees were digitized in
the field and five additional plants were generated from theoretical models. The
geometric scenes representing the plant crowns were designed using the PlantGL
library [14].

Digitized Plants. Four four-year old Prunus Persica (peach) trees were digi-
tized [15], but due to the high number of leaves (∼14,000), digitizing at leaf scale
was impossible. A magnetic digitizing device was therefore used to record the
spatial co-ordinates of the bottom and top of each leafy shoot. In addition, thirty
shoots were digitized at leaf scale in order to derive the leaf angle distribution,
and allometric relationships between number of leaves, shoot leaf area and shoot
length. Leaves of each shoot were then generated from those data and additional
assumptions for the internode length and the distribution of leaf size within a
shoot.

Theoretical Plants. Three fractal plants were generated from 3D iterated
function systems (IFS) [4]. The generation process is illustrated in Fig. 2, and
the finals artificial canopies are represented in Fig. 3. If the IFS satisfies the open
set condition [16], the theoretical fractal dimension of the IFS attractor is the
autosimilarity dimension,

Da =
logn
log c

. (1)

A classical 3D cantor dust [2] was also generated using an IFS (n = 8, c = 3).
Each IFS was developed over 5 iterations. In addition to these self-similar plants
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Fig. 1. Four four-year old peach trees (cv. August Red) were digitized in May 2001 in
CTIFL Center, Nı̂mes, South of France, at current-year shoot scale, one month after
bud break

Fig. 2. Construction of an artificial crown. The initial object was a tapered ellipsoid
and the IFS transformation was made of n = 5 duplications of a contracted object by
a factor c = 3.

a stochastic 3D cantor dust was generated using a recursive algorithm derived
from the method known as curdling and random trema generation [2,17]. Each
iteration of the algorithm divides a given voxel into a set of subvoxels according
to a specified subdivision factor. A fixed proportion of voxels eligible for the
next iteration is chosen randomly from the subvoxels. At the end of the process,
final voxels are considered to be leaves. The stochastic cantor dust is created by
specifying a subdivision factor of 3 and 8

27 as the proportion of chosen voxels
for all 5 iteration levels. This object has the same theoretical dimension as the
classical cantor dust.

3 Estimation of the Fractal Dimension Using the BCM

3.1 The Box Counting Method

The BCM has been extensively used to estimate fractal dimension of objects
embedded in the plane. Its adaptation to 3D consists of building a sequence of
3D grids dividing space in homogeneous voxels of decreasing size δ and counting
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Fig. 3. From left to right, the three artificial canopies : AC1 (n = 5, c = 3), AC2
(n = 7, c = 3), AC3 (n = 9, c = 3), on the top, the cantor dust and on the bottom a
stochastic cantor dust

the number Nδ of grid voxels intercepted by the studied object. The estimator
of the fractal dimension of the object is defined as

Db = lim
δ→0

logNδ

log 1
δ

. (2)

To implement this estimator, we approximated all the geometric objects by tri-
angular meshes. The intersection of each triangle with the grid voxels can then
be computed in time proportional to the number of triangles in the mesh [18].
However, to decrease the overall complexity, we represent each triangle by a set
of points [19]. The number of points used is chosen such as the distance between
two points is small compared to the minimal voxel size. The intersection algo-
rithm is thus reduced to checking whether a voxel contains at least one point.
The grid sequence is obtained by dividing the original bounding-box size, δ0, by
a range of consecutive integers acting as subdivision factors. Thus the series of
δn is a decreasing series formed by { δ0

Si
}0≤i<n where Si is the ith subdivision

factor. Each sub-grid fits perfectly in the original bounding-box. It is important
to note that several factors may influence the accuracy of this method, e.g. the
choice of a proper range of scales and the orientation and alignement of the grid
[20,21]. In practice Db is estimated as the slope of the regression line between
logNδ and log 1

δ .

3.2 Box Counting Method: Local Scale Variation Estimator

As pointed out in [22], a major problem of the BCM estimator is that the numbers
of intercepted voxels at each scale are correlated positively, and the correlation
structure is completely ignored in the estimation procedure. This violates the as-
sumption of data independency used in regression analysis. The consequence is an
underestimation of confidence interval associated with the estimated fractal di-
mension. To eliminate the correlation, we introduce a new estimator, namely local
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scale variation estimator (LSV), based on the relative increase of intercepted vox-
els against the relative decrease in scale. This estimator can be derived from the
BCM estimator as follows. Assuming the power law is verified for each scale δ

Nδ ∝ (
1
δ
)Db , (3)

the differential form of this equation leads to

d logNδ ∝ d(Db log(
1
δ
)),

dNδ

Nδ
∝ −Db

dδ

δ
(4)

which gives a variational interpretation of the fractal dimension. Db thus ex-
presses the linear coefficient that corresponds to the ratio of new details due to
a certain ratio of zoom in the structure. However, in this equation it is assumed
that both dN and dδ % 0, which is not usually the case for the scales used in
BCM, except at very small scales. It is possible to generalize this variational
principle to non-infinitely small quantities. Let Nδ be the number of intercepted
voxels at scale δ. We define ΔNδ,Δδ as

ΔNδ,Δδ = Nδ+Δδ −Nδ. (5)

The relative increase in the number of boxes is denoted Ñ = ΔNδ,Δδ

Nδ
. Similarly,

we denote δ̃ = Δδ
δ the relative increase of zoom when passing from cell size δ to

δ +Δδ. Thus, assuming Equation 3 is still satisfied, we have

Ñ ∝ (δ +Δδ)−Db − δ−Db

δ−Db
=
(
1 + δ̃

)−Db

− 1, (6)

which leads to a generalized form of Equation 4, where variations of Nδ and δ
need not be infinitely small,

log(1 + Ñ) ∝ −Db log(1 + δ̃). (7)

Db can thus be estimated by performing a linear regression between log(1 + Ñ)
and log(1 + δ̃).

4 Results

4.1 Number of Voxels as a Function of Scale

In general, we may expect that the number of intercepted voxels is a monotonously
increasing function of scale. However this is not always the case due to a quanti-
zation effect which results from discrepancy between discretization with the 3D
grid and space occupation of the plant at some scales. Fig. 4 contains plots of the
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number of voxels intercepted at the different scales for each object. The local vari-
ation of the curves comes from the fact that the number of intercepted voxels at
one scale depends of the adjustment of the grid. Some shiftings, up to a factor δ in
each direction, and reorientations of the grid may lead to overestimating the num-
ber of voxels at one scale, causing local variation of the curve. Thus, the discrete
quantization of the 3D shape of the object into voxels introduces some fuzziness in
its representation, depending on scale. It can be seen in Fig. 4 that the quantiza-
tion effect is far more pronounced with the artificial crowns and Cantor dusts than
the digitized peach trees. This difference is attributed to the less deterministically
distributed foliage of the digitized trees.

Fig. 4. The number of intercepted voxels as a function of the scale

4.2 Estimating Fractal Dimension from the BCM

ScaleRange. When the grid voxel size is smaller than the leaf size, the evaluation
of the dimension is modified by the dimension of the leaves surfaces. To avoid this
effect, a minimum voxel size, δmin, is determined such as δmin ≥

√
Al, where Al is

the mean leaf area. Since every voxel size δi is obtained from the bounding box size
δ0 as δi = δ0

Si
, the minimum size must be δmin = δ0

Smax
. Let Vbb be the bounding

box volume. An uni-dimensional proportionality factor is defined by

Smax =
3
√
Vbb√
Al

. (8)

Setting Smax as the upper bound for the subdivision factors {Si}0≤i<n guaranties
that no voxel size will be smaller than a leaf size.

Grid Shifting. When the voxel size is close to the leaf size, the local adjustments
of the grid may cause significant variations in the number of intercepted voxels, as
discussed above. Practically, to limit the effect of this local variation due to grid
shifting, a factor Smax

3 instead of Smax as the contraction limit was considered.
This factor can be explained as follows. Let us consider a grid with voxels equal in
size to the mean leaf size. Optimally a leaf will be included into a single voxel. All
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the possible shifting configurations of the grid may cause the leaf also be included
in any of the twenty-six neighboring voxels. Considering voxels of bigger sizes with
a factor 3 can be seen as including the twenty-seven possible small voxels into the
same large one and so limits the errors found in finer grids. Of course, the optimal
grid for one leaf will not be the optimal grid for all leaves; therefore, artifact effects
of grid adjustment may persist. We experimentally observed that this persistence
is limited (see Fig. 5).

Fig. 5. Evolution of AC2 slope during BCM evaluation. The number of voxels inter-
cepted at various scales for AC2 with the slopes highlighted. In the range 0, Smax

3
, the

slope is primarily influenced by the structure of AC2 and the fractal dimension Db =
1.765. In the range Smax

3
, Smax , the slope is also partially influenced by the fractal

dimension of individual leaves and is sensible to local variation due to grid adjustment.
When this range is taken into account for the fractal dimension evaluation, Db drops
from 1.765 to 1.584. Finally for grids with voxel sizes smaller than Smax, the slope is
directly related to individual leaf fractal dimension (0 in our representation since we
use points). With a naive range of evaluation including all points, the fractal dimension
drops to 1.172.

Orientation of the Grid. Optimal voxel coverage of the plant depends on the
orientation of the grid relative to the plant. For this, we made a sensitivity analysis
to evaluate how the estimated fractal dimension is affected by changes in the grid’s
orientation. A set of random grid orientations were selected and fractal dimension
was estimated for each orientation. Table 1 gives the mean and variance of the
estimated fractal dimension across orientations for all the considered plants. We
can observe a low variability in the absolute values of the results: the standard
deviations are inferior to one per cent of the mean values. From this, we conclude
that the orientation of the grid has only limited effect on the BCM evaluation
method.

Error Characterization. To characterize the error made during the estimation,
a comparison with theoretical fractal dimension can be used. In the case of plants
corresponding to IFS attractors, the theoretical fractal dimension, D, is known.
But there is no such dimension for real plants; however, it has been shown that,
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when plant’s topology is known, a faithful estimate of the plant fractal dimen-
sion can be obtained using the two-surface method [23]. This value will be used as
reference value for the peach trees.

A classical Student’s t-test on the computed Db distributions shows that a sig-
nificant bias in the BCM estimation exists. However, results reported in Table 1
(cols 3-6) show that this bias is less than 3.1% of the theoretical value for the stud-
ied canopies.

Table 1. Fractal dimension results for studied canopies and their properties. Da is the
reference (theoretical) value of the fractal dimension. For Db estimation, Db gives the
mean estimated value and σ the standard deviation over all considered rotations. The
minimum standard error r2 over all rotations is shown. All results are obtained with
Smax

3
as the upper limit.

BCM Db Relative LSV Db

Canopy Da Db σ r2 Bias Db σ r2 3
√Vbb

√Al Smax

AC1 1.47 1.4889 0.0056 0.97 0.0128 1.8761 0.0457 0.33 1.83 0.0143 128
AC2 1.77 1.7305 0.0053 0.99 0.0223 1.9409 0.06 0.58 2.29 0.0143 160
AC3 2 1.97 0.0074 0.99 0.015 2.0705 0.0534 0.74 1.85 0.0143 129

Cantor 1.89 1.8835 0.0174 0.94 0.0034 2.2286 0.0852 0.09 0.99 0.0041 243
Stoc. Cantor 1.89 1.8896 0.0105 0.97 0.0002 2.1218 0.0933 0.17 2.43 0.01 243

Peach 1 2.33 2.3221 0.0043 0.99 0.0033 2.2832 0.0115 0.97 2.97 0.439 67
Peach 2 2.36 2.3516 0.0056 0.99 0.0035 2.3416 0.0117 0.97 2.97 0.459 64
Peach 3 2.38 2.307 0.0064 0.99 0.0306 2.3022 0.0195 0.97 3.04 0.0463 65
Peach 4 2.33 2.3218 0.0076 0.99 0.0035 2.3147 0.0175 0.98 2.61 0.0449 72

4.3 Estimating Fractal Dimension from the LSV Method

We use the LSV estimator of the box counting method, presented on section 3.2,
on the theoretical and digitized plants. The δ̃ values were defined using couple of
successive scales

δ̃ =
δi+1 − δi
δi

=
1
δi

(9)

and Ñ values from the correspondingN values. Since it is based on a local estima-
tion, it is sensible to the local variation of the number of box as a function of scales
introduced by the quantization effect. The local variations in this estimation are
reflected in the variance and standard error of the computed fractal dimensions,
giving a better estimation of the reliability of the results compared to the classical
box counting method.

Experimentally, we observe that results on theoretical plants are very sensi-
tive to quantization effect as shown by dispersion of the data in the Fig. 6 and
the minimum standard error in Table 1 (cols 7-9). The minimum r2 for the esti-
mated dimensions on these objects are between 0.09 to 0.74. This effect is much
less important on real plants; the minimum r2 values are between 0.97 and 0.98. In
this case, the results seems more relevant. The difference with theoretical values
is small (less than 3.2%).
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Fig. 6. Estimated fractal dimension with the LSV method for AC2, Cantor Dust and
Peach 2. This new estimator is very sensitive to quantization effect leading to a disper-
sion of the measurements in AC2 and Cantor Dust. On the contrary the method gives
an estimation of D close to that obtained with the two-surface method (i.e D = 2.36)
for Peach 2 tree.

5 Conclusion

In this paper the accuracy of the BCM for evaluating the fractal dimension of 3D
crowns was studied. Several factors that may influence this accuracy were exam-
ined and practical solutions proposed. In particular a proper voxel size limit is de-
termined dependent on leaf sizes and the BCM bias was quantified. The problem
of data dependency used during the regression analysis was discussed and a new
estimator, LSV, that does not violate the independence assumption is described.
The LSV estimator appears to be an interesting indicator to determine whether
the quantization effect disturb the fractal dimension estimation. Eventually it has
to be improved to support more robust evaluations.

References

1. Godin, C.: Representing and encoding plant architecture: A review. Annals of Forest
Science 57 (2000) 413–438

2. Mandelbrot, B.B.: The fractal geometry of nature. Freeman (1983)
3. Smith, A.R.: Plants, fractals, and formal languages. In: Siggraph’84, Computer

Graphics Proceedings. Volume 18., ACM Press (1984) 1–10
4. Barnsley, M.: Fractals Everywhere. Academic Press, Boston (1988)
5. Prusinkiewicz, P., Hanan, J.: Lindenmayer systems, fractals, and plants. Lecture

Notes in Biomathematics 75 (1989)
6. Chen, S., Ceulemans, R., Impens, I.: A fractal-based Populus canopy structure

model for the calculation of light interception. Forest Ecology and Management
69(1-3) (1994) 97–110

7. Prusinkiewicz, P., Mundermann, L., Karwowski, R., Lane, B.: The use of positional
information in the modeling of plants. In: Siggraph’01, Computer Graphics Pro-
ceedings, New York, NY, USA, ACM Press (2001) 289–300

8. Fitter, A.H.: An architectural approach to the comparative ecology of plant root
systems. New Phytologist 106(1) (1987) 61–77



760 D. Da Silva et al.

9. Eshel, A.: On the fractal dimensions of a root system. Plant, Cell & Environment
21(2) (1998) 247+

10. Oppelt, A.L., Kurth, W., Dzierzon, H., Jentschke, G., Godbold, D.L.: Structure
and fractal dimensions of root systems of four co-occurring fruit tree species from
Botswana. Annals of Forest Science 57 (2000) 463–475

11. Morse, D.R., Lawton, J.H., Dodson, M.M., Williamson, M.H.: Fractal dimension
of vegetation and the distribution of arthropod body lengths. Nature 314(6013)
(1985) 731–733

12. Critten, D.L.: Fractal dimension relationships and values associated with certain
plant canopies. Journal of Agricultural Engineering Research 67(1) (1997) 61–72

13. Falconer, K.: Fractal geometry : mathematical foundation and applications. John
Wiley and Sons (1990)

14. Boudon, F., Pradal, C., Nouguier, C., Godin, C.: Geom module manual: I user
guide. Technical Report 3, CIRAD (2001)

15. Sonohat, G., Sinoquet, H., Kulandaivelu, V., Combes, D., Lescourret, F.: Three-
dimensional reconstruction of partially 3d-digitized peach tree canopies. Tree Phys-
iol 26(3) (2006) 337–351

16. Falconer, K.: Techniques in fractal geometry. John Wiley and Sons (1997)
17. Plotnick, R.E., Gardner, R.H., O’Neill, R.V.: Lacunarity indices as measures of

landscape texture. Landscape Ecology 8 (1993) 201–211
18. Andres, E., Nehlig, P., Franon, J.: Supercover of straight lines, planes and triangles.

In: Proceedings of DGCI ’97, London, UK, Springer-Verlag (1997) 243–254
19. Pfister, H., Zwicker, W., Baar, J.v., Gross, M.: Surfels: surface elements as rendering

primitives. In: Siggraph’00, Computer Graphics Proceedings, Los angeles, ACM
Press (2000) 335–342

20. Foroutan-Pour, K., Dutilleul, P., Smith, D.L.: Advances in the implementation of
the box-counting method of fractal dimension estimation. Applied Mathematics
and Computation 105(2) (1999) 195–210

21. Halley, J.M., Hartley, S., Kallimanis, A.S., Kunin, W.E., Lennon, J.J., Sgardelis,
S.P.: Uses and abuses of fractal methodology in ecology. Ecology Letters 7 (2004)
254–271

22. Reeve, R.: A warning about standard errors when estimating the fractal dimension.
Comput. Geosci. 18(1) (1992) 89–91

23. Boudon, F., Godin, C., Pradal, P., Puech, O., Sinoquet, H.: Estimating the fractal
dimension of plants using the two-surface method. an analysis based on 3d-digitized
tree foliage. Fractals 14(3) (2006)



3D Surface Reconstruction and Registration for

Image Guided Medialization Laryngoplasty

Ge Jin1, Sang-Joon Lee1, James K. Hahn1, Steven Bielamowicz2,
Rajat Mittal3, and Raymond Walsh4

1 Department of Computer Science
2 Division of Otolaryngology, School of Medicine

3 Department of Mechanical and Aerospace Engineering
4 Department of Anatomy and Cell Biology, School of Medicine

5 The George Washington University, Washington DC, USA
{jinge, bigdolph, hahn}@gwu.edu, sbielamowicz@mfa.gwu.edu,

mittal@gwu.edu, anarjw@gwumc.edu

Abstract. The purpose of our project is to develop an image guided sys-
tem for the medialization laryngoplasty. One of the fundamental chal-
lenges in our system is to accurately register the preoperative 3D CT
data to the intraoperative 3D surfaces of the patient. In this paper, we
will present a combined surface and fiducial based registration method to
register the preoperative 3D CT data to the intraoperative surface of lar-
ynx. To accurately model the exposed surface area, an active illumination
based stereo vision technique is used for the surface reconstruction. To
register the point clouds from the intraoperative stage to the preopera-
tive 3D CT data, a shape priori based ICP method is proposed to quickly
register the two surfaces. The proposed approach is capable of tracking
the fiducial markers and reconstructing the surface of larynx with no
damage to the anatomical structure. Although, the proposed method is
specifically designed for the image guided laryngoplasty, it can be ap-
plied to other image guided surgical areas. We used off-the-shelf digital
cameras, LCD projector and rapid 3D prototyper to develop our exper-
imental system. The final RMS error in the registration is less than 1mm.

Keywords: Image Guided Surgery, 3D Reconstruction, Registration.

1 Introduction

It is estimated that 7.5 million people in the United States have a voice dis-
order, and about 1/3 of new patients with voice disorders are diagnosed with
vocal fold paresis or paralysis. Vocal cord paralysis and paresis are debilitating
conditions leading to difficulty with voice production. The alterations in voice
production are usually severe enough to impede the individual’s ability to work
and to conduct normal social interactions. Medialization laryngoplasty is a surgi-
cal procedure designed to restore the voice in patients by implanting a uniquely
configured structural support lateral to the paretic vocal fold through a win-
dow cut in the thyroid cartilage of the larynx. Currently, the surgeon relies on
experience and intuition to place the implant in the desired location, therefore
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it is subject to a significant level of uncertainty. Window placement errors of up
to 5mm in the vertical dimension are common in patients admitted for revision
surgery. The failure rate of this procedure is as high as 24% even for experienced
surgeons [1]. An intraoperative image guided system will help the surgeon to
accurately place the implant at the desired location.

The image guided technology has been successfully applied to various medical
domains. However, to our knowledge, image guided techniques have not been
applied to the medialization laryngoplasty. The biggest obstacles come from (1)
registering the geometry of the delicate anatomy of thyroid cartilage during the
surgery to the preoperative 3D CT data (2) introducing minimal intrusion or
modifications to the current surgical practices and (3) implementing with only a
moderate increase in the additional equipment. In this paper, we will concentrate
on the registration of preoperative 3D CT data to the intraoperative 3D surfaces
of thyroid cartilage.

Our proposed image guided system will use the anatomical and geometric
landmarks and points to register intraoperative 3D surface of thyroid cartilage to
the preoperative 3D radiological data. The proposed approach has three phases.
First, the laryngeal cartilage surface is segmented out from the preoperative
3D CT data. Second, the surface of the exposed laryngeal cartilage during the
surgery is reconstructed intraoperatively using stereo vision and structured light
based surface scanning. The surgical area has non-uniform color and textures,
so we take one full-lit image and non-lit image to distinguish the shadow from
the light receiving areas and calculate the illumination change map. Third, the
two geometries are registered using shape priori based ICP matching. Currently
the proposed technqiue has only been applied in a laboratory environment on
phantom models. The proposed approach has several advantages over alterna-
tive approaches: the combination of stereo vision and structured light surface
scanning is capable of tracking the fiducial markers, reconstructing the surface
of laryngeal cartilage and matching the preoperative and postoperative surfaces
for registration purposes. The computer vision based approach can be applied to
delicate areas like laryngeal cartilage with no danger of causing physical damage.

2 Background

Registration in image guided procedures can be classified into three categories
based on the fiducial markers: extrinsic invasive (bone affixed markers)[2][3][4],
extrinsic noninvasive (skin affixed markers)[5] and intrinsic markers [6]. In the
case of laryngoplasty, the bone fixed fiducial markers would make potentially
damage to the thin laryngeal cartilage. While, the skin affixed markers will move
significantly relative to the laryngeal cartilage. Intraoperative medical imaging
system can be used for the multi-modal image registration in image guided
surgery [7][8]. However, for the medialization laryngoplasty, this will modify
the current surgical procedure and increase the medical cost by introducing
additional medical equipment. So, in our system, we will use the intrinsic markers
for the registration.
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The structured light based surface reconstruction system can be classified
into three categories: time-multiplexing, spatial neighborhood and direct cod-
ing. Spatial neighborhood [9][10] and direct coding [11] methods are relatively
fast and capable of measuring dynamic surfaces. However, the bandwidth of pro-
jector and quantization error introduced by the CCD camera will make the color
and neighborhood based methods less accurate than time multiplexing methods.
Time-multiplexing is a way to encode the pixel information in the temporal do-
main. Posdamer and Altschuler [12] first proposed a 3D surface measurement
method with binary coded light pattern. Inokuchi [13] further improved the
coding scheme using gray code to make the code-word robust to the noise. Re-
cently, Gühring [14] combined the gray code light pattern and line shifting to
reconstruct highly accurate 3D surface model. For our experimental framework,
since the primary goal is to reconstruct accurate 3D surface for registration, we
used sub-pixel accuracy line shifting method to reconstruct the 3D surfaces.

The global alignment of multiple 3D point sets or surfaces has been well
studied in the field of 3D model acquisition area. ICP (Iterative Closest Point)
algorithm was introduced to geometrically align two similar geometric mod-
els [15][16]. A new geometric transform matrix is calculated by minimizing the
MSE (Mean Square Error) between the closest point pairs. Horn [17] described a
closed form solution for the quaternion calculation from the closest point pairs.
Kd-tree [15], and approximated kd-tree [18] is used to accelerate the closest point
searching process. Recently, sub-sampling scheme from the geometric data, clos-
est point searching method, rejection of outliers and error minimization method
are used to compare various ICP algorithms [19]. In our case, the number of
points from the preoperative CT and structured light based surface scanning
are relatively small (about 3000 points), so we used all the point samples during
the ICP matching process. For the closest point searching, a balanced kd-tree is
used to accelerate the searching speed. We used the closed form solution from
[17] to calculate the unit quaternion rotation vector, and rejected the outliers
from sample space if the closest distance is longer than 2 times of mean closest
distance. For our case, the shape features of the laryngeal cartilage will be a
good candidate for fast initial pose estimation. We used two crossing planes to
calculate the initial pose for fast shape matching.

3 Image Guided Medialization Laryngoplasty

The work flow of our surface registration process is shown in Figure 1 Left. There
are three major steps: surface extraction from preoperative CT data, structured
light based intraoperative surface reconstruction and ICP based point clouds
registration.

3.1 Medialization Laryngoplasty

The medialization laryngoplasty (Figure 1. Right) procedure is the thyroplasty
procedure, which is aimed at medializing the membraneous aspects of the vocal
fold. A thyroplasty implant is a patient-specific device that must be properly
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Fig. 1. Left:Work flow of surface registration, Right: Medialization laryngoplasty

aligned in reference to the underlying vocal fold and have a size and shape such
that it medializes the vocal fold and alters the vibratory characteristics of the
vocal fold to a state that most closely resembles that of the uninjuried vocal
cord.

3.2 Surface Extraction from CT Data and Phantom Model
Construction

We used visible human CT data set from NIH for our experiment. The thyroid
cartilage surface is extracted using marching cube algorithm [20]. The extracted
triangular mesh is rendered in wire frame, flat shading and texture mapping
(Figure 2. Left ). The extracted 3D surface model is converted to a solid CAD

Fig. 2. Left: Iso-surface extraction from the CT data, Right: Phantom model

model and sent to the 3D prototyping device (Stratasys FDM 3000). The pro-
totyper is capable of constructing a 3D phantom model with the accuracy of
0.1mm (Figure 2. Right).

3.3 Structured Light Based Intraoperative Surface Reconstruction

In the surgical environment, the area of scanning has non-uniform color and tex-
ture. Threshold based image segmentation could not provide accurate structured
light pattern. Similar with photometric calibration of projector and camera, one
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full-lit image and non-lit image are used to distinguish the shadow from the light
receiving areas. Another difficulty in reconstructing laryngeal cartilage surface
is the small size of anatomical structure. Usually, the structured light based sur-
face scanning is applied to rather big structures like: human faces, statues and
so on. The fully exposed larynx is about 90x50x50 mm. If the distance from
camera and laryngeal cartilage is larger than certain distance, a regular camera
with standard resolution (640X480) could not provide enough resolution. Since
the camera should not disturb the surgical procedures, there is a minimum dis-
tance requirement for the surgical environment. With this restriction in mind,
a higher resolution camera is required to provide enough accuracy for surface
reconstruction.

Structured light based surface reconstruction requires light projection device
(LCD projector) and one or more cameras. In our case, we used LCD projector
with two cameras. Since the camera to camera calibration has higher accuracy
than camera to projector calibration, we only calibrated the camera pairs and
used the LCD for illumination purpose. For the camera calibration, we used the
planar homography based camera calibration method from [21].

Left Image Right Image 

Fig. 3. Camera parameter after rectification and rectified images

After calibration, the images from two cameras are rectified to align the hor-
izontal scan lines. After rectification, the searching of pixel correspondence has
been reduced to one dimension. Furthermore, the camera internal and external
parameters are simplified. In figure 3, the P1, P2 is the camera position vector
and the R1,R2 is the cam-era rotation matrix represented by the quaternion. In
equation 1, the M1, M2 is the pinhole camera projection matrix. If we find the
pixel correspondence (O1 and O2) in left and right images, we can calculate the
real 3D position of the pixel in camera coordinate system by solving the linear
equations shown on (1).

M1 =

⎡⎣f 0 Cx1

0 f Cy

0 0 1

⎤⎦ ; M2 =

⎡⎣f 0 Cx2

0 f Cy

0 0 1

⎤⎦ ;

⎡⎣XY
Z

⎤⎦ = M−1
1

⎡⎣x1

y
1

⎤⎦ = M−1
2

⎡⎣x2

y
1

⎤⎦
(1)

From the above equation, we can easily notice that the sub-pixel accuracy in
pixel correspondence is the most critical issue in 3D reconstruction. If we only
have the pixel level accuracy, the recovered depth value will not be continuous.
So, we experimented with sub-pixel accuracy line shifting method to reconstruct



766 G. Jin et al.

the surface of thyroid cartilage phantom model. First, we searched for the peak
intensity along the horizontal scan line. Then, we used the 7 nearby pixels for
the sub pixel peak detection and calculated the 2nd order derivative for 5 pixels
around the detected peak. The sub-pixel intensity peak is calculated with zero-
crossing of 2nd order derivatives. In the sub-pixel accuracy peak detection, the
camera shutter speed, film sensitivity and projector focus simultaneously affect
the peak detection result. The preliminary experiment has indicated that: the
focus of the beam projector should focus on the laryngeal cartilage surface to
provide maximum intensity variation and the camera shutter speed needs to
be adjusted to capture the sub-pixel illumination change. If the image is over-
exposed, the peak of the light strip will spread over several pixels and as a result
the detected peak is not accurate.

3.4 ICP Based Point Clouds Registration

To register the 3D surface from preoperative CT data and the point clouds
from the structured light based surface reconstruction, we need to preprocess
the 3D surface from CT. The point clouds from the computer vision are only the
front side of the thyroid cartilage. Therefore, we need to remove the back facing
polygons from the preoperative CT surface so that the back facing polygons do
not affect the registration result. We used the surface normal to separate the
front facing and back facing polygons. In order to reduce the searching time
for the closest point matching, we used balanced k-d tree. A kd-tree is a space-
partitioning data structure for organizing points in a k-dimensional space. It
uses splitting planes that are perpendicular to one of the coordinate system axes
(Figure 4. right).

             

Fig. 4. Left: 3D model from CT and from structured light Right: 2D kd-tree

We used the point to point euclidian distance as our closest point matching
criteria. After the calculation of closest point, we rejected the outliers from sam-
ple space if the closest distance is longer than 2 times of mean closest distance.
The minimization of mean square error is only considered on inliers.

Suppose M and D are 3D point sets from preoperative and intraoprative
stages, the goal of ICP algorithm is to find the optimal rotation and translation
that minimize equation E(R, T ) =

∑
i∈M

∑
j∈D

‖ mi − (R · dj + T )‖. We used unit

quaternion Q(q0,q1,q2,q3) to represent the rotation matrix R.
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R =

⎡⎣ q20 + q21 + q22 + q23 2(q1q2 − q0q3) 2(q1q3 + q0q2)
2(q1q2 + q0q3) q20 + q22 − q21 − q23 2(q2q3 − q0q1)
2(q1q3 − q0q2) 2(q2q3 + q0q1) q20 + q23 − q21 − q22

⎤⎦ (2)

The closed form solution from [17]’s work is used to calculate the quaternion
vector. To determine the rotation vector, we first subtract center of mass posi-
tion from each point clouds set. A covariance matrix N is calculated using the
equation 3 where Sxx =

∑∑
m∗

ix ∗ d∗jx. The new quaternion vector Q is the
eigenvector of largest positive eigen value of N.

N =

⎡⎢⎢⎣
Sxx + Syy + Szz Syz − Szy Szx − Sxz Sxy − Syx

Syz − Szy Sxx − Syy − Szz Sxy + Syx Szx + Sxz

Szx − Sxz Sxy + Syx Syy − Sxx − Szz Syz + Szy

Sxy − Syx Szx + Sxz Syz + Szy Szz − Syy − Sxx

⎤⎥⎥⎦
(3)

The original ICP algorithm calculates the translation vector using the dif-
ference in the center of mass point. This is correct when the center of mass
points in preoperative and intraoperative surfaces are close. But, in our case,
the surface points from the preoperative CT consist of points that are not ex-
posed to the camera. Furthermore, the structured light based reconstruction
stage also consists of noise points. So we separated the translation calculation
from rotation calculation stage. For the translation, we used the summed average
of displacement vector of matched closest point pairs. Suppose [XM 1,YM 1,ZM1]
and [XM 2,YM 2,ZM2] is closest matching point pair from CT and structured light
based reconstruction, the new translation vector is calculated using [Tx, Ty, Tz] =
[
∑
n

(XM1 −XM2)/n,
∑
n

(YM1 − YM2)/n,
∑
n

(ZM1 − ZM2)/n].

The initial pose estimation will greatly affect the convergence speed and the
correctness of the final result. Unlike original ICP based shape matching, for the
medical image registration, the ground truth target mesh is known. The shape
features of the laryngeal cartilage will be a good candidate for fast initial pose
estimation. One important observation is that the laryngeal cartilage surface
can be approximated by two crossing planes (Figure.5). Point to plane distance
( |ax0+by0+cz0+d|√

a2+b2+c2 )is used to estimate the plane equation (ax + by + cz + d = 0).
Minimizing the sum of squared distance from point to plane will provide a plane
equation that best fit the point clouds. The center of mass of point clouds is
projected to the plane to provide the unique matching point on the plane. The
SVD based closed form solution is used to approximate the plane equation. The
plane equation is the vector associated with smallest singular value (Equation
4). Geometric description based on initial shape approximation will provide a
close initial pose estimation for the ICP method.

SS Dist =
∑
v∈M

(ax+ by + cz + d)2

a2 + b2 + c2
; SVD : D =

1
N

∑
v∈M

⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦
⎡⎢⎢⎣
x
y
z
1

⎤⎥⎥⎦
T

(4)
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Fig. 5. Approximation of the larynx with two crossing planes

4 Experiment and Result

We used Intel Xeon 3.2GHz Workstation with 2GB memory for our experiment.
For the structured light based surface reconstruction, we have experimented with
two Logitec Quickcam cameras, Nikon D70s digital cameras and LCD projector.
The surface reconstruction result with sub-pixel accuracy line shifting is show
on figure 6 and figure 7 left.

    

Fig. 6. Surface reconstruction result for phantom model

              

Fig. 7. Left: Animal bone surface reconstruction Right: Shapepriori based ICPmatching

To mimic the real situation, color dotted phantom model and animal bone are
used for the experiment. The illumination change value is calculated by dividing
the illuminated image with non-lit image. In ICP based point clouds registration,
the computation time for kd-tree construction is 94 ms. Shape priori based ICP
matching takes 515 ms to match the two point clouds with RMS error 0.9mm.
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The original ICP method with the same RMS error takes 4 sec. The final mean
square error in two matched point clouds is 0.899mm and the registration result
is shown on figure 7 right.

5 Conclusions and Future Works

In this paper, we proposed an image guided system for the medialization laryn-
goplasty. To our knowledge, this is the first attempt to apply image-guided tech-
niques to the medialization laryngoplasty. Due to the delicate nature of thyroid
cartilage surface, we could not directly use the fiducial marker based optical
tracking system for the image registration. Instead, we introduced a structured
light based stereo vision system that could be used for 3D surface reconstruc-
tion and feature tracking. We used the sub-pixel accuracy line shifting for the
3D reconstruction. To mimic the real situation, color dotted phantom model
and animal bone is used for experiment. Instead of using the absolute intensity
value, the illumination change map is used for light peak detection. To match
the 3D surface from preoperative CT and the point clouds from structured light
based reconstruction, we proposed a shape priori based initial pose estimation
combined with the ICP algorithm to register two sets of point clouds. The mean
square error of ICP based registration is less than 1.0mm. Our experimental
framework can be applied to other image guided applications. For the future
work, we will use the registration result and the projective texture mapping
techniques to render the preoperative thyroid cartilage surface and visualize the
important anatomical structures (vocal fold and airway lumens) beneath the
thyroid cartilage surface. This work is supported by a grant from the National
Institute of Health (No. R01-DC007125-0181) for developing computer-based
tools for medialization laryngoplasty.
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Abstract. This paper proposes a survey of vision-based human computer inter-
faces for several key-fields in health care: data visualization for image-guided 
diagnosis, image-guided therapy planning and surgery, the operating room, as-
sistance to motor-impaired patients, and monitoring and support of elderly. The 
emphasis is on the contribution of the underlying computer vision techniques to 
the usability and usefullness of interfaces for each specific domain. It is also 
shown that end-user requirements have a significant impact on the algorithmic 
design of the computer vision techniques embedded in the interfaces. 

1   Introduction 

The field of computer vision focuses on the development and implementation of 
algorithms which allow computers to “understand” image and video data at various 
levels depending on the task at hand. Task-oriented image “understanding” may offer 
assistance to human perception, cognition and decision-making, such as in computer-
aided diagnosis systems, or may enable more natural ways for human-computer 
interaction (HCI) in perceptual interfaces and in pervasive computing systems. Such 
vision-based technologies find promising applications in several areas of health care, 
including but not limited to image-based diagnosis and therapy planning, minimally 
invasive surgery, assistance and support for people with disabilities and elderly.    

However, HCI design for medical applications is a difficult problem. Gosbee and 
Ritchie [1] built a hierarchical model of clinician acceptance of technology in an 
attempt to identify why physicians and other care providers are reluctant to introduce 
new HCI technology in their daily work routine. Considering this model, it is 
expected that a successful integration of computer vision algorithms in health-related 
HCI should consider both user-centered and task-based design paradigms. In return, 
these paradigms influence the basic assumptions as well as the algorithmic 
development of computer vision techniques.  

This paper presents a survey of vision-based HCIs for several key-fields in health 
care: data visualization for image-guided diagnosis, therapy planning and surgery 
(section 2), the operating room (section 3), assistance to motor-impaired patients 
(section 4), and monitoring and support of elderly (section 5). The emphasis is on the 
contribution of the embedded computer vision techniques to the usability and 
usefullness of interfaces for each specific domain.  Section 6 presents a summary of 
our survey and draws conclusions.  
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2   Vision-Based Interfaces for Enhanced Data Visualization  

Computer vision algorithms for medical image analysis form four main groups with 
different scopes, as follows: a) filtering for image enhancement; b) segmentation for 
object delineation; c) analysis for feature extraction; d) image registration for multi-
modal data fusion. Recently, applications for advanced medical data visualization 
such as virtual or augmented reality systems integrate computer vision with computer 
graphics. While computer vision deals with extracting relevant information from 
images (e.g. object boundaries, interstructural distances), computer graphics focuses 
on image synthesis for creating realistic and manipulable 3D objects representing 
anatomical structures of interest. Computer vision and computer graphics techniques 
are strongly interconnected in user interfaces (UI) for data visualization. 

HCI for computer-aided diagnosis and therapy planning in clinical environments. 
In this context, a particular attention is to be directed towards the algorithmic design 
of segmentation techniques in order to meet end-user requirements collected from 
radiologists. Yet, relatively recent surveys on interactive and fully automated methods 
for medical image segmentation [2, 3] do not discuss the relevance of end-user re-
quirements for segmentation design. One may reach the surprising conclusion that the 
development of most segmentation methods is not driven by end-user requirements; 
most developers focus on improving accuracy, precision and computational speed, as 
well as on reducing the amount of manual interaction. Widely recognized validation 
protocols for medical image segmentation [4, 5] perform a strict scientific comparison 
of the performance of automatic/semi-automatic methods against manual expert seg-
mentations. Few methods search clinical feedback and conduct a usability study. Such 
a method is proposed by O’Donnell et al [6], and consists in a user-steered segmenta-
tion algorithm based on the interactive livewire paradigm [7]. Usability and usefull-
ness are investigated using feedback from radiologists on the quality of segmentation 
and on the learnability of the UI. 

Elliott et al [8] conducted one of the first systematic clinical studies for comparing 
the usefulness of two interactive segmentation methods [9] embedded in a graphical 
user interface for radiation therapy planning. Segmentation was task-oriented and 
aimed at outlining fast the target volume and organs at risk for 3D radiation treatment 
planning. The strategy in [8] for integrating segmentation algorithms into a HCI for 
radiologists’ use was to make sure that the user’s clinical knowledge is efficiently 
complemented by the segmentation algorithm. According to [8], “…automated image 
segmentation is in any case not wanted by the users. What they do want is a fast system 
(i.e. one that is faster than manual segmentation) in which the user has complete con-
trol over the results.”  Moreover, since radiologists tend to ‘think in slices’, 2D user 
interaction on a slice-by-slice basis was preferred over 3D interactive segmentation.  

Shifting from slice-based 2D to full 3D user interaction is still an open question for 
diagnosis-oriented interfaces [10], which impacts not only on computer graphics, but 
also on computer vision techniques. Possible solutions for speeding up this shift focus 
on establishing new visualization standards for 3D image interpretation by radiolo-
gists [11], and on integrating 3D in the medical training curriculum [12].  

Both 2D and 3D visualization paradigms were considered in the design of the 3D 
Slicer software and visualization platform [13], which offers a variety of tools for 
slice editing and interactive segmentation. The 3D Slicer interface is not intended for 
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clinical use, but its design considers a large diversity of user profiles including re-
search-oriented physicians.  

Research-oriented graphical interfaces. To date, there is a rich literature on algo-
rithms for 2D and 3D medical image filtering, registration, segmentation and analysis 
[14] standing proof for the significant advances in image interpretation made in the 
last decade. To increase the visibility of such new methods, an extensive open-source 
library called the Insight Toolkit (ITK) has been built [15]. The algorithms available 
within ITK are programmed into C++ classes and may be considered as building 
blocks for a variety of task-oriented applications in medical imaging. While ITK is a 
valuable resource to the Computer Vision research community, it is of limited use to 
end-users such as radiologists and surgeons, since it does not provide a graphical 
interface for image visualization. The ANALYZE software system [16] is comple-
mentary to ITK, since it provides tools for interactive visualization. Augustine et al 
[17] proposed an integration of ITK and ANALYZE, which results in a user-friendly 
graphical interface for research-oriented end-users with little programming skills. The 
main modules of this tabbed interface offer various tools for filtering, registration and 
segmentation including control windows for parametric adjustment. A fast display 
updating mechanism provides visual information about the evolution of image proc-
essing algorithms.  User error is minimized by constraining the sequential order of 
typical operations (i.e. noise reduction, edge detection, segmentation, analysis). Other 
integration efforts focused on adding dynamic visualization functionalities to ITK 
were reported by Rexilius et al [18] and Hansen et al [19]. 

Towards HCI design for collaborative and remote image analysis. Computer sup-
ported collaborative work is helpful in medical applications requiring the expertise of 
more than one physician or dedicated to clinical training. A task-oriented, collabora-
tive interface for the visualization and analysis of fetal 3D ultrasound is proposed by 
Alberola-Lopez et al [20]. Their interface allows for session-based work, therefore 
minimizing errors caused by user fatigue. In [20], segmentation and/or 3D data ma-
nipulation are performed by one user who has acquired control through a token-
grabbing paradigm; the other users are ‘listeners’ until the token is released. Text-
based information exchange is asynchronuous, therefore feedback or discussions on a 
specific graphical model can take place at any time.  The token-grabbing paradigm 
was also implemented in the Group-Slicer [21], the collaborative extension of 3D 
Slicer.  

HCI for enhanced visualization during image-guided surgery. During open surgery, 
the surgeon has direct visual access only to exposed surfaces; the limitations are even 
more severe for minimally invasive surgery. The main consequence of limited surgi-
cal visualization is the non-accuracy of the pre-operative and intraoperative geometric 
localization of the targeted lesion. Three basic user requirements for the design of 
intraoperative image guidance interfaces are defined by McInerney and Roberts [22] 
as follows: a) give visual access to the structural lesion, b) enable the surgeon to de-
fine and verify the extent of resection, and c) facilitate the protection of normal 
healthy tissue.  

While early image guidance systems used frame-based stereotaxy, frameless 
stereotactic systems provide tools for accurate navigation by relating the location of 
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instruments to preoperative, and more recently intraoperative image data. In the con-
text of frameless stereotactic image guidance systems, computer vision techniques for 
image registration and segmentation are basic steps required for precise and interac-
tive 3D rendering of the patient anatomy/physiology. An accurate stereotactic local-
ization and digitization technique based on computer vision algorithms was reported 
in Heilbrun et al [23]. Their technique used a pair of 2D images acquired from differ-
ent viewing angles with video cameras mounted on the ceiling of the operating room 
for determining the 3D location of markers seen in both images.  

All stereotactic systems require co-registration, defined as a geometric mapping 
between at least two coordinate systems corresponding to the pre-operative and intra-
operative spaces. A simple co-registration method requires known locations in both 
spaces of non-collinear points, defined either by fiducial markers or by natural land-
marks. Computer vision algorithms for medical image registration also allow for rigid 
and non-rigid surface and contour matching. Pelizzari et al proposed in [24] a non-
fiducial technique for registering MR, CT and PET brain images by matching the 
surface contour of the head. Anatomic surface curvatures may also be used for match-
ing and registration purposes, as shown by Wang et al [25].  

An interactive system for neurosurgery guidance and planning is presented in Ger-
ing et al [26]. Their system performs data fusion between various pre-operative and 
intraoperative scans by using 3D Slicer tools for image registration and segmentation. 
The system received positive clinical feedback for the graphical display of functional 
information, anatomical information, and information from contrast agents into a 
single view, as well as for the temporal data fusion. The main limitations were related 
to the surgeons’ learning curve and to the use of the same interface for planning and 
for intra-operative guidance. The vast quantity of information extracted from data 
fusion and off-line analysis was found beneficial for planning, but overwhelming and 
distracting for on-line guidance.     

In surgery guidance, image registration techniques play a central role; however, in-
traoperative image segmentation is likely to become a powerful tool in the process of 
image-guided interventions. Warfield et al [27] proposed a new intraoperative seg-
mentation framework applied to the cryotherapy of liver cancer and to neurosurgery. 
Such a framework is designed to enable the monitoring of changes in anatomical 
structures (i.e. due to tumour resection) during surgery, and to quantitatively compare 
the progress of the interventional process with the preoperative plan. 

3   Vision-Based Interfaces for the Operating Room 

Computer Vision techniques such as markerless tracking of human motion and ges-
ture recognition have been successfully integrated into perceptual user interfaces for 
applications such as video games, teleconferencing and surveillance. In particular, 
hand gesture recognition is useful for controlling the UI via command selection and 
virtual object manipulation. Surveys on hand gesture interpretation and on hand pose 
estimation are available in [28] and [29] respectively. 

Operating rooms for minimally invasive surgery (MIS) are environments which 
could significantly benefit from using non-contact, gesture-controlled human-
computer interfaces. Indeed, MIS procedures typically require computer support, and 
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standard computer peripherals are difficult to sterilize. Therefore, standard clinical 
protocols involve a human assistant who manipulates the computer display according 
to the surgeon’s commands and needs for visualization. However, the assistant-in-the-
loop approach is suboptimal and sometimes leads to frustration and prolonged time 
for performing the intervention.  

The non-contact mouse proposed by Graetzel et al [30] enables the surgeon to di-
rectly control the user interface with simple hand gestures. The non-contact mouse 
supports the “wait-and-click” and “push-to-click” paradigms by hand tracking and 
gesture classification. The gestures of interest are simple and based only on the 3D 
position of the right hand; the hand motion is mapped to pointer movement using non-
linear gains, thus allowing for quick navigation and precise control. The non-contact 
mouse was successfully tested with a mock-up medical interface in the laboratory and 
in the operating room.  

Face movement can also be used to control the user interface in MIS, as demon-
strated by Nishikawa et al [31]. They proposed a face-tracking system that controls 
the laparoscopic camera positioning according to a face movement grammar. The 
tracker works with a 3DOF face pose by assuming that during the intervention, the 
surgeon’s face remains almost parallel to and at a constant distance from the monitor 
screen. A user survey on a virtual testbed proved the usefulness of the system and its 
superiority over a voice-controlled interface; however, some tests suggested that face 
motion may distract the surgeon when performing very precise surgical actions.  

While explicit user control over the graphical interface is absolutely necessary for 
the execution of critical tasks in laparoscopy, a certain degree of automation would 
speed up the intervention by allowing the surgeon to focus more on the surgery and 
less on the interface manipulation. As reported by Grange et al [32], process automa-
tion in a medical environment has to obey strict safety rules; thus, any automated user 
interface must be overridable by the surgeon’s decision. The system proposed by 
Grange et al [32] combines gesture interpretation for explicit interaction with real-
time monitoring of the surgeon’s activity for automatically addressing some predict-
able surgeon’s needs. They identify typical modes in a user interface for endoscopy, 
and prove that the transition from one mode to another can be automated using infor-
mation from the visual tracking of the head, torso, and hands of the surgeon. The 
systems proposed in McKenna et al [33] and in Nishikawa et al [34] take a different 
automation approach by tracking instruments in the laparoscopic video instead of 
tracking the surgeon.  

Video understanding techniques have also been developed for the quantitative as-
sessment of basic surgical skills [35]. Such techniques may be good candidates for 
building multimodal HCIs which combine haptic [36] and visual information for 
evaluating laparoscopic and other surgical skills.  

4   Perceptual Interfaces for Motor-Impaired Users 

According to the Model Human Processor [37], a simple human computer interaction 
process comprises three cycles, namely perceptual, cognitive, and motor. Keates et al 
[38] proved that in standard UIs, motor impairment affects not only the motor cycle, 
but also introduces extra perception and cognitive cycles. To avoid extra cognitive 
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loads, the design of HCI for motor-impaired users must consider two alternatives: 
adapting the content of the graphical display and/or customizing input systems for 
allowing a more natural interaction. Computer Vision techniques such as real-time 
tracking of body features are suitable for implementing the second alternative.  

In Morrison and Mckenna [39], the hand motion trajectory represents a basis for 
learning and recognizing hand gestures. Their system uses HMM models to learn and 
recognize a user-defined set of simple hand gestures which replace basic commands 
in a standard web browser (back, forward, start, open, OK, refresh, cancel, and close).  

The system proposed by Betke et al [40] is able to track the motion of diverse body 
parts (nouse, eyes, chin, foot) with an algorithm based on spatiotemporal template 
matching. The body feature to be tracked can be specified by the user in the initializa-
tion phase.  The motion of the tracked feature is then mapped onto the motion of the 
mouse pointer on the screen. The system in [40] proved to be useful for interaction 
based on dynamic or static item selection by pointing without clicking.  

A binary selection paradigm in a visual UI can be controlled with eye-blinks or 
eye-brow motion, as shown in Grauman et al [41]. Applications based on eye-
blink/eyebrow-raises input do not require mouse movement, since they are entirely 
controlled by clicks. Therefore, such applications implement a scanning mechanism 
which displays one option at a time until the user selects the desired option with a 
long eye-blink or with an eyebrow-raise. The eye-blinks and eyebrow-raises are de-
tected by algorithms based on template matching and on the properties of eye motion 
during blinking.   

While web browsers and educational games are useful tools for communication 
and learning, another basic need of motor-impaired users is related to moving in their 
physical environment. Yanco and Gips [42] proved that electrode-based gaze-tracking 
can be successfully integrated in the design of intelligent wheelchairs. In Kuno et al 
[43], the user can control the motion of an autonomous wheelchair via a perceptual 
interface which detects changes in his face direction using computer vision algo-
rithms. This interaction paradigm is more natural than using the conventional joystick, 
since humans usually look in the direction they want to take. Visual information is 
collected with two video cameras, one observing the user and the other observing the 
environment. This visual information is seamlessly integrated with information from 
other types of sensors specific to autonomous vehicles in order to achieve the right 
balance between autonomous and user-defined motion. The robotic wheelchair is also 
able to observe the user at a distance, and to respond to the user’s commands by rec-
ognizing hand gestures. This option is more suitable for elderly persons with limited 
capability of walking. More information on the design of vision-based systems for the 
assistance of elderly persons is to be found in the next section. 

5   Vision-Based Intelligent Systems for Elderly Assistance 

Pervasive computing is a promising technology for supporting aging-in-place. Indeed, 
intelligent environments can assist elderly persons in a supportive and non-intrusive 
way during their daily activities. Moreover, automatic visual monitoring may detect 
abnormal harmful events such as falls, loss of balance, or suspect periods of inactivity 
possibly caused by a stroke. Sensing agents based on computer vision are unobtrusive, 
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since they can be embedded in the environment without altering it. Vision algorithms 
are able not only to extract low-level data such as the subject’s location and posture, 
but also to analyze human activities and interactions with the environment.  Fig. 1 
shows a generic vision-based monitoring system with its main modules, namely sens-
ing, decision-making, and prompting.     

However, the acceptance of vision-based monitoring in elderly health care is con-
troversial, since it raises privacy and ethical concerns. User requirements for a fall 
detector in the context of a visual monitoring system were investigated by Mckenna et 
al [44]. They found that potential elderly users received well the idea of a vision-
based monitoring system provided that images/videos are not stored or broadcast, and 
the visual input is analyzed only by a computer. Other findings in [44] were related to 
the design of the communication between the system and the faller (i.e. the prompting 
module in Fig. 1). Thus, the potential users wanted to be able to clear false alarms 
generated by the system, and also to press a button to call for help in case the fall has 
not been detected.  

A significant segment of the community-dwelling elderly population suffers from 
various degrees of decline in cognitive functions and in memory. Such persons are 
unable to complete activities of daily living (ADL) [45] such as bathing and dressing 
on their own, since they do not remember the entire sequence of steps involved in the 
activity. A technique for visual ADL monitoring and assistance was proposed in Mi-
hailidis et al [46]. This technique is applied to hand washing and integrates informa-
tion from colour-based hand tracking and tracking of step-specific objects (i.e. soap 
bar). To date, computer vision techniques face limitations in fine motion tracking and 
ADL monitoring since they are very sensitive to contextual change. Pervasive com-
puting systems such as the Aware Home project at Georgia Tech [47], the MIT’s 
House_n project (http://architecture.mit.edu/house_n) and the Intel’s Proact system 
[48] process information from various types of sensors for modelling ADLs. How-
ever, visual information plays an important role in activity recognition; indeed, [48] 
reported that hand washing is not well recognized by their system using radio-
frequency identification tags, since water and metal absorb radio waves produced by 
these tags. 

 

Fig. 1. Generic diagram of an intelligent system using a computer vision-based sensing agent 
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Visual monitoring of whole body motion finds relevant applications in systems de-
signed to detect falls and unusual inactivity caused by stroke. The methods proposed 
by Nait-Charif and Mckenna [49] and by Sixsmith and Johnson [50] are based on a 
spatial model of the home environment composed of inactivity zones and entry (high 
traffic) zones. This model is learned in [49] from the spatio-temporal trajectories of 
the tracked subject and it can be used for fall and unusual activity detection. The ap-
proach in [50] is based on a user-defined spatial map, called risk map, and monitors 
subject with infrared cameras. Depending upon the zone type, their system adjusts the 
extent of acceptable zone inactivity. A subtle motion detector is correlated in [50] to 
the inactivity monitor in order to correctly detect some motion in static activities such 
as watching TV. Cuchiarra et al [51] proposed a video-based fall detector based on 
posture estimation and remotely connected with a PDA in order to enable an audio-
video connection in case of emergency.     

Whether focused on tracking fine motion for ADL assistance or on whole-body 
motion for fall or unusual inactivity detection, vision-based monitoring systems have 
to process data and prompt the users in real-time. A significant delay between the 
occurrence and the detection of an event is critical, since it propagates to the prompt-
ing module. Mihailidis et al [46] outlined that in ADL assistance, a delayed prompting 
for the completion of a particular step will result in user confusion. A late fall detec-
tion could have even more severe implications on the health and safety of the elderly.  

6   Conclusions 

In the context of user interface design, computer vision techniques play a dual role. 
First, computer vision algorithms for medical image understanding extract informa-
tion from image data in order to provide assistance in processes such as diagnosis, 
therapy planning, and surgical navigation. Such algorithms are designed to observe 
medical images. As shown in Section 1, they may be successfully integrated in user 
interfaces for enhanced data visualization. Most important, differences in user re-
quirements result in different algorithmic designs of computer vision techniques em-
bedded in graphical interfaces, as well as in different interface design strategies. As an 
example, interactive and intuitive segmentation techniques in computer-aided diagno-
sis are preferred over automated techniques. Conversely, image-guided surgery uses 
3D models of anatomical structures built from the off-line segmentation and multi-
modal registration of the raw image data; thus, segmentation and registration are not 
controlled by the user, and may be automated. The emphasis in image-guided surgery 
is on the accuracy and reliability of the patient-specific models built from preopera-
tive data.  

A second category of HCI-related computer vision techniques are designed to ob-
serve the user and/or understand his actions. Most often, action recognition is based 
on tracking the user’s body parts. Techniques belonging to this second category are 
useful for controlling perceptual interfaces such as discussed in Sections 2 and 3. 
Moreover, human motion analysis can play an important role as input data in intelli-
gent systems for monitoring the well-being of seniors. In the design of perceptual inter-
faces, the ease-of-use and the real-time response are essential user requirements. The 
real-time response also plays a critical role in monitoring human activities for elderly 
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assistance and support. As one may expect, other user requirements are task-oriented, 
such as addressing privacy and safety concerns in visual monitoring systems.  

Computer vision techniques have already proven their usefulness for the design of 
medical research-oriented graphical user interfaces. It is expected that clinical accep-
tance will improve with advances of ‘going filmless’ in screening, diagnosis and ther-
apy planning. The use of computers for inspecting images will probably trigger the 
use of interactive tools that augment visualization and improve the speed of diagnosis 
and planning.  

Vision-based perceptual interfaces are currently among the latest trends in video 
games. As in the case of virtual reality applications, it is predictable that mature tech-
nologies and vision algorithms used in games will become transferable and/or adapt-
able to health applications such as described in Section 2 and 3. Multimodal interfaces 
integrating voice and visual recognition are also a promising alternative.    

Vision-based monitoring for elderly assistance and support faces significant techno-
logical and ethical challenges. However, integrating video information with data gath-
ered by other types of sensors, such as proposed in the design of intelligent environ-
ments can significantly improve the robustness of these systems. Respecting user re-
quirements related to the privacy of video content, and promoting social connectedness 
via audio/video communications are viable strategies in coping with ethical concerns. 
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Abstract. In this paper, we propose a maximum a posteriori formula-
tion to the multiple target tracking problem. We adopt a graph repre-
sentation for storing the detected regions as well as their association over
time. The multiple target tracking problem is formulated as a multiple
paths search in the graph. Due to the noisy foreground segmentation,
an object may be represented by several foreground regions and one
foreground region may corresponds to multiple objects. We introduce
merge, split and mean shift operations that add new hypothesis to the
measurement graph in order to be able to aggregate, split detected blobs
or re-acquire objects that have not been detected during stop-and-go-
motion. To make full use of the visual observations, we consider both
motion and appearance likelihood. Experiments have been conducted on
both indoor and outdoor data sets, and a comparison has been carried
to assess the contribution of the new tracker.

1 Introduction and Background

Multiple target tracking is a key component in visual surveillance. Tracking
provides a spatio-temporal description of detected moving regions in the scene,
this low level information is critical for recognition of human actions in video
surveillance. In the considered visual tracking problem, the observations used
are the detected moving blobs. Incomplete observations due to occlusions, stop
and go motion or noisy foreground detections constitute the main limitation of
blob-based tracking methods. We propose a tracking method that allows to split,
merge detected moving regions, as well as re-acquiring moving targets after a
stop-and-go motion.

Several problems need to be addressed by a tracking algorithm: A single mov-
ing object (e.g. one person) can be detected as multiple moving blobs. In this
case the tracking algorithm needs to ‘Merge’ the detected blobs. Similarly, one
detected blob can be composed of multiple moving objects, in this case the track-
ing algorithm needs to ‘Split’ and segment the detected blob into corresponding
moving objects. The split and merge of detected blobs has to be robust to partial
or total occlusions, as well as being capable of differentiating detected moving
regions of nearby objects. Stop-and-go motion, or non-detection due to similarity
of the object to the background may require the tracker to re-acquire the target.
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Moveover, the detected blobs could be due to erroneous motion detection. Here
the tracking algorithm needs to filter these observations in presence of static or
dynamic occlusions of the moving objects in the scene. Finally the number of
moving objects in the scene vary as new moving objects enter or leave the field
of view of the camera.

A large number of tracking algorithms have been developed in the past decades.
Several data association tracking algorithms have been proposed ranging from a
simple nearest neighbor association to the complex multiple hypothesis tracker
[8][7]. The Probabilistic data association (PDA) method [13], which is considered
a good compromise between performance and complexity, uses a weighted aver-
age of all the measurements within the tracks’ validation gate [14] to estimate the
target state. The PDA method deals with multiple targets as independent objects
in term of observations, and therefore less suitable for addressing the situations
where multiple observations correspond to a single target and vice versa. JPDAF
[6] is an extension of the PDA, where the measurement of target association prob-
abilities is evaluated jointly across the targets. The Multiple Hypothesis Tracker
(MHT) tracking algorithm was first developed by Reid [7] and propagated multi-
ple hypotheses in time. The ranking of the hypotheses requires evaluating over all
existing hypotheses and thus pruning and merging were used to reduce the set of
hypothesis to a manageable size.

Most of existing data association algorithms cannot address the merge or
split of the observations for an accurate estimation of the target state. The
multiple hypothesis trackers are the most widely used, however these methods
assume a one-to-one mapping between observations and targets. An attempt to
extend these frameworks to merge and split behaviors was proposed in [15], which
introduced the concept of virtual measurement to represent the splitting and
merging of detected regions. However, the association was inferred using a brute
force method. [16] performs a multi-object segmentation using a probabilistic
pixel classification algorithm which uses the appearance model to calculate the
likelihood of a pixel to belong to a particular object. An iterative approach
then finds the front-most model first and deletes it from the foreground object
and then fits the second object. [17] defines an occlusion relation parameter for
addressing the blob splitting problem.

In this paper, we formulate the multiple target tracking problem as a max-
imum a posteriori (MAP) problem. We expand the set of observations with
hypothesis added by merge, split and mean shift operations, which are designed
to deal with noisy foreground segmentation due to occlusion, foreground frag-
ment and missing detection. All these added hypotheses will be validated during
the MAP estimation. The remainder of this paper is organized as follows: In
Section 2, we present the MAP formulation for multiple target tracking problem
and the considered motion and appearance likelihood models. In Section 3 we
describe our proposed multiple hypothesis method with merge, split and mean
shift operations. In Section 4, we present experimental results obtained on real
video surveillance sequences and discuss the proposed method. In Section 5 we
conclude the paper.
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2 Multiple Target Tracking Formulation

In a multiple target tracking problem, the objective is to track multiple target
trajectories over time given a set of noisy measurements provided by a mo-
tion detection algorithm. The observations considered are blobs that cannot be
regarded as punctual observations, and furthermore, the targets position and
velocities are automatically initialized and do not require operator interaction.
The detector usually provides image blobs which contain both the estimated lo-
cation, size and the appearance information as well. Within any arbitrary time
span [0, T ], there are K unknown number of targets in the monitored scene. Let
yt = {yi

t : i = 1, ..., nt} denote the observations at time t, Y = ∪t∈{1,...,T}yt is
the set of all the observations within the duration [0, T ]. The multiple target
tracking can be formulated as finding the set of K best paths {τ1, τ2, · · · , τK}
in the temporal and spatial space, where K, represents the number of moving
objects or targets in the scene and this number is unknown. We denote a track
by the set of its observations: τk = {τk(t) : t ∈ [1, T ]} where τk(t) ∈ yt represents
the observation of track τk at time t.

We utilize a graph representation G =< V,E > of all measurements within
time [0, T ]. The graph is a directed graph that consists of a set of nodes V = {yk

t :
t = 1, · · · , T, k = 1, · · · ,K}. We also consider one special measurement of y0

t to
represent the null measurement at time t which corresponds to missed detections.
A directed edge (yi

t1 , y
j
t2) ∈ E, t1 < t2 is defined between two nodes based on

proximity and similarity of the corresponding detected blobs. The weight or cost
associated to an edge will be computed using to motion and appearance models
described in the following paragraphs. To reduce the amount of edges defined
in the graph we consider only edges for which the weight or cost (motion and
appearance) between two nodes is more than a pre-determined threshold. An
example of such a graph is shown in Fig. 1. At each time instant, there are mt

observations. The one which doesn’t belong to any track represents a false alarm.
The shaded node represents a missing observation, inferred by the tracking.

We formulate the multiple target tracking problem as a MAP problem, given
the observations over time find K best paths τ∗1,··· ,K through the graph G, as
follows:

τ∗1,··· ,K = argmax(P (τ1,··· ,K |Y )) (1)

The posterior of the K best paths can be represented as the observation likeli-
hood of the K paths and the prior of the K paths as in [2]. A prior distribution
model of P (τk : k = 1, · · · ,K) widely used in data association algorithms [5,6],
is represented as follows:

P (τ1,··· ,K) =
T∏

i=1

p
T i

m

d (1 − pd)K−T i
mp(F i

m) (2)

where T i
m is the number of measurements associated to the tracks and F i

m is
the number of measurements not associated to the tracks. p(F i

m) is a Poisson
distribution of F i

m, and pd denotes the detection rate which can be estimated



786 Y. Ma, Q. Yu, and I. Cohen

Fig. 1. Graph representation of measurements

from prior knowledge of the detection procedure. By introducing this prior, the
posterior of the unknown K paths can be represented as:

P (τ1,···K |Y ) ∝ P (Y |τ1,···K)P (τ1,···K) (3)

The K paths multiple target tracking can be extended to a MAP estimate as
follows:

τ∗1,···K = argmax(P (Y |τ1,···K)P (τ1,···K)) (4)

Since our measurements are image blobs, beside position and dimension (width
and height) information, an appearance model is considered in the proposed
traking method. To make full use of available visual cues, we consider both
motion and appearance likelihood measures. By assuming that each target is
moving independently, the joint likelihood of the K paths over time [1, T ] can
be represented as:

P (Y |τ1,···K) =
K∏

k=1

Pmotion(τk(1), · · · , τk(T ))Pcolor(τk(1), · · · , τk(T )) (5)

The joint probability is defined by the product of the appearance and mo-
tion probabilities. This probability maximization approach is inferred using the
Viterbi algorithm [10].

Motion Model. We consider a constant velocity motion model in the 2D image
plane and 3D ground plane. We denote xk

t the state vector of the target k at time
t to be

[
lx, ly, w, h, l̇x, l̇y, lgx, lgy, l̇gx, l̇gy

]
(location, width, height and velocity in

2D image, and location on the ground plane). We consider a linear kinematic
model:

xk
t+1 = Akxk

t + wk (6)
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wherexk
t is the state vector for the target kat time t,Ak is the transition matrix and

we assumewk to be normal probability distributions,wk ∼ N(0, Qk).Hereweuse a
constant velocity motion model. The observation yk

t = [ux, uy, w, h, ugx, ugy] con-
tains the measurement of a target position and size in 2D image plane and position
on 3D ground plane. Since observations often contain false alarms, the observation
model is represented as:

yk
t =

{
Hkxk

t + vk

δt

if it belongs to a target
false alarm (7)

where yk
t represents the measurement which may arise either from a false alarm

or from the target, and δt is the false alarm rate at time t. We assume vk to be
normal probability distributions, vk ∼ N(0, Rk).

The measurement is modelled as a linear model of current state if it belongs
to a target otherwise it is modelled as a false alarm δt, which is assumed to be
a uniform distribution.

Let τ̂k(ti) denote the a posteriori state estimate and P̂t(τk) the a posteriori
estimate of the error covariance matrix of τk at time t. Along a track τk the
motion likelihood of one edge (τk(t1), τk(t2)) ∈ E, t1 < t2 can be represented as
Pmotion(τk(t2)|τ̂k(t1)). Given the transition and observation model in Kalman
filter, the motion likelihood then can be written as:

Pmotion(τk(t2)|τ̂k(t1)) =
1

(2π)3/2 det(P̂t2(τk))
exp

(
−eT P̂−1

t2 (τk)e
2

)
(8)

where e = yk
t − HAt2−t1 τ̂k(t1) andP̂t2(τk)can be computed recursively by a

Kalman filter as P̂t2(τk) = H(AP̂t2−1(τk)AT +Q)HT +R.

Appearance model. The tracking of each region relies on the kinematic model
described above, as well as on an appearance model. The appearance of each
detected region is modelled using a non-parametric histogram All RGB bins are
concatenated to form a one dimension histogram. The appearance likelihood
between two image blobs (τk(t1), τk(t2)) ∈ E, t1 < t2 in track k, is measured
using the a symmetric Kullback-Leibler (KL) divergence defined as follows.

Pcolor(τk(t2)|τ̂k(t1)) =
1
2

∑
c=r,g,b

(Pi(c) − Pj(c)) log(
Pi(c)
Pj(c)

) (9)

Other appearance models such as [9][11] can be used by this framework as well.
Given the motion and appearance models, we associate a weight to each edge

defined between two nodes of the graph. This weight combines the appearance
and motion likelihood models presented in the previous paragraphs.

In Eq.7 and Eq.9, we assume the state of target at time t is determined by
the previous state at time t − 1 and the observation at time t is a function of
the state at time t alone, i.e. Markov condition. Thus the joint likelihood of K
paths in Eq.5 can be factorized as follows:
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P (Y |τ1,···K) =
K∏

k=1

T∏
(t1,t2)∈τk

Pmotion(τk(t1)|τ̂k(t2))Pcolor(τk(t1)|τ̂k(t2)) (10)

where (τk(t1), τk(t2)) represents the edge in the track k.

3 Augmented Graph Representation for Multiple
Hypothesis Tracker

Most multiple target tracking algorithms [1][8][4] assume that no two paths pass
through the same observation. This assumption is reasonable when considering
punctual observations. However, this assumption is usually violated in the con-
text of visual tracking problem, where the targets cannot be regarded as points
and the inputs to the tracking algorithm are usually image blobs. In the follow-
ing paragraphs we present an extension of the PDA framework to handle split
and merge behaviors in estimating the best paths.

3.1 Merge and Split Hypothesis

The proposed merge and split behaviors correspond to a recursive association of
new observation, given estimated trajectories. At given time instant t, we have
obtained K best paths which are denoted as [τ t

1, · · · , τ t
K ]. Using this estimated

tracks, we can evaluate how the mt+1 observations {yi
t+1 : i = 1, ...,mt+1} at

time t + 1 fit the estimated tracks which end at time t. The spatial overlap
between estimated state at instant time t and new observation will considered
as a primary cue and we consider the following two cases:

– If the prediction of τ̄ t
k(t+ 1) has a sufficient spatial overlap with more than

one observation at time t + 1. This will trigger a merge operation which
merges the observations at time t + 1 into one new observation. This new
observation carrying the merge hypothesis will be added into the graph. The
merge operation is illustrated in Fig.2(a).

– If the predicted positions and shapes of more than one track spatially overlap
with one observation y∗t+1 at time t+1. The set of candidate tracks is κ,|κ| >
1. This will trigger a split operation, which splits the node y∗t+1 into several
observations. These observations, which encode the split hypothesis, will be
added to the observations set at time t+ 1. The split operation proceeds as
follows: for each track τ t

k in κ whose prediction has a sufficient overlap with
y∗t+1:
• Change the predicted size and location at time t + 1 to find the best

appearance score sk = Pcolor(τ̄
t
k(t+ 1), y∗t+1);

• Create a new observation node for the track with the largest sk and add
it to the graph;

• Reduce the confidence of the area occupied by the newly added node
and recompute the score sk for each track left in κ;

Iterate this process until all candidate tracks in κ that overlapped with the
observation y∗t+1 are tested. The split operation is illustrated in Fig.2(b).
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(a) Hypothesis added by merge
operation

(b) Hypothesis added by split op-
eration

Fig. 2. Merge and split hypothesis added to the graph

3.2 Mean Shift Hypothesis

Noisy segmentation of the foreground regions often provides incomplete obser-
vations not suitable for a good estimation of the position of the tracked objects.
Indeed, moving objects are often fragmented, several objects are merged into a
single blob, and regions are not detected in the case of stop-and-go motion.

We propose to incorporate additional information from the images for improv-
ing appearance-based tracking. Since at each time t, we have already maintained
the appearance histogram of each target, we introduce the mean shift operation
to keep track of this appearance distribution when the motion blob does not
provide good enough input. Mean shift method [12], which can be regarded as
a mode-seeking process, was successfully applied to the tag-to-track problem.
Usually the central module of mean shift tracker is based on the mean shift iter-
ations to find the most probable target position in the current frame according
to the previous target appearance histogram. In our multiple target tracking
problem, if a reliable track is not associated with a good observation at time
t, due to a fragmented detection, non detection or large mismatch in size, we
instantiate a mean shift algorithm to propose the most probable target position
given the appearance histogram of the track. Note that the histogram used by
mean shift is established using past observations along the path (within a sliding
window), instead of using only the latest one. Using the predicted position from
mean shift, we add a new observation to the graph. The final decision will be
made by considering all the observations in the graph. To prevent the mean shift
tracking from tracking a target after it leaves the field of view the mean shift
hypothesis is considered only for trajectories where the ratio of real node to the
total number of observations along the track is larger than a threshold.

4 Experiment Results

In the considered experiments we used a sliding temporal window of 45 frames
to implement our algorithm as an online algorithm. The graph contains the
observations between time t and t+ 45. When new observations are added into
graph, the observations are older than t will be removed from the graph.
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(a) Tracking result with merge operation when foreground regions fragment

(b) Tracking result with split operation when foreground regions merge

(c) Tracking result with mean shift operation when missing detection happens

Fig. 3. Experiment results of Merge and split hypothesis added to the graph

We tested our tracking algorithm on both indoor and outdoor data sets. The
data considered were collected inside our lab, around the parking lots and other
facilities at Honeywell. In the considered data set a large number of partial or
complete occlusions between targets (pedestrians and vehicles) were observed. In
the experimental tests conducted, the input considered for the tracking algorithm
were the foreground regions and the original image sequence. We have tested the
accuracy of the proposed tracking algorithm and have compared it to classical
PDA without the added merge, split and mean shift hypothesis.

Fig.3 shows the data sets with tracking results overlaid and the foreground
detected. Due to the noisy foreground segmentation, the input foreground for
one target could have multiple fragment regions, shown in Fig3.(a). In the case
where two or more moving objects are very close to each other, we may have
a single moving blob for all the moving objects, shown in Fig.3(b). The case
that targets merge into background is shown in Fig.3(c). Given the homography
between the ground plane and the image plane, the targets can be tracked on
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Fig. 4. Tracking targets using ground plane information. Left, estimated trajectories
are plotted in the 2D image. Right, the positions of the moving people in the scene are
plotted on the ground plane.

the 3D ground plane, shown in Fig.4. Without any code optimization, the time
performance of our online tracking algorithm with 45-frame sliding window is
close to real time (15-20 fps for 3-5 targets) on a P4 3.0Hz.

5 Conclusion

In this paper, we presented a method for multiple targets tracking in video
surveillance. If we partition the application scenarios into easy, medium and
difficult cases, most of the existing tracking algorithms can handle the easy
cases relatively well. However for the medium and difficult cases, multiple targets
could be merged into one blob especially during the partial occlusion and one
target could be split into several blobs due to noisy background subtraction. Also
missed detections happen often in presence of stop and go motion, or when we
are unable to distinguish foreground from background regions without adjusting
the detection parameters to each sequence considered.

We have introduced a mechanism based on of multiple hypothesis which ex-
pands the solution space. The proposed formulation of multiple target tracking
problem as a maximum posterior(MAP) and the expanded set of hypothesis
by considering merge, split and mean shift operations is more robust. It deals
with noisy foreground segmentation due to occlusion, foreground fragments and
missing detections. Experimental results show good performance on tested data
sets.
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Abstract. Reproducing realistic facial expressions is an important challenge in
human computer interaction. In this paper we propose a novel method of mod-
eling and recovering the transitions between different expressions through the
use of an autoregressive process. In order to account for computational complex-
ity, we adopt a compact face representation inspired from MPEG-4 standards
while in terms of expressions a well known Facial Action Unit System (FACS)
comprising the six dominant ones is considered. Then, transitions between ex-
pressions are modeled through a time series according to a linear model. Explicit
constraints driven from face anthropometry and points interaction are inherited in
this model and minimize the risk of producing non-realistic configurations. To-
wards optimal animation performance, a particular hardware architecture is used
to provide the 3D depth information of the corresponding facial elements during
the learning stage and the Random Sampling Consensus algorithm for the robust
estimation of the model parameters. Promising experimental results demonstrate
the potential of such an approach.

1 Introduction

Facial expressions are a critical aspect of inter-human communication and provide a
good basis for understanding emotional conditions. Such understanding can be associ-
ated with certain geometric deformations of a neutral expression that can vary signifi-
cantly across subjects. Realistic reproduction of emotions is a critical aspect of human-
computer-interaction with numerous applications like games, e-learning, etc.

The aim of this paper is produce an anthropometric mathematical framework capa-
ble of explaining the deformations of one expression to another through a combination
between prediction and image-driven stereo inference. Such problem has been active
in the area of computer vision for almost three decades now. In 1972, the first facial
model was introduced [14], a purely 2D approach that was based on a polygonal ap-
proximation of the face on which emotion frames/representations have been extracted
and used as key-frames of animations through interpolation. Such a method requires
storing different face expressions as key-frame and assumes that direct interpolation
between such expressions can produce realistic animations. More advanced methods
to facial modeling assume dense facial models like deformable meshes [11,5]. Such
models aim to introduce the notion of muscle contraction simulation through the use of
spline-based parameterization [15], free form deformations [13], etc... Other methods
have considered the use of biomechanical facial models. Such models are then cou-
pled with stereo data determined either through reconstruction from multiple views [7]
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or using laser/range scanners. An alternative refers to the use of 3D Morphable Mod-
els [2,12], combined with the well known 2D Active Appearance Model [4] introduce
2D+3D Active Appearance Models [16]. However such methods are expensive in terms
of complexity.

Once models have been learnt, understanding facial expressions becomes a param-
eter estimation problem between the obtained geometry and the model expressing a
neutral facial condition. These methods suffer from being computationally expensive
because of the complexity of the model as well as due to the difficulty of obtaining
dense stereo information from multiple images. In order to address such limitations,
the idea of face modeling through a number of key 3D points was considered. The
well-known MPEG-4 [1,9] introduces a parameter coding for 3D face synthesis and
animation. It permits to animate a downloaded face model using a very low bandwidth.
However such a model still suffers from explicit interpolation between states often lead-
ing to unrealistic geometric and photometric animations.

In this paper we propose a novel approach for facial expression reproduction as well
as facial animations. Such a method reformulates expression in the form of time series
where transition between different expressions is modeled through an autoregressive
matrix. In order to overcome limitations related with dense stereo estimation, we con-
sider a variant of the MPEG-4 facial model. Such a model is coupled with a prediction
mechanism where anthropometric constraints are explicitly introduced to account for
facial geometric properties (symmetry, etc.) and points interaction exploited to improve
the emotion reality. Markers are used to obtain a training set where reconstruction and
depth estimation for the key points is feasible. Last, but not least, Random Sampling
Consensus and robust regression is used to account for the presence of outliers as well
as errors in the reconstruction.

The reminder of this paper is organized in the following fashion. In section 2 we
detail the facial model and we present the acquisition process. The autoregressive an-
imation framework is presented in section 3. Experimental results and validation are
part of the later section.

2 Anthropometric Model and Facial Expressions

Understanding facial expressions consists of estimating a number of parameters that
explain the current state of the face model. Such an action requires on one hand the
definition of a neutral state for the face, and on the other hand the range of parameters
explaining the different expressions. The selection of the model is critical in this process
in terms of performance quality and computational cost. Since the aim of our paper is
the understanding of facial expressions, one can conclude that a compromise between
complexity and performance is to be made aiming a model that is able to capture the
most critical deformations.

We adopt the MPEG-4 standard model to represent faces [1]. MPEG aimed in an
audio and video coding representation where its MPEG-4 version is extended to multi-
media including images, text, graphics, 3-D scenes, etc ... and particularly face and body
animation. Such a model consists of 205 degrees of freedom as shown in [Fig. (1.i)] and
is able to capture expressions. It consists of introducing the neutral state through a set of
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(i) (ii)

Fig. 1. (i) MPEG-4 face model using a number of control points positioned with aim to cap-
ture and reproduce facial animations, (ii) simplified MPEG model towards understanding facial
expressions

Features Points (FPs). The model is still quite complex while the estimation of the ac-
tual positions of the control points through image inference is being quite problematic.
We further simplify such a model using a smaller number of control points positioned
in critical aspects of the face [Fig. (1.ii)]. Such a simplification is guided from repre-
sentation of expressions using geometric deformations as well as hardware acquisition
constraints, leading to a model that consists of 114 degrees of freedom and refers to a
simple 3D polygonal approximation of the face.

2.1 Modeling Facial Expressions

Paul Ekman and Wallace F. Friesen, designed in 70’s a muscle-based [6] Facial Action
Units System (FACS) to help human observers in depicting facial expression using a
verbal way. Such a system includes 44 Actions Units (AU) (inner brow raiser, lower lip
depressor, etc . . . ), expressing all possible facial movements (comparable to phonemes
in speech). Each of them is related to the contraction of one or several muscles and each
facial expression can be described as an activation of one or a set of AUs.

An alternative to muscle-based understanding of facial expressions through AU is
a description according to geometrical changes of the face. Such an approach is more
tractable and reformulates expression understanding in more technical fashion. To this
end, several geometric models have proposed with the MPEG-4 standard and its fa-
cial animation parameters (FAPs) ([1] and [9]) being the most popular [Fig. (2)]. Such
an animation mechanism consists of set of (FPs) associated with a set of FAPs, cor-
responding to a particular facial action deforming a face model. A MPEG-4 client is
so able to animate FPs of a downloaded face model using compressed FAPs. MPEG-4
standard provides some hints for FPs location on a neutral face, as equality (FP 4.3,
the uppermost point of the left eyebrow, is defined as the midpoint between FPs 4.1
and 4.5, left eyebrow corners, in the upper eyebrow contour, such as 4.3x = 4.1x+4.5x

2 )
or inequality (11.3x > 4.3x supposed that 11.3 point x-coordinates is greater than 4.3
point x-coordinates). These constrains are specified in [Tab. (1)].

One of the most important limitations of such a model is the lack of anthropometric
constraints. Indeed the most obvious physiognomy constraints is the face symmetry.
Even if a face is not exactly symmetric, considering the 6 basic emotions defined in Fig.
2, the movements of FPs are rather symmetric with certain errors that are not critical.
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(1) (2) (3)

(4) (5) (6)

Fig. 2. (1) Anger, (2) Disgust, (3) Fear, (4) joy, (5) Sadness, (6) Surprise. Those six emotions are
expressed according to Ekman and Friesen’s work.

We assume that when expressing joy, if the left corner of the mouth goes up and the
right corner goes up too, with the same intensity. The correspondence of symmetric
FPs are defined in the last column of [Tab. 1]. Furthermore, one can see that motion
vertical direction is often far more important than the one observed in the horizontal
one. Therefore additional constraints are introduced in the vertical direction aiming to
minimize the risk of erroneous estimation. To this end, as it seems that some points are
correlated to each other, or in other words, have similar movements, it is judicious to
exploit this observation to add those new constraints to our model. The displacement
of a point is so computed relatively to the more correlated points. This novel approach,
with more constraints, gives more robustness to our model.

Once such a model has been considered, the next step consists of the acquisition
of training data that could be used in a learning stage towards reproducing transitions
between expressions. Our acquisition process can be decomposed in three stages: prepa-
ration, capture, reconstruction.

2.2 Acquisition System for Learning Data Set

Once the face model (or rather Feature Points and their position) is defined, the FPs are
projected using a projector on the face, while the head is placed in an adjustable tubes
frame (See Fig. 3). This permits to place the markers, exactly at the same place at each
capture session with the same person.

Then, to obtain a 3D data set, a classical stereo system is used. The cameras are ”one
above the other” (one camera gives a straight-on viewpoint and the other a low angle
viewpoint). It permits to keep the face symmetry and avoids hidden parts, particularly
around the nose. Video are captured at the frame rate of 50 fps.

The reconstruction stage begins by landmarks tracking using meanshift tracking al-
gorithm based on color similarity [3]. After FPs positions and correspondences are
known in both images, classic 3D reconstruction from images [7] is used to compute
FPs 3D positions, i.e. knowing points position m and m′ in both images , pointM 3D
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Table 1. Recommended location constraints for few FPs on a face model 1 in term of coordinates
and new symmetric constraints

# Description Constraints recommended by
MPEG-4

Symmetric
point

4.1 Right corner of left eyebrow 4.2
4.2 Left corner of right eyebrow 4.1
4.3 Uppermost point of the left eye-

brow
x = (4.1x + 4.5x)/2 4.4

4.4 Uppermost point of the right
eyebrow

x = (4.2x + 4.6x)/2 4.3

4.5 Left corner of left eyebrow 4.6
4.6 Right corner of right eyebrow 4.5
11.1 Middle border between hair and

forehead
11.2 Right border between hair and

forehead
x < 4.4x 11.3

11.3 Left border between hair and
forehead

x > 4.3x 11.2

Fig. 3. Training data set acquisition set-up using a projector and markers

coordinates can be recover resolving the equations : m = PM ansm′ = P ′M , where
P and P ′ are matrices projection of both cameras. An overview of the system is given
in Fig. 3.

3 Inference Between Observations and Auto Regressive Animation
Models

Building predictive models is equivalent with expressing the state of a random variable
X(t) in time as a function of the previous system using a linear or a non-linear model:

X(t) = G(X(t − k); k ∈ [1, p]) + η(t) (1)

with p known to be the order of the model and η a noise model that is used to describe
errors in the estimation process. Such a process can be decomposed in a learning stage
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and a prediction step. In the first step, given a set of sequences of observations and the
selection of the prediction mechanism we aim to recover the parameters of this function
such that for the training set, the observations meet the prediction.

The Auto Regressive Process (ARP) permits to solve the problem of predicting
objects position in time and is able to model the temporal deformation of a high-
dimensional vector. In the context of this paper, such a vector corresponds to the posi-
tion of the face control points. For this first approach, we assume that a linear system
can express the transitions between expressions, where a finite ARP consists of:

X(t) = H ·

⎡⎢⎣Xt−1

...
Xt−p

⎤⎥⎦+ η(t) (2)

where H is often called the prediction matrix. In the case of transitions between facial
expressions, we consider a simple linear model that assumes a linear behavior in time
leading to the following expression,

X(t) =
p∑

k=1

HkXt−k + η(t) (3)

In order to obtain invariance to pose/depths changes, we first determine a rigid trans-
formation (global translation, rotation and scale) between the current and the previous
states of the model to a reference 3D configuration, the neutral face. Since explicit cor-
respondences between the control points of the face are attainable the estimation of
such a transformation can be done in a straightforward fashion. In order to account
for outliers (important motion due to certain facial expressions), a robust error metric
(M-estimator [10]) is used along with the Euclidean distance between 3D points:

inf
Ti

n∑
k=1

ρ(|Xk − Xk
i,T |) (4)

with k being the degrees of freedom of the model and ρ a robust estimator. The calculus
of variations of such a cost function will lead to a linear system guiding the estimation
of the transformation T . Once such parameters have been defined the next task consists
of determining the actual pose-invariance prediction matrix. It is natural to assume that
displacements in the different axes are relatively independent. Furthermore, given that
the number of frames needed to transit from one expression to another is relatively
small (4-6), we consider a low order AR model (order 1). These assumptions lead to
the following simplified AR model

X(t) = Hx · Xt−1 + ηx(t)
Y(t) = Hy · Yt−1 + ηy(t)
Z(t) = Hz · Zt−1 + ηz(t)

(5)

Let suppose now N FPs, considering each FP separately, it is possible to compute the
position as a linear combination of the same point at previous time. This means that
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Hx, Hy and Hz are N × N diagonal matrices. Such an assumption does not encode
certain facial geometric constraints like symmetry, therefore certain modifications on
the form ofHx,Hy andHz could be considered to introduce such conditions.

Towards introducing explicit constraints driven from the facial geometry in vertical
direction, we separate the face points in two regions : the upper face and the lower face.
One can assume that points in each region are correlated. Mouth points movements
influence jaw movements and eyebrow movements influence forehead movements. In
both regions and for each emotion, correlation coefficients between points displace-
ments are computed. If the correlation coefficient between two points i and j is greater
than a threshold τ , the points are assumed to be correlated, and they are mutually de-
pendent during the displacement calculation process. This correlation can be modeled
within the autoregressive model as follows :

Hy(i, j) =

⎧⎨⎩1 + U(μi,j)di,j
N
j=0 U(μi,j)

if i = j

U(μi,j)di,j
N
j=0 U(μi,j)

otherwise
where U(μi,j) =

{
μi,j if μi,j > τ
0 otherwise

(6)

andHy(i, j) is the matrix Hy element at the ith line and jth column, μi,j is the corre-
lation coefficient between point i and point j, di,j is the point i displacement between
time t and time t+ 1 according to point j position at time t.

Then, prediction is projected in symmetric and MPEG-4 constraints space, intro-
duced in section 2.1 and specified in [Tab. (1)]. One can assume that when two points
are symmetric, they have the same displacement in y and z-direction while they move
in opposite directions in the x-axis. So, considering two points i and j, their move-
ments are modelized by the ith line Hi and the jth line Hj in modelization matrices.
Supposing i and j are symmetric, the line Hi and the lineHj become :

Ĥx
i =

Hx
i −Hx

j

2
and Ĥx

j =
−Hx

i +Hx
j

2
(7)

while the ith and jline in Hy and Hz are replaced by their mean. The same way to
proceed is used with MPEG-4 constraints. Considering three points i, j and k, such as
k is in the middle between i and j on horizontal axis, the kth lineHx

k become the mean
of the lines Hx

i and Hx
j . Those equations are used in parameter estimation step to add

constraints to the model.

3.1 Parameter Estimation

There are several methods to perform inference for the parameters Hk,such as k =
1, . . . , p as the Euler-Lagrange equations, the Yule-Walker estimation, the Levinson-
Durbin algorithm, etc ... In the context of our approach one can observe that the es-
timation process is over-constrained. Furthermore, due to the simplistic nature of the
model capturing the most important parameters of the animation process cannot be
done through global least-square estimators.

The RANdom SAmple Consensus (RANSAC) algorithm is chosen to estimate ARP
parameters. The RANSAC algorithm is based on the assumption that data set is made
of ”inliers”, which can explain the model, and ”outliers” which don’t fit the model. It is
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(1) (2) (3)

(4) (5) (6)

Fig. 4. Error during the sequence in L2 norm. (×) : x-coordinates, (◦) : y-coordinates, (∗) : z-
coordinates, in black mean of the 3 coordinates. (1) Anger, (2) Disgust, (3) Fear, (4) joy, (5)
Sadness, (6) Surprise.

Table 2. Mean error in L2 norm for a point in pixel in function of face zone and emotion

Anger Disgust Fear Joy Sadness Surprise

Front 7.1 7.4 11.8 7.4 9 10.6
Eye brows 7 7.2 13.7 6.1 7.7 12.3
Eyes 3.9 5.8 9.1 4.6 4.5 8
Nose 3.9 4.2 8.6 5 3.7 6.6
Smiling wrinkles 3.5 4.5 5 7.8 3.6 5.9
Mouth 3.4 5.1 4.9 4.9 6.3 6.7
Jaw 3.5 4.5 5.7 5.7 7 5.6
Ears 1.9 3.6 3.1 3.4 4.5 4.9

particularly suitable in this case considering people don’t express facial emotion with
the same intensity and speed, and one can’t really define when an emotion begins and
when it ends. The RANSAC algorithm was proposed by Fischler and Bolles in [8].
Model parameters are estimated using a random subset of the dataset, supposed to be
inliers. These parameters are then validated using the the rest of the data set, and the
configuration leading to the lowest inference error between the model and the entire
training set is retained.

Our adapted version consist of computing the ARP parameters Hx, Hy and Hz

according to the randomly defined subset of the data set (3D points coordinates during
the emotion expression process) to obtain first N × N matrices, taking into account
correlation constraints. Then, the prediction is projected in the symmetric and equality
constraints space as described in [Tab. (1)]. Towards improving model performance, the
acceptance criterion on one hand consists of the approximation error while at the same
time such a solution should satisfy the inequality constraints as defined in [Tab. (1)].
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(1) (2) (3)

(4) (5) (6)

Fig. 5. Last frame of the sequence. In gray thin line, real model, in black thick line, estimated
model. (1) Anger, (2) Disgust, (3) Fear, (4) joy, (5) Sadness, (6) Surprise.

4 Conclusion and Discussion

In this paper we have proposed a new method to model and reproduce realistic facial
emotions. Our method is based on a compact face representation driven from the MPEG
standards, and aims on reproducing facial animations through anthropometric predic-
tion models. To this end, explicit geometric constraints on the facial form are used to
determine the form of the prediction function. Robust estimation to account for global
depth changes, as well as for the presence of outliers through the use of RANSAC are
introduced to determine the parameters of such a function. Promising experimental re-
sults using a small number of control points to represent the face as well as simple
predictive mechanisms demonstrate the potentials of our approach.

In order to validate the proposed method, 6 expressions were used, using four dif-
ferent subjects. On the first three subjects, parameter learning by inference was per-
formed, while on the last subject the predictive mechanism was used to reproduce the
intermediate states of animation. Euclidean distances between the control points among
expressions were used to determine a quantitative validation measure as shown in [Tab.
(2)] while the face configuration as determined from the model next to actual one is pre-
sented in [Fig. (5)] for a qualitative evaluation of the obtained results. Furthermore, the
evolution of the prediction error for all coordinates spaces is shown in [Fig. (4)]. While
one can claim that the errors seem acceptable, we can also observe that the method
mostly fails on the upper face area. Furthermore, due to the linearity of the model as
well as the relatively low order, the method seems to underperfom when important non
uniform motion is observed along frames.

Future work consists of automating the acquisition process. In the current state mark-
ers is used to determine correspondences. Learning 2D as well as 3D patches corre-
sponding to the geometry and appearance of these points could automate the process.
Furthermore, non-linear models of transitions are to be investigated towards more ef-
ficient capturing of transitions. Last, but not least the use of HMMs towards a more
complete probabilistic animation schema could improve the performance of the method
in a qualitative fashion.
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Abstract. Reproducing high quality facial expressions is an important challenge
in human-computer interaction. Laser-scanners offer an expensive solution to
such a problem with image based alternatives being a low-resolution alternative.
In this paper, we propose a new method for stereo reconstruction from multiple
video pairs that is capable of producing high resolution facial models. To this
end, a combinatorial optimization approach is considered and is coupled in time
to produce high resolution depth maps. Such optimization is addressed with the
use of graph-cuts leading to precise reconstruction of facial expressions that can
then be used for animation.

1 Introduction

Facial expressions play a fundamental role in inter-human communication and are a
keen element of mixed reality systems with a number of applications like human com-
puter interaction. Shape (3D) reconstruction [7] from images have been a well studied
problem, in particular for short base-line binocular camera systems. Based on con-
straints driven from the epipolar geometry, a number of methods were proposed to
recover 3D structure. Simple correlation based techniques, dynamic programming [15],
space carving [11], variational and level set methods [8] as well as combinatorial meth-
ods like graph-cuts [4,10,3] are some of the state-of-the-art methods in the literature for
object reconstruction. Several other techniques are also specialized in face reconstruc-
tion refering to the use of 3D Morphable Models [2,12], deformable meshes [9,6] or
muscle contraction simulation through the use of spline-based parameterization [16],
free form deformations [13], etc... Other methods have considered the use of biome-
chanical facial models.

However photo-realistic faces are difficult to compute with low cost material as the
definition of webcam images arent sufficient. The objective of this paper is to present
a Super Resolution Reconstruction based on super resolution image reconstruction and
graph cuts where successive frames are linked using optical flow and stereo reconstruc-
tion satisfies a number of subsequent stereo pairs. This paper is organized as follows. In
Section 2, basic stereo view geometry is presented. Section 3 gives briefly basic notion
of stereo, matching by graph cut. The method for accurate face reconstruction from low
resolution images is described in section 4. Finally, our experimental results are shown
in section 5 and discussed in section 6.

G. Bebis et al. (Eds.): ISVC 2006, LNCS 4291, pp. 803–812, 2006.
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2 Basic Stereo View Geometry

In this section, we introduce the relation between the two cameras, then we explain
rectification, briefly stereo matching and 3D reconstruction. In the next section, we
come back and explain an advanced technique of stereo matching.

Basic notions from 3D geometry explain such a process. Given a 3D point M , its
projection in a stereo system are m and m′ such as shown in Fig.(1). m′ is on the pro-
jection ofm line of sight l′m = Fm. l′m is called epipolar line and F is the fundamental
matrix. It encodes the relationship between the two images and all the corresponding
points should satisfy:m′TFm = 0.

Fig. 1. Epipolar geometry

Calibration process is about to infer positions of points in one image from positions
in the world This is modeled by the projection matrix P such as m = PM . P can
be decomposed as follows : P = A[Rt], where A describes the characteristics of the
camera (focal length, location of the image center, real pixel size and distortion of the
lens), and [Rt] is a concatenation of a rotation matrix and a translation vector describing
the change of world coordinate system.

Once fundamental matrix F is known, it can be used to constrain the correspondence
search in one dimension. To simplify and speed up the stereo matching the image are
warped so the epipolar lines become scanlines, a process that is known as rectification.
Two corresponding pointsm andm′ become :

mr =
(
x
y

)
, m′

r =
(
x+ d
y

)
(1)

where d it the horizontal displacement called disparity. Once epipolar lines have been
determined, the stereo problem is simplified to horizontal correspondences. Since we
want to reconstruct photo-realistic faces, we need a high resolution reconstruction. So
we introduce an implicit super resolution stereo matching. Details are given in the sfol-
lowing sections. Once we have the disparity for each pixel and we know the intrinsic
and extrinsic parameters of the camera, we can compute the 3D position of the points
by solving the system :

m = A[Rt]M = PM, m′ = A′[R′t′]M = P ′M. (2)
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3 Stereo Reconstruction and Graph Cut

In this section, 3D Reconstruction [7] from images and graph cut method is presented .
Given a 3D point M , its projection in a stereo system are m and m′. Given m =

(x, y), matching problem is to determine m′ = (x + dx, y + dy). The relationship
between both cameras is encoded by the fundamental matrix F such as all the corre-
sponding points should satisfy: m′TFm = 0. Knowing F it is possible to know on
which line on the second image, m′ lies. This line is called an epipolar line. It can be
used to constrain the correspondence search in one dimension. To simplify and speed
up the stereo matching the image are warped so the epipolar lines become scan lines, a
process that is known as rectification. Two corresponding pointsm andm′ have now the
same y-coordinates, and xm′ = xm + d where d is the horizontal displacement called
disparity. Once epipolar lines have been determined, the stereo problem is simplified to
horizontal correspondences.

Numerous methods exist in the literature to recover such correspondences. We con-
sider a global optimization approach where internal smoothness constraints on the cor-
respondences space are introduced. To this end, we adopt a discrete representation of
the depth map, and a MRF-based stereo formulation. Global optimization techniques
like Graph-cuts are then used to derive the optimal solutions.

3.1 Graph Cut in General

Let us now briefly introduce some notions from combinatorial optimization, namely
the graph cut approach. Let G be a graph, consisting of a set of nodes V and a set of
directed edges E that connect them such as G = (V,E). The nodes set V contains two
special terminal nodes which are called the source, s, and the sink, t. All edges in the
graph are assigned some nonnegative weight or cost. A cut C is a partitioning of the
nodes in the graph into two disjoint subsets S and T such that the source s is in S and
the sink t is in T . The cost of a cut C = (S, T ) is defined as the sum of the costs of
boundary edges (p, q) where p ∈ S and q ∈ T . The minimum cut problem on a graph
is to find a cut that has the lowest cost among all possible cuts. One of the fundamental
results in combinatorial optimization is that the minimum cut problem can be solved by
finding a maximum flow from the source s to the sink t.

Under certain conditions, one can prove that any optimization problem of the fol-
lowing form:

E = Edata + Esmooth (3)

can be converted to a min cut/max flow problem. E represents the energy to minimize,
and corresponds here the cost of the cut C. The definition of the data and smoothness
terms depend on the problem to be solved. In the case of stereo reconstruction, the
matching between intensities after applying the selected disparity component can be
used as a data fidelity term. On the other hand smoothness often reflect the assumption
that neighborhood pixels in the image correspond to the same depth level.

3.2 Graph Cut for Stereo-matching Problem

In a stereo-matching problem, the graph is forming a 3D-mesh see Fig.(2) and a cut
should be view as a hyper surface. In this case, a vertex on the graph corresponds, to a
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possible match between two images. Each of these vertices is six-connected. Two con-
nections, the ones in depth, correspond to other possible disparity values (connections
of the same pixel in image 1 with neighbors along the epipolar line in image 2). The cost
of these edges are cp,d = |I1(x, y) − I2(x + d, y)|, the difference of intensity between
pixel p with coordinates(x, y) in image 1, and pixel (x+ d, y) in image 2. It represents
the data term of the energy we want to minimize. Edata =

∑
cp,d where one end of

cp,d is in S and the other one is in T .
The four other edges are connections with the four neighbors in the image introducing

a smoothness connectivity. As a scene is most of time considered as piecewise smooth,
their cost is usually defined for simplicity by a Potts model vp,q = up,d · T (dp �= dq)
where dp and dq are disparities of pixels p and q, and

up,d =
{

2K if |Ip − Iq| ≤ U
K if |Ip − Iq| > U

(4)

Such a potential function tolerates certain discrepasies between depth levels within
local neighborhood while penalizing heavily more important deviations. And so
Esmooth =

∑
vp,q where q is in S and p is in T . However this vp,q definition cant’t be

used for face reconstruction, as a face can not be considered like a piecewise constant
scene. Obviously because it is an object, but also because it is made of curves and there
are just few crests. Furthermore a difference of pixel intensity doesn’t mean there is a
difference of depth (an example of this is the skin space between eyebrows. It is very
light compared to eyebrows, but the depth is the same). A good alternative to Esmooth

term is given in the following section.

4 Optical Flow Estimation

Optical flow estimation is equivalent with recovering a pixel-wise deformation field
(u(x, y), v(x, y)) that creates visual correspondences between two consecutive images
f and g. One can consider the Sum of Squared Differences (SSD) as the data-driven
term to recover the deformation field (u, v) at the pixel level;

Edata(u, v) =
∫∫

Ω

(f(x) − g((x, y) + (u(x, y), v(x, y))))2dxdy (5)

Such an error norm is very sensitive to occlusions as well as to outliers and therefore
it can be replaced with a robust estimator, or like an an M-estimator. Such a method
assigns weights to the constraints at the pixel level that are disproportional to their
residual error therefore rejecting the motion outliers. to this end, one should define the
influence function, ψ(x) like for example the Tukey’s estimator :

ρ(x) =
{
x(Kσ − x) if |x| < Kσ

0 otherwise
(6)

whereKσ characterizes the shape of the robust function and is updated at each iteration
leading to the following cost function:
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Fig. 2. Example of a graph for a stereo-matching problem

Edata(u, v) =
∫∫

Ω

ρ(r) dxdy

=
∫∫

Ω

ρ(f(x) − g((x, y) + (u(x, y), v(x, y)))) dxdy
(7)

While such a model can be quite efficient it still suffers from the aperture problem. One
can consider additional constraints to the constant brightness assumption like the gradi-
ent preservation assumption, recently introduced in [5]. Such a constraint that improves
the estimation of the optical flow on the object boundaries where the visual constancy
assumption is often violated.

5 Super Resolution Face Reconstruction

5.1 Redefinition of Local Consistency Towards Exploiting Facial Geometry

As mentioned in Section 3 the Potts model, used to defineEsmooth, is not well designed
for face reconstruction and must be redefined. To enforce Edata term, vp,qis derived
from the matching cost in depth of the two vertices that it links.

vp,q = k(cp,d + cp,d+1 + cq,d + cq,d+1) (8)

It depends on the cost to assign the same disparity for both pixels. A larger k increases
the smoothness of the reconstruction and avoids the outliers.

Such a global approach can lead to more consistent 3D face models. Its performance
depends on the resolution of input images. Model accuracy is important in a number of
applications where input images suffer from low resolution. The use of multiple stereo
pairs taken from the same camera set-up in time can be used to provide more accu-
rate reconstructions. The idea behind such an approach is that due to the discretization
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process each stereo pair will be able to capture different parts of the 3D surface. Putting
such temporal reconstructions together under the assumption of correspondences be-
tween images can lead to more precise depth maps.

5.2 Super Resolution Image Reconstruction

In computer vision application, like medical, surveillance or satellite imaging, high res-
olution images are often required. Such images correspond to important pixel density
where image is more detailed. On can find in [14] a good overview of different super-
resolution techniques. The basic idea of all methods is to use multiple low resolution
(LR) images captured from the same scene. These LR images are different representa-
tions of the scene, and considering there is no significant change between them, they are
shifted from each other with a sub pixel precision.(a pixel unit precision would involved
the information is the same in all images). Therefore, as soon as the scene motion can
be estimated, super resolution (SR) image reconstruction is possible. Furthermore, in
the grabbing process of images, there is a loss of information, due to the distortion of
the camera, noise or blur. So, one can assume that capturing consists of transforming a
high-resolution to a low resolution image and can be written as follows :

yk = DBkMkx+ nk (9)

where yk is the kth low resolution image of the sequence, x the high resolution image,
D the decimating matrix, Bk the blur matrix, Mk the warping matrix representing the
motion that occurs during image acquisition and nk the noise vector.

Most of the SR image reconstruction processes consist of three steps : registration,
interpolation and restoration. Registration refers to the estimation of motion. Since the
shifts between LR images are not regular, the registered low resolution image, will not
always correspond to a uniformly spaced high resolution grid. Thus, non-uniform inter-
polation is necessary to obtain a regular high resolution image. Finally, image restora-
tion is applied to the up sampled image to remove blurring and noise.

5.3 Super Resolution Method

Usually, in disparity computation process, it is assumed that the disparity range is dis-
cretized to one pixel. To improve the sharpness of the results, the idea presented here is
to use a disparity range discretized to a half pixel. This means, working with a disparity
interval [dmin, dmax] of size D. We would like to refine the disparity map assuming a
disparity interval [dmin, dmax] of size 2 ×D. Considering this like multiplying the im-
age width by a magnification factor of 2, new pixels appear. Intensity values have then
to be assigned to them. A first and obvious idea would be to interpolate the intensities
of the neighboring pixels. But it supposes that the texture varies homogeneously. To
avoid this false assumption, super resolution image reconstruction technique is used to
computed the texture of the new pixels.

The first frame is used as a reference frame and is placed on a regular grid of size
M × N . The 3 other LR images are placed taking into account the shifted position of
the pixels estimated by the optical flow (see 4). A new column is then inserted between
the existing ones, such as the the new grid size equals to 2M ×N . Finally, the intensity
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of every new pixel (corresponding to the new column) are computed using a weighted
nearest neighbor approach [1]. The cost cp,d is so redefined:

cp,d = I1(x, y) − I2(x+ d, y) (10)

with {
I(x, y) = ILR,0(x/2, y) if x is even
I(x, y) =

∑2
k=0 πkJk else.

where ILR,t is the LR image of the sequence at time t, J = {J0, J1, J2} is the set of the
three nearest neighbors of pixel(x, y), on the super resolution grid, among shifted image
ILR,t, and πk is the weight inversely proportional to the distance to the pixel(x, y).

6 Results

The size of our low resolution image is 320 × 240, with a disparity interval size of
D = 11 pixels. The disparity map reference is computed from 640 × 480 images. As

(a) (b)

(c) (d)

Fig. 3. Distribution of Pixels in function of the disparity. (a) LR, (b) Reference, (c) SRWOF, (d)
SROF.

Table 1. Comparisons with reference disparity map. LR: Low Resolution - SRWI: Super Reso-
lution in Width by Interpolation - SRWOF: Super Resolution in Width by Optical Flow - SRI:
Super Resolution by Interpolation - SROF: Super Resolution by Optical Flow.

Methods Distance (L2 norme) Ratio # of Differences
LR 8151.5 2.79 10805

SRWI 4735.75 1.62 7516
SRWOF 3685.75 1.26 6350

SRI 4308.75 1.47 6861
SROF 2926.5 1 6057
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(a)

(b)

(c)

(d)

Fig. 4. (a) Low Resolution, (b) Reference, (c) Super Resolution in Width by Optical Flow, (d)
Super Resolution by Optical Flow

we use a magnification factor of 2, the new disparity interval size is 2D. Four cou-
ples of subsequent images are used to compute the super resolution. Table(1) shows
the comparisons between results of different methods and the reference disparity map.
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Obviously super resolution in two dimensions gives the best results in terms of differ-
ences with reference disparity map, but super resolution in width gives close similar
results. Fig.(3) gives a representation of the pixel distribution in function of the dispar-
ity. One can see that super resolution techniques distributions are influenced by the ”low
resolution data” and are quite comparable to each other.Finally Fig.(4) shows different
3D reconstructions of the same person, with mapped texture, using the same sequence,
with same parameters in graph cut process. The third column puts the sharpness of the
super resolution techniques in obviousness.

The results enlarging width or height and width can be discussed. Even if Table(1)
gives the super resolution in two dimensions as the best one, the visual results show
that super resolution in width, could be at a sufficient fine level. Considering the mag-
nification factors of both super resolutions and the complexity of max flow algorithm
(O(Number of Nodes×Number of Vertices×Cost of the cut)) one can assume than this
new method is a good compromise between resolution and computation time.

7 Discussion

In this paper we have proposed a new method to acquire high resolution depth maps
of facial expressions from low resolution images. Our method exploits temporal coher-
ence between images and a powerful reconstruction method driven from combinatorial
optimization. The concept of super solution is explored in an implicit form. To this
end, reconstruction is reformulated as a max flow/min path problem in a graph where
temporal coherence between couples of stereo images is encoded in the construction of
such a graph. Classic techniques of optimization are then used to recover the optimal
reconstruction map.

Better and direct exploitation of super resolution principles is an straightforward ex-
tension of our approach. Once high resolution models have been recovered, reproducing
facial animations is a challenging and interesting extension with numerous applications.
To this end, registration of expressions as well as autoregressive modeling of transitions
between one expression to the next are to be addressed. Real-time performance is also
a challenging perspective where the use of graphic processing units could address such
a demand.
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Abstract. This paper presents the design and development of a web-based in-
terface for the visualization of high dimensional data such as microarray data. A 
co-ordinate based method, namely, 3D Star Coordinate (3SC) projection tech-
nique is used for the visualization. The proposed web-based interface enables 
the user to choose an existing dataset from the database or upload a dataset and 
visualize the best possible projection of the data on an applet running on the cli-
ent web browser. The proposed projection algorithm runs in Matlab at the 
server side for faster computation and using Java Servlets the results are deliv-
ered to the client machine. 

Keywords: Data Projection, Web-based Interface, Coordinate-based & Axis-
based Visualization, Dimensionality Reduction and Data Integration. 

1   Introduction 

This paper proposes a web-based interface for the visualization of high dimensional 
data. Visualization is an integrative part of discovering knowledge from high dimen-
sional data such as microarrays. In general areas of computational biology and bioin-
formatics, the need is even greater as there are hardly any visualization tools available 
online to understand the underlying distribution of the complex data. Such a knowl-
edge can help in choosing the appropriate algorithm for the data analysis. The pro-
jected results of complex data offer good insight to the data before analysis and also 
help analyze the result and relate it with possible biological concepts.  

A simple yet powerful web-based user friendly interface with easy interpretation of 
the results is the focus of this paper. A web-based application is a server side applica-
tion where the computations are performed at the server side and the results are deliv-
ered to the applet running on the client machine. Advantages of such a method in-
clude but not limited to cross-platform usage and consistency in performance 
irrespective of the power and memory limitations of the client machine etc. On the 
other hand, the stand-alone application performance depends on factors such as com-
plexity of the data, performance of the user machine etc. Many of the visualization 
tools available today [1] are stand alone. The algorithms on which these interfaces are 
built might be based on same hypothesis with variations customized for a particular 
data. The web based tools available are standard and may not be suitable for all the 
applications[2]. Star coordinate based methods are found to be excellent tools for 
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visualization of high dimensional data. This 3D star coordinate projection has been 
the area of interest for the researchers dealing with high dimensional data recently [3, 
4] (Appendix A). There are no web-based tools for the visualization of high dimen-
sional data using coordinate based methods viz. 3D star coordinate projection.  

This paper presents a web-based application for 3D star coordinate based projec-
tion. This application may be accessible via. [5]. The visualization algorithm was ini-
tially built for knowledge discovery in microarray data and tested for its applicability 
for databases of various other fields. For example, for the microarray data dealing 
with cancer and normal cells, we know that cancer cells contain substantial number of 
genetic abnormalities when compared to normal cells. These experiments are per-
formed to find the genotypes which are responsible for a particular phenotype (cancer 
cell in this case). After those genes are identified based on some criterion [6-8], it is 
required that a visual interpretation of the separation of phenotypes is offered for con-
firmation. Visualization algorithms are run using the selected genes as features to see 
if they offer separation between the different phenotypes. If the separation of pheno-
types is visually obvious then most or all of these genotypes might be involved in the 
formation of a particular phenotype. Else, the genotype selection algorithm might 
have to be run with different parameters. 3D star coordinate web application has been 
run on microarray data.  Empirical analysis shows that the application is well suited 
for the visualization of high dimensional data. This interface is web-based and hence 
executes on a web browser. This makes Java applet technology an obvious choice 
since applets can easily be sent over the internet to the client and since they are writ-
ten in java, they can communicate with any java program running at the server. They 
also provide security in the form that the data sent by the user is securely sent over the 
network by using encryption. 

The rest of the paper is organized as follows: Section II discusses the works related 
to web-based visualization techniques with brief discussion on visualization tech-
niques themselves. Section III discusses the implementation details of web-based in-
terface. Section IV discusses the features of the interface and Section V presents some 
results and discussions related to the development of the interface. Finally, Section VI 
offers some concluding remarks and Future works. 

2   Related Works 

A good web-based interface conveys the intended message with less complexity. The 
idea behind web-based interface is two folds: 1) offer the results to the client request-
ing access in easily interpretable form and 2) restrict access to the code. A variety of 
visualization techniques have been developed for knowledge discovery in databases 
[3-5, 9-18]. Although some of the visualization methods have been well established, 
the web applications of some of these algorithms have not been developed. Some of 
the well established and most visited web applications include but not limited to PCA 
[2, 15, 19], LDA [2, 20], clustering based methods [2, 21-23] etc. No attempt has 
been made to build web applications for axis based methods. One possible explana-
tion for this could be that these methods are relatively new and much research is  
under progress [3, 4, 14]. This paper presents a web based 3D star coordinate visuali-
zation tool for high dimensional data such as microarray data [5]. Although some of 
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the techniques are well developed, it is the ability of the visualization algorithm to of-
fer results in real time that forms basis for the development of the web-based inter-
face. The basic requirements for the visualization algorithm underlying the web-based 
interface include but not limited to a) Ability to handle large number of data points, b) 
Offer multiple views for knowledge discovery, c) Ability to handle growing data-
bases, etc. 

Visualization techniques may be broadly categorized into three groups i) positional 
ii) temporal and iii) retinal. Positional techniques can be one, two or three dimen-
sional [9, 13, 14, 20, 24-26]. 2D plots may be categorized into scatter plots, bar plots, 
line plots, pseudo color images, arrow plots and contour plots. The 3D plots may be 
divided into scatter plots, surface plots, flow ribbons, particles, arrow plots and vol-
umes. The only temporal technique is animation. Retinal techniques may be set of 
retinal properties of marks such as texture, orientation, size, shape, and color. A good 
visualization technique defines the success of the web-based application. Based on the 
expected information retrieval and type of result expected, a particular algorithm may 
be selected. 3D star coordinate algorithm’s ability to offer faster results and handle 
growing databases makes it favorable for microarray datamining. 

3   Implementation Details of the Application 

This paper presents a web-based application for 3D star coordinate based projection. 
This application may be accessible via. [5]. The visualization algorithm was initially 
built for knowledge discovery in microarray data and is tested for its applicability for 
databases of various other fields. Empirical analysis shows that the application is well 
suited for the visualization of high dimensional data. This application has two major 
modules, one module runs at the client side, which is a Java Applet and the other 
module runs at the server side called Servlet. The communication between two mod-
ules is established using Java Sockets. This Web based application enables the user to 
either upload his own data which he intends to gain insight into or select a dataset al-
ready existing in the database. After selecting a data for visualization, the user acti-
vates the execute function. The request to run the algorithm on the specified dataset is 
sent to the servlet running on the server side. Upon receiving the request, the servlet 
activates the Matlab system to execute the algorithm on the specified dataset. The re-
sults of the computation are stored on the server machine as binary data and passed on 
to the client machine as per the navigation request and displayed as a plot. The user 
navigates through different projections (plots) until he discovers underlying pattern of 
the data. In order to provide enhanced security, this interface deletes the data (if data 
is uploaded) after the results are offered to the client. The added advantage of this 
process is that multiple users may access the site at the same time as Matlab can cre-
ate multiple sessions. 

This web application has three basic components viz. i) Initialization ii) Action Se-
lection and iii) Termination. 

i) Initialization: In this stage, the applet loads onto the web browser along 
with its components and waits for the user action. 

ii) Action Selection: The action taken by the user defines this stage. The user 
action has two initial selections, select the existing database or upload the 
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data he intends to gain knowledge about. If the user uploads his data, a Java 
socket connection is established with the server and data is transferred to the 
server using serializable objects. Upon selection of data, the application 
waits for the user select one of the three existing algorithms (one manual and 
two automated) and press the execute button. When the execute action is per-
formed by the user, a server program is invoked which executes the algo-
rithm with given parameters in matlab. Now the interface waits until the  
algorithm is executed and the results are ready. Then the interface gets the 
results from the server and displays the results. The user can then navigate 
through different projections by using the next and previous buttons. Click-
ing on the plot and rotating it to the required elevational and azimuthal an-
gles for enhanced knowledge discovery may obtain different 3D views. The 
location of a data point in 3D space may be obtained by placing mouse over 
that particular datapoint. The zoom in and zoom out features may be used 
accordingly for concentrating on a particular area. If the user is satisfied with 
a particular projection, the coordinates corresponding to that projection may 
be obtained using download feature.  

iii) Termination: The interface is terminated when the user closes his web-
browser. The following events occur when the user terminates the interface. 

a) All the variables used by the interface are released by calling the gar-
bage collector. 

b) A ‘DeleteServlet’ program in the server is called which will delete all 
the results stored including the uploaded data. 

4   Web-Based Interface 

The web-based interface consists of 7 fields (dropdown menu/upload, Algorithm se-
lection, Execute, zoom in/ zoom out, download, Next/Previous and display) fields re-
spectively. The functionality of each field is described here:  

Dropdown Menu/ upload: This field enables the user to choose any of the datasets 
already available in the database or upload (The current acceptable file format is Mi-
crosoft excel. The future application will accept text-delimited format. The file should 
contain data points along rows and the dimensions that need to be reduced along col-
umns) his dataset and view the output of the proposed visualization algorithm. The 
datasets already in the database are Automobile [27], Iris dataset [28], Simulated 
Gaussian [20], Leukemia microarray dataset [29], Petroleum dataset [30], and Gastric 
Cancer microarray dataset [31].  

Algorithm Selection: This feature enables the user to select one of the existing algo-
rithms. One manual and two automated algorithms are proposed. 

Execute: This button initiates the implementation of 3D star coordinate projection  
algorithm at the server side and the results are displayed in the display field on the cli-
ent web browser. The user has the flexibility of choosing one of the existing datasets 
or uploads his dataset using the upload button.  

Next and Previous: These fields offer access to available projections. For each com-
bination of axes, 3D star coordinate projection algorithm provides a new projection. 
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One or more such combinations provide insight into the structure of the data. Visual 
clusters may be obtained for such combinations. 

Zoom in/ Zoom out: This feature enables the user to zoom in and out of the area of 
interest in the 3D space. 

Download: This feature enables the user to download the data in projected space cor-
responding to the currently viewed projection. 

5   Results and Discussions 

The screen shot of the proposed web-based interface is shown in the Figure 1. The 
Figure 1 shows the results of one possible projection for the Leukemia microarray 
dataset. From the Figure 1 it is evident that the dataset has two distinct classes (phe-
notypes) as identified by the 3D star coordinate algorithm. The boundaries between 
the classes are well defined and crisp.  Highly differentially expressed 50 genes are 
found using [6-8]. These genotypes are considered for projection of two tissue cases 
(phenotypes). From Figure 1 display module, it is clearly seen that normal and patho-
logical tissue samples are well separated using differentially expressed genes. 

 

Fig. 1. Proposed Web Interface for visualizing high dimensional data using the 3D star coordi-
nate Projection 

The 3D star coordinate projection algorithm is implemented in Matlab. The web-
based application was initiated based on the assumption that communication between 
Java and Matlab would be accomplished. Since the methods to communicate be-
tween Java and C have been well addressed, our initially thought was that Matlab 
script would be first converted into ‘C’ and then communication would be estab-
lished between Java and C using Java Native Interface (JNI). But, it was found 
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through the experimentation that the Matlab compiler did not produce efficient code 
that may be used for real time. This problem was tackled by establishing a direct 
connection between Java and Matlab using Runtime class in Java.lang package of 
Java standard Development kit (JSDK). The Runtime class is used to initiate a new 
Matlab session. 

Runtime class can only initiate Matlab but cannot pass on commands to Matlab. To 
tackle this problem, the following procedure has been adopted. The IP address of the 
machine requesting access is written on to a text file ‘IPaddress.txt’, a new text file is 
created with IP address as name and the name of the dataset that needs to be executed 
is written on to it. Upon pressing the execute button at the client side, Matlab reads 
the IP address of the machine requesting access from ‘IPaddress.txt’. Then it searches 
for the file with the name IP address on the local disk and reads it. As it contains the 
information about what file the visualization algorithm needs to be run on, the appro-
priate file is read and 3D star coordinate projection algorithm is initiated. The prob-
lem now is to send the results of computation such as plots to the client side using 
Java. Matlab cannot communicate with Java and hence results of computation may 
not be passed on directly to client machine while Matlab is running.  

This problem has been addressed by saving the images in the local disk and mak-
ing it accessible to Java. The Java Applet continuously searches for the images until it 
finds one, and then displays it on the client machine. Images corresponding to the 
other projections may be accessed appropriately by browsing using arrow buttons on 
the applet. 

6   Conclusions 

This paper presents a web-based application for visualization of high dimensional 
data. This tool is currently used for very high dimensional datasets such as microarray 
data. The tool has been tested extensively using data belonging to diverse fields with 
encouraging results. Interplay between Matlab and Java is performed for the function-
ing of the application. The user may play with the tool by using the existing data in 
the database or gain insight into his data by trying the 3D star coordinate algorithm 
using this application in real time. The multiple views, multiple projections and zoom 
in and zoom out features offer better knowledge discovery. The issues associated with 
the communication between Java and Matlab have been well discussed.  

The current acceptable format for this applet is Microsoft excel. The future version 
will be able to handle variety of file formats. The algorithm running on the application 
is not the automated version proposed in [4]. The automated enhanced algorithm se-
lects the projections that preserve the distance between the data points in the high di-
mensional and projected space, respectively. 
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Appendix A: 3D Star Coordinate Algorithm 

The schematic diagram of the 3D star coordinate [3, 4] is shown in Figure 2. It is as-
sumed that all the dimensions are radiating from the center of a hypothetical sphere at 
random angles in 3D space and are of random length. The attributes of individual data 
points are scaled and rotated accordingly. For a given data point, each of its attributes 
(points along all dimensions of that data point) is multiplied with the component 
along a particular direction ),,( zyx . Individual contributions are summed up along 

that direction to form a projected space as shown in equation 6. Various stages and 
steps involved in the formation of 3D star co-ordinate system are succinctly summa-
rized as follows: 

Step 1: Initialization 
1. Arrange the co-ordinate axes on the sphere with all vectors radiating into the 3D 

space.  
2. The angles between the vectors are random. Each of the dimensions is assumed 

to be along these vectors. 
3. Star co-ordinate system may be mapped to Cartesian co-ordinate system by de-

fining a point in the 3D space representing the origin ( )zyx OOO ,,  and ‘n’ 3 di-

mensional vectors nn aaaaA ,........,, 321=  representing the axes. 
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4. The lengths of the vectors are random. The lengths may vary between one unit 
vector and 5 times a unit vector. 

Step 2: Computation of Projection 
The projection of the data point in n-dimensions to 3 dimensions is obtained by sum-
ming up the unit vectors ( )zyx uuu ,,  on each co-ordinate weighted by their respec-

tive data element.  
Here, 

( )22
yxxy uuu += ,    (1) 

22
zxy uuu += ,    (2) 

θφ cossinuu x = ,    (3) 

θφ sinsinuu y = ,    (4) 

φcosuuz = .     (5) 

Let ‘N’ be the number of data points and ‘n’ be the dimension of each feature that 
needs to be visualized. The data matrix ‘D’ is of dimension N x n and its elements dij 
representing the components of n dimensional data points. Where, 

xO , 
yO and

zO  are 

the coordinates defining present origin of the system. The notation ))(:,min( iD stands 

for minimum value in all rows and thi column. 
PPP ZYX ,,  are the projections along 

),,( zyx axes, respectively. The vectors in ''n  dimensional space are projected into 

3D space given by ),,( ZYXP . Depending on the number of dimensions involved in 

the dataset, which is ''n  in this case, ''n  such vectors exist in the 3D space whose in-
dividual contributions are taken as shown by Equation 6 to project into 3D space. 
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It is now easy to visualize vari-
ous dimensions radiating at ran-
dom angles in a pseudo sphere, 
more than one such combination 
providing insight into the underly-
ing distribution of the data while 
providing relationship between 
various attributes involved. 

 

Fig. 2. 3D Star Co-ordinate System 

(6) 



3D and Texture Modelling of Precolombian Objects

Jorge Hernández and Flavio Prieto

Universidad Nacional de Colombia sede Manizales,
Carrera 27 N 64-60, Manizales, Caldas, Colombia

{jehernandezl, faprietoo}@unal.edu.co
http://www.unal.edu.co

Abstract. In this paper we present a 3D and texture modelling for Precolombian
objects. Our experimental setup consists of a no contact 3D digitizer for range
image acquisition and a camera CCD of high resolution to acquire the intensity
images of the target object. The mapping texture process is described as a pa-
rameterization function with a range image; we estimate the camera orientation
from calibration techniques, utilizing pattern calibration before data acquisition.
We describe a texturized mapping strategy based on multi-view to adequately ad-
dress photography related problems such as inhomogeneous lighting, highlights
and occlusion. For each triangle in the model, the optimal image is selected from
source images with an average weighted the scalar product between the image
normal vector and triangle normal vector. Finally, we show the highly detailed
texture models of Precolombian objects.

1 Introduction

In recent years, computer vision and computer graphics are two fields that are gradu-
ally merging through the advent of Virtual Reality (VR). More and more applications
use computer vision methods to build accurate models of objects/scenes from actual
data [1]. Using VR, we can display and manipulate a three-dimensional model repre-
sentation of an existing object’s shape. Appearance can play a significant role in the
area of preserving historical remains, or cultural heritage [2]. The importance of cul-
tural heritage is well defined by UNESCO, which is an organization that represents and
supports the integrity of the cultural heritage.

Different works have been presented according to the culture [3]. The most important
efforts in this area were the ”Digital Michelangelo Project” [4] and the ”Piet Rondanini
Project” [5], both concerning Michelangelo’s artworks. Equally, the campaign to ac-
quired the statues of Donatello and Giovanni Pisano jointly performed by the Visual
Information Technology Group of the NRC of Ottawa, Canada [6]. Another project that
works on sculptures is the modelling of the relics of the Museum of Quin Shihuang
Terra Cotta Warriors and Horses [7] and of the 15 m high Kamakura’s Buddha [8] and
Koumokuten [9]. Precolombian objects, such as ceramics, vases, jewelery, etc, with
an immense quantity of designs are an important part of the American cultures, and
for this reason, they are our studio case. Several related works are carried out on the
cultural conservation of scenes, environments and monuments of great size. The Pre-
colombian objects, however, are characterized as relatively small and highly textured,
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they have severeal modelling difficulties due to many causes such as their shape, typi-
cally very articulated and with high auto-occlusion; size and the need to acquire color,
texture appearance or reflectance information [6]. In regards to cultural heritage and
cultural conservation, the first contribution of this paper concerns Precolombian 3D
modelling and a texture mapping process of high resolution and high accuracy. Previ-
ously, a number of techniques dealing with the reconstruction of the texture have been
developed. Sato et al. [10] faithfully reconstruct the reflectance properties of real world
objects from photographs. They acquire the geometry and texture information at the
same time, using the same sensor. Pulli in [11], presents a complete system that uses
a stereo camera with active lighting to scan the object surface geometry and color as
visible from one point of view. Many previous algorithms tried to find the camera trans-
formation by minimizing the error between the contour or shape found in the image and
the contour or shape of the projected 3D model [12,13,14]. The second contribution of
this paper, with respect to texture mapping, concerns the strategy based on multi-view
to adequately address photography related problems such as inhomogeneous lighting,
highlights and occlusion; also, for each triangle in the model, the optimal texel image is
selected from source texel images with an average. The last contribution is the texture
model evaluation which approaches using different points of views and multiple views.

Finally, our goal is to create an accurate geometric and photometric representation
of the Precolombian objects by means of integrating range and image measurements.
The geometry of an object is captured using range sensing technology whereas the
information texture is captured by means of cameras (Section 2.1). We have developed a
calibrated system, which produces a geometric and photometric correct high resolution
and accurate 3D model representation (Section 2.2). The processes of multiple views
are described in the Section 2.2. The results and their evaluation are showed in the
Section 3.

2 Texture Object Modelling Procedure

2.1 Acquisition System

Our experimental set up consists of the no contact 3D digitizer Minolta VIVID9i for
range images acquisition and the camera CCD SONY DSC 717 to acquire the intensity
images of the target object (Figure. 1). Although the 3D digitizer can produce the color
images as well as the 3D geometry, we utilized the digital camera to get high quality
images. The resolution of acquired images is 2560 × 1920.

The relative position and direction between range sensor and digital camera is neces-
sary to map the image of the digital camera onto the 3D geometric model measured by
range sensor. Several researches have been done to estimate the relationship automati-
cally [12,13,14,15]. Nevertheless, the calibration before scanning approach is the most
effective method for applications with high accuracy, and we used this approach. The
camera model utilized to know the relationship between the intensity image and range
image is the pin-hole camera model. The model camera has two parameters: extrinsic
and intrinsic. The relative position and direction between range sensor and digital cam-
era is necessary to map the image of the digital camera onto the 3D geometric model
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Fig. 1. Data acquisition setup

(a) Intensity Image (b) Range Image

Fig. 2. Pattern Calibration with both sensors

measured by range sensor. Calibration techniques usually make use of a 3D known ob-
ject which is called the calibration pattern. Camera calibration consists of the estimation
of a model for an un-calibrated camera. The objective is to find the external parame-
ters (position and orientation relative to a world co-ordinate system), and the internal
parameters of the camera (principal point or image center, focal length and distortion
coefficients). One of the most used camera calibration techniques is the one proposed
by Tsai [16]. We now designed a pattern calibration, which can easily measure the cor-
responding points between intensity image and range image. The 3D digitizer employs
an option by setting up the laser intensity; when the laser intensity is low ( < 15/255),
the digitizer can’t acquire the black part’s objects. We use this option to build a black
pattern calibration with white squares (Figure. 2). The 3D digitizer produces 3D geom-
etry (Figure. 2(b)) and color image of the object (Figure. 2(a)) where the relationship
between 3D geometry and image is known.

With the two types of acquired images we proceed to calculate automatically the cou-
ples of points, using the centers of mass of each square. On range image, we segmented
all regions and calculated the mean of the points of each region. In the image of in-
tensity, we carried out the perspective correction, after we segmented the white squares
and calculated the mean of the pixels. Finally, when we had the correspondences, we
used the calibration algorithm The Gold Standard [17], and obtained the camera matrix
P (camera parameters).

2.2 Mapping Texture

Texture mapping plays a very important role in the modelling of objects of the cultural
heritage. This process is divided into two steps, texture mapping a single range image
and texture mapping a multi view.
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Mapping Texture a Single Range Image: At this moment, when the camera param-
eters were known, we used the matrix camera, as parameterization function (Eq. 1), to
texture map onto each range image.

f (x, y, z) =

{
u = p00x+p01y+p02z+p03

p20x+p21y+p22z+p23

v = p10x+p11y+p12z+p13
p20x+p21y+p22z+p23

(1)

where, pi,j are elements of camera matrix (P3×4).
Assigning texture coordinates to a 3D mesh (x, y, z), which can be regarded as a

parameterization of the mesh surface, where each 3D vertex is assigned to a 2D param-
eter value (u, v) and each point on the mesh surface is parameterized by the appropriate
convex combination of the parameter values of the vertices of the surface triangle in
which it resides [18]. Care must be taken so that the parameterization is legal, i.e. that
no two points on the mesh surface are mapped as the same point in the 2D parameter
domain. The problem of legal parameterization is present in our acquisition system, be-
cause the sensor camera and sensor range aren’t aligned completely; the camera is on
the left side from the position of the digitizer. To solve this problem, we employed the
Z-buffer algorithm [19]. A Z-buffer image keeps each pixel location at the depth value
of the surface point nearest to the corresponding image plane and falls onto that pixel
when projected. We used the projection of each triangle surface onto the image. Com-
paring the stored depth value with the actual distance of the triangle to the image plane
can determine if there is another surface part between the triangle and the image plane.

Mapping Texture in Multi-views: An object of the real world needs multi acquisition,
to be completely reconstructed. After we had all the range images with their parameteri-
zation function and their texture, we have to register and integrate in a single mesh. The
registration estimate of the rotation and translation between two 3D views method is
used in this work to find the transformation (Ti) with the ICP algorithm [20]. After, the
process of registration, we merge all views using PET (Polygon Editing Tool) software.
This translates into the process of Figure 3.

Fig. 3. Process Multi View

The mesh parameterization function involves the camera matrix (P ) of surface pa-
rameterization function and the transformation matrix (Ti) in the registration process
(Eq. 2, Eq. 3)
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f (x̂, ŷ, ẑ) =

{
u = pk00x+pk01y+pk02z+pk03

pk20x+pk21y+pk22z+pk23

v = pk10x+pk11y+pk12z+pk13
pk20x+pk21y+pk22z+pk23

(3)

In the multi views process, the texture information can be redundant and trans-
planted, because some of the surface triangles are visible from two or more camera
positions. In the step of texture map synthesis, we employed texel blending [21], whose
weights are determined by average dot vector normal; the texel map is the texel from
each of the source images with the scalar product between the image texel image camera
vector and the triangle normal vector (Eq. 4).

TexelFinal =
w1Texel1 + w2Texel2 + · · · + wkvTexelkv

w1 + w2 + · · · + wkv
(4)

where, wi is the absolute value of the dot among the triangle normal vector and the
camera normal vector and kw is the number of visible cameras for the triangle.

Another stage in the step of texture map synthesis is to solve problems which can
make an image invalid as a texture source or related problems such as inhomogeneous
lighting and highlights. We solve these problems using color by correlation for color
constancy [22]. The color constancy considers the problem of illuminate estimation:
how, given an image of a scene recorded under an unknown light, we can recover an
estimate of that light. Obtaining such an estimate is a central part to solving the color
constancy problem of recovering an illuminate independent representation of the re-
flectances in a scene (Figure 4). Figure 4(a) shows the original sequence of images
where the discontinuity is observed among them. After applying the algorithm the dis-
continuity decreases.

3 Experimental Results and Evaluation

To evaluate the quality of the representation of the texture model, approaches of points
of views (shape and contour) and of multiple views (texel correlation) were used.

3.1 Points of View Evaluation

This evaluation metric is applied to the models of objects which have very defined
shape and contours. We project the model using the camera model or the parameteri-
zation function. The resulting shape is compared to the shape of the segmented texture
with the comparison being carried out with the absolute difference in the two shapes.
After determining each one of the shapes, we calculated the contours followed by a
transformation of distance [23]. When carrying out the difference of the transforma-
tions of distance of the contours, we calculated the distance between each one of the
image contours. The closer the metric values are to 0, the better the quality of the texture
model representation.(i.e. Figure 5(a))
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(a) Original sequence of images

(b) Correction sequence of images

Fig. 4. i.e. Color correction for color constancy

(a) Points of View Evaluation (b) Multiple Views Evaluation

Fig. 5. Results Evaluation

3.2 Multiple Views Evaluation

The texture information can be redundant because there are surface triangles, which
have two or more textures visible. The metric evaluation calculates the correlation
among the different points of view that belong to one triangle. Metric values fall be-
tween 0 and 1; where, if the value is near 0, it means that there is a problem between
the textures and the model. Otherwise, if the value is near 1, the possibilities that the
texture is registered onto the model correctly are very high.(i.e. Figure 5(b)).

The presented methods were applied to three different Precolombian objects of dif-
ferent cultures:

– Precolombian 1: anthropomorphous object - ”canastero”. Archaeological area
Calima (Figure 6(a)).

– Precolombian 2: anthropomorphous object - Vessel. Archaeological area Ecuado-
rian (Figure 6(b)).

– Precolombian 3: anthropomorphous object - masculine with ”nariguera”. Altar-
piece .Archaeological area Quimbaya (Figure 6(c)).

The photographic images are taken with controlled illumination conditions. The ob-
jects are posed on a turntable, for each range image, there is a texture image. We took
14 photographic views, 12 images rotating 30 degrees and top and bottom.



828 J. Hernández and F. Prieto

Table 1 shows the metrics evaluation for the three Precolombian objects. The metric
values are good, confirming the quality of the texture model representation (Figure 6).
Also, we presented the importance of using the illumination correction, because the
metric of multi view with illumination correction is higher than the metric of multi
view without illumination correction.

Table 1. Texture Model Evaluation

OBJECT EVALUATION
Point View Multi View

Shape [%] Contour [pix] Without Corr. Ilum. With Corr. Ilum.

Precolombian 1 0.9028 1.78554 0.945302 0.964916
Precolombian 2 0.8259 1.4841 0.964208 0.9842143
Precolombian 3 1.3826 3.2464 0.884496 0.910357

(a) Precolombian 1 (b) Precolombian 2 (c) Precolombian 3

Fig. 6. Texture Model Precolombian Results

4 Discussion and Conclusions

We have described a model texture procedure for Precolombian objects of high resolu-
tion and accuracy, acquiring the range image and the texture image at the same time.
We got a textured model by mapping the images onto the 3D geometric model using
the camera parameters estimated from the calibration employing a pattern calibration.
After the calibration process, we can’t move the devices’ acquisition; when we took the
image sequence (range and texture). Also, from this stage the process is totally auto-
matic. The differences in the highlights due to the illumination and to the properties of
reflectance of the objects presented in the stage acquisition were reduced using an algo-
rithm of correction of illumination for color constancy for correlation and utilizing an
average texel, weighted by dot vector normal which condensed source image frontiers
along the surface of the object during the multiple views stage. The metric of multiple
views is subject to the reconstruction of the complete model, directly to the registration
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process. If the algorithm used registration presents a great error in the approach, one
cannot wait for a good result in the metric of multiple views. It also presents an addi-
tional dependence under the condition of illumination in the acquisition of the different
textures. Using the proposed method, experiments of the texture mapping for the 3D
geometric models of Precolombian objects were carried out, and the usefulness of the
proposed method was verified. The results present show the high level of detail and high
degree of realism of the texture models.
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of Michelangelo’s Florentine Pietà. IEEE Computer Graphics and Applications 22 (2002)
59–67

6. Marco Andreetto, N.B., Cortelazzo, G.M.: Automatic 3-d modeling of textured cultural
heritage objects. IEEE Transactions on Image Processing 13 (2004) 354–369

7. Zheng, J.Y., Zhang, Z.L.: Virtual recovery of excavated relics. IEEE Computer Graphics and
Applications (1999) 6–11

8. Katsushi Ikeuchi, Atsushi Nakazawa, K.H.T.O.: Representing cultural heritage in digital
forms for vr systems through computer vision techniques. Proceedings of the 17th Interna-
tional Conference on Pattern Recognition (ICPR04) (2004)

9. Unten, H., Ikeuchi, K.: Virtual reality model of koumokuten generated from measurement.
Proceedings Of The Tenth International Conference On Virtual Systems And Multimedia
(VSMM’04) (2004) 209–216

10. Yoichi Sato, M.D.W., Ikeuchi, K.: Object shape and reflectance modeling from observation.
Procceedings Computer Graphics (SIGGRAPH’97) (1997) 379–388

11. Pulli, K.: Surface Reconstruction and Display from Range and Color Data. PhD thesis,
University of Washington (1997)



830 J. Hernández and F. Prieto

12. Neugebauer, P.J., Klein, K.: Texturing 3d models of real world objects from multiple unreg-
istered photographic views. Proceedings Euographics ’99 18 (1999)

13. Matsushita, K., Kaneko, T.: Efficient and handy texture mapping on 3d surfaces. Proceedings
Euographics ’99 18 (1999)

14. Hendrik P. A. Lensch, W.H., Seidel, H.P.: A silhouette-based algorithm for texture registra-
tion and stitching. Graphical Models - IDEAL (2001) 245–262

15. Stamos, I., Allen, P.K.: Geometry and texture recovery of scenes of large scale. Computer
Vision and Image Understanding (CVIU) 8 (2002) 94–118

16. Tsai, R.Y.: A versatile camera calibration technique for high-accuracy 3d machine vision
metrology using off-the-shelf tv cameras and lenses. IEEE Journal of Robotics and Automa-
tion RA-3 (1987) 323–344

17. Hartley, R., Zisserman, A.: Multiple View Geometry in computer vision. CAMBRIDGE
(2003)

18. Ilya Eckstein, V.S., Gotsman, C.: Texture mapping with hard constraints. Computer Science
Department, Technion Israel Institute of Technology 20 (2001)

19. J.D. Foley, A van Dom, S.F., Hughes, J.: Computer Graphics, Pirnciples ans Practice. 2nd
edn. Addison-Wesley Publishing Company (1992)

20. Besl, P.J., McKay, N.D.: A method for registration of 3d shapes. IEEE Transactions on
Pattern Analysis and Machine Intelligence 14 (1992) 239256

21. C. Rocchini, P. Cignoni, C.M., R.Scopigno: Multiple textures stitching and blending on 3d
objects. Proceedings 10th Eurographics Workshop Rendering (1999)

22. Graham D. Finlayson, S.D.H., Hubel, P.M.: Color by correlation: A simple, unifying frame-
work for color constancy. IEEE Transactions on Pattern Analysis and Machine Intelligence
23 (2001) 12091221

23. Felzenszwalb, P.F., Huttenlocher, D.P.: Distance transforms of sampled functions. Technical
report, The University of Chicago, Cornell University (2004)



Segmentation of Triangular Meshes Using

Multi-scale Normal Variation

Kyungha Min1,� and Moon-Ryul Jung2,��

1 Sangmyung Univ., Korea
2 Sogang Univ., Korea

Abstract. In this paper, we present a scheme that segments triangular
meshes into several meaningful patches using multi-scale normal vari-
ation. In differential geometry, there is a traditional scheme that seg-
ments smooth surfaces into several patches such as elliptic, hyperbolic, or
parabolic regions, with several curves such as ridge, valley, and parabolic
curve between these regions, by means of the principal curvatures of the
surface. We present a similar segmentation scheme for triangular meshes.
For this purpose, we develop a simple and robust scheme that approxi-
mates the principal curvatures on triangular meshes by multi-scale nor-
mal variation scheme. Using these approximated principal curvatures and
modifying the classical segmentation scheme for triangular meshes, we
design a scheme that segments triangular meshes into several meaning-
ful regions. This segmentation scheme is implemented by evaluating a
feature weight at each vertex, which quantifies the likelihood that each
vertex belongs to one of the regions. We test our scheme on several face
models and demonstrate its capability by segmenting them into several
meaningful regions.

1 Introduction

It is a very important task to define and obtain meaningful regions from a
3D object. In computer vision and computer graphics, triangular meshes, the
polygonal approximation of the smooth shape of 3D object, are one of the most
widely used method to represent the shape of a 3D object. Therefore, in most
applications, the problem of segmenting a 3D object into meaningful regions in
computer vision and computer graphics comes down to defining and generating
meaningful regions from triangular meshes.

In this paper, we present a scheme that segments triangular meshes into sub-
regions. For this purpose, we also present the approximation scheme that es-
timates principal curvatures at the vertices of the meshes. Several researchers
have been presented the scheme that approximates principal curvatures on tri-
angular meshes [2,4,7]. In this paper we present a robust and efficient scheme
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that approximates the principal curvatures on triangular meshes by extending
the normal variation scheme [3,1] into the multi-scale paradigm.

The second step of the scheme is to build a scheme that classifies the subre-
gions of triangular meshes based on the concept of classical differential geometry,
which classifies smooth surfaces into several patches such as elliptic convex, el-
liptic concave, hyperbolic, or parabolic according to the principal curvatures. In
this paper, we consider the difference between the triangular meshes and smooth
surfaces and modify the classical definitions to handle the special properties of
triangular meshes.

The third step of the scheme is to present a scheme that estimates the feature
weight at each vertex, which represents the likelihood that each vertex belongs
to one of the subregions. weight.

The main contribution of this paper is that we present a bridge between the
fundamental algorithms [2,4,7] that estimate geometric properties on the tri-
angular meshes and the advanced researches [3,5,6] that extract features from
triangular meshes. Since most of the advanced researches, the scheme that de-
termines the likeliness of features on triangular meshes is not clearly explained.
In this paper, we give a very detailed explanation about determining the likeli-
ness of features based on differential geometry and the principal curvatures on
triangular meshes.

This paper is composed of the following sections. In section 2, we briefly
review the related work. We propose the multi-scale normal variation in section
3. In section 4 and 5, we overview the segmentation scheme for smooth surfaces
and suggest how to modify the scheme for the domain of triangular meshes. In
section 6, we discuss the formula for estimating feature weight, and we present
the results in section 7. Finally, we conclude and suggest the direction of future
research in section 8.

2 Related Work

Taubin [7] proposed a method to estimate the principal curvatures of a surface
at the vertices of a polyhedral mesh by computing in closed form the eigenvalues
and eigenvectors of certain 3×3 symmetric matrices defined by integral formulas.
This method is targeted to the polygonal surface of a large number of small faces.
Meyer et al. [4] proposed a tool to approximate first and second order differential
properties on triangular meshes such as normals and curvatures using averaging
Voronoi cells and the mixed Finite-Element/Finite-Volume method. They proved
the optimality of their scheme under mild smoothness conditions and demon-
strated the numerical quality. Lee and Lee [3] exploited normal variations for the
estimation of local curvatures of triangular meshes. They computed the feature
energy, which is an approximation of local curvature, at a vertex of a mesh. The
feature energy of a vertex is defined as the minimum value of the inner products
between the normal vector at the vertex and the normal vectors of the faces ad-
jacent to the vertex. Jung and Kim [1] exploited maximal normal variations to
find feature vertices on the mesh. The maximum normal variation at a vertex is
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defined as the value proportional to the maximum angle between the vertex nor-
mal and the normals to the faces adjacent to the vertex. It is an approximation
to maximal principal curvature. Min et. al [5] have proposed a scheme that eval-
uates the feature weight of triangular meshes based on hinge angles of edges. At
each vertex, the hinge angles of the incident edges are estimated and evaluated
to compute a feature weight, which is the likelihood that the vertex belongs to
convex or concave region and how much the region around the vertex is curved.

3 Multi-scale Normal Variation

Normal variation is an approximation scheme for the principal curvatures of tri-
angular meshes [3,1]. In this scheme, the angles between the normal of a vertex
and the normals of the faces incident to the vertex are estimated and the max-
imum value is estimated as the maximal principal curvature and the minimum
value as the minimal principal curvature. In this paper, we modify this scheme
by using the normals on the incident edges instead of on the incident faces.
Since the incident edges are on the incident faces, this scheme is not so different
from the conventional normal variation scheme. However, this modification al-
lows an easy extension of the normal variation scheme to multi-scale paradigm.
The multi-scale paradigm for feature extraction on point cloud data is suggested
by Pauly et al. [6]. We apply the multi-scale paradigm to the normal variation
and triangular meshes in this paper.

(a) (b) (c) (d) 

Fig. 1. Multi-scale approximation of the curvatures: (a): the original curve; (b): a coarse
approximation of (a); (c) and (d): the same fine approximations of (a). The same point
(red point) is sampled on the curves. The radius of the osculating circle (yellow circle),
which indicates the curvature at the point, is 1.2 for (a), (b) and (d), and is 1.8 for
(c). (b): The curvature at the red point is the same as that of the corresponding point
on the original smooth curve. (c): The curvature at the red point estimated using the
1-ring neighborhood is not the same as the corresponding point on the original curve.
(d): The same fine approximation where the curvature estimated by using the 3-ring
neighborhood is the same as the corresponding point on the original curve.

The multi-scale normal variation is measured by estimating the normal vari-
ations of a vertex and its k-ring neighborhood vertices. In case of k = 1, the
multi-scale normal variation is identical to the classical normal variation scheme.
One critical drawback of schemes that estimate principal curvatures at triangu-
lar meshes is that the schemes may not able to estimate the principal curvatures
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for the meshes whose vertices are extremely dense. For the meshes of extremely
dense vertex set, the distances between sampled vertices from the smooth surface
of 3D object are not enough to represent the principal curvatures of the regions
of the sampled vertices (See Figure 1 for an example of this problem). In such
a case, the principal curvatures at a vertex should be estimated by considering
2-ring or 3-ring neighborhood vertices.

The result of the multi-scale normal variation is presented in Figure 2. The
mesh, which is constructed from the range scanned data of human face, has 73687
vertices and 14305 faces. In Figure 2, the classical normal variation scheme at (a)
cannot estimate the principal curvatures at most of the vertices. However, the
multi-scale normal variation scheme at (b) and (c) can estimate the principal
curvatures at the vertices on the mesh. The difference is the vertices on the
nose. Even though the nose is considered a high-curvatured region on a face, the
principal curvatures estimated by the conventional normal variation are not so
high (Fig 2(b)). The high values of the principal curvatures on the region are
clearly estimated by the multi-scale normal variation (Fig 2(c), (d)).

(a) Target mesh (b) k= 1 (c) k= 2 (d) k= 3 

Fig. 2. The result of multi-scale normal variation: (a) The target mesh with 73687 ver-
tices and 146305 faces, (b) principal curvatures estimated by the conventional normal
variation where k = 1, (c) k = 2, (d) k = 3

The procedures of estimating principal curvatures in this paper are as follows:

1. Computing normal vectors at each vertex.
2. Determining k for multi-scale normal variation.
3. Estimating principal curvatures using multi-scale normal variation.

3.1 Computing Normal Vectors

At a vertex v whose incident faces are f0, f1, ..., fN−1, the normal vector nv is
estimated by the following formula:

nv =
1
N

N−1∑
i=0

θi
Θ

ni,
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where ni is the normal vector of fi. θi denotes the angle of vertex v in the triangle
fi and Θ is the sum of all θi’s.

3.2 Determining k

Determining the value of k, which denotes the level of multi-scaling, depends
on the triangular meshes. If the mesh is locally flat (Figure 1 (c)), we need to
increase k. The determination of flatness of triangular meshes is estimated by
the following strategy. At a vertex of the mesh, we compute k-ring neighborhood
of the vertex and estimate the average angles between the normals of the vertex
and the vertices on the neighborhood. We repeat this process at each vertex on
the mesh and compute the average value from the values on each vertex. If this
value is too small, we increase k and repeat this process again until the value
is big enough. In this paper, we increase k repeatedly until the average value
becomes greater than 0.15.

3.3 Estimating Principal Curvatures

The formula for estimating k1(v) and k2(v) at a vertex v is suggested as follows:⎧⎨⎩k1 ← max
1≤i≤n

{ sign(ev
i ) |nv · ev

i | }, for convex

k2 ← min
1≤i≤n

{ sign(ev
i ) |nv · ev

i | }, for concave, (1)

where ev
i is the unit vector from v to the i-th boundary vertex on the k-ring

neighborhood vertices, and nv is the normal at v. The · operator denotes the
inner product between vectors. The sign(ev

i ) is defined as follows:

sign(ev
i ) =

{
+1, if nv · ev

i < 0
−1, if nv · ev

i > 0. (2)

4 Brief Overview on Segmentation of Smooth Surfaces

In differential geometry, a smooth surface can be segmented into the following
three patches according to the principal curvatures. In this paper,k1 denotes the
maximal principal curvature and k2 denotes the minimal principal curvature.
Therefore, k1 ≥ k2.

elliptic: k1k2 > 0.
parabolic: k1k2 = 0.
hyperbolic: k1k2 < 0.

For the elliptic patch, it can be further classified into elliptic convex patch
where k1 > 0 and k2 > 0 and into elliptic concave patch where k1 < 0 and
k2 < 0. The parabolic patch can be a region such as cylinder where k1 > 0 and
k2 = 0. We classify flat region where k1 = 0 and k2 = 0 as parabolic patch. The
relationship between the patches is illustrated in Figure 3.
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k1>0 &  

k2>0 

Elliptic convex Hyperbolic Elliptic concave

k1>0 &  

k2<0 

k1<0 & 

k2<0 

Parabolic patch or curve 

k1>0 & k2=0 k1=0 & k2<0 

Flat 

k1=0&k2=0

k1 

k2 

k1 > 0 & 

k2 > 0 

k1 < 0 & 

k2 < 0 

k1 > 0 & 

k2 < 0 

k1 = k2 

Elliptic 

Convex 

Elliptic 

Concave Hyperbolic 

Parabolic 

Parabolic Flat

(a) (b) 

Fig. 3. The relationships between the patches defined in Section 4: (a) The diagram
illustrates the definitions and the relationship of the patches. The arrow denotes that
the two patches connected by the arrow can be neighborhood, (b) The patches are illus-
trated in k1 − k2 plane. Note that the area {(k1, k2)|k1 < k2} is not available (N/A).

5 Segmentation of Triangular Meshes

In this section, we describe four strategies to modify the classification scheme on
smooth surfaces presented in Figure 3 into the classification scheme on triangular
meshes. Based on the classification scheme, we present a formula that defines the
feature weights that will generate meaningful regions from triangular meshes.

5.1 Decomposition of the Hyperbolic

Some of the hyperbolic patches can be more concave than convex (|k2| > |k1|)
and others can be more convex than concave (|k1| > |k2|). Therefore, we decom-
pose hyperbolic patches into three sub-patches by introducing two parameters
t1 and t2, where t1 > 1 and 0 < t2 < 1.

Convex hyperbolic: |k1| > t1|k2|.
Hyperbolic: t2|k2| ≤ |k1| ≤ t1|k2|.
Concave hyperbolic: |k1| < t2|k2|.

The relation of these three patches is illustrated in Figure 4.

5.2 Modification of Parabolic

According to the modification of the hyperbolic patch, the definition of the
parabolic, which is between the elliptic patch and the hyperbolic path should be
modified. According to the definition of the border of the two patches, the new
definition of the parabolic is as follows:

k1 > 0 and k2 = 0 −→ k1 > 0 and k2 < 0 and |k1| = t2|k2|.
k1 = 0 and k2 < 0 −→ k1 > 0 and k2 < 0 and |k1| = t1|k2|.

The new parabolic on the k1−k2 plane are illustrated as cyan lines in Figure 4 (b).
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Convex  
Hyperbolic 

Hyperbolic 

k1 > 0 & 

k2 < 0  

|k1| > t1 |k2| 
t2 |k2|  |k1| 

|k1|  t1 |k2|

Hyperbolic 

|k1| < t2 |k2|

Concave 
Hyperbolic 

k1 

k2 

N/A

k1 = - k2

|k1| = t1 |k2| 

|k1| = t2 |k2| 

k1 = k2 

(a) (b) 

Fig. 4. The decomposition of the hyperbolic patch into three sub-patches: (a) The
diagram illustrates how the hyperbolic patch is decomposed, (b) The three sub-patches
are illustrated on k1 − k2 plane

5.3 Modification of Convex and Concave

We define convex patch on triangular meshes by combining the convex elliptic
patch and the convex hyperbolic patch. Similarly, the concave patch is defined
by combining the concave elliptic patch and the concave hyperbolic patch.

5.4 Modification of Flat

The definition of flat, which is k1 = 0 and k2 = 0, is modified by considering
some perturbations of the triangular meshes.

k1>0 & k2>0 

Convex Hyperbolic Concave

k1<0 &k2<0

Parabolic patch or curve 

k1 > 0 & k2 < 0  

| k1| = t1 | k2| 

Flat

|k1+|k2|<

(a) 

|k1| > t1 |k2| |k1| < t2 |k2|

t2 |k2|  |k1| 

|k1|  t1 |k2| 

k1 > 0 & k2 < 0 

| k1| = t2 | k2| 

k1 

k2 

N/A

k1 = - k2

|k1| = t1 |k2| 

|k1| = t2 |k2| 

k1 = k2 

(b) 

Fig. 5. The diagram of the modified patches: (a) The diagram illustrates the definitions
and the relationship of the patches, (b) The patches are illustrated in k1 − k2 plane
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k1 = 0 and k2 = 0 −→ |k1| + |k2| < δ.

The diagram resulting from the four procedures is illustrated in Figure 5 and
Figure 6 briefly illustrates the change of the definitions of the patches in this
Section.

6 Estimating Feature Weights

In this section, we build a formula that estimates feature weights on the vertices
of triangular meshes. Since the triangular meshes can be segmented according
to the scheme presented in Section 5, the feature weight should be defined after
considering the segmentation scheme. According to the segmentation scheme in
Section 4, k1 or k2 can be used as the feature weight. Lee and Lee [3] exploited
the minimum normal variation, which is an approximation of k2 and Jung and
Kim [1] exploited the maximum normal variation, which is an approximation of
k1. Therefore, Lee and Lee extracted the extreme concave curves and Jung and
Kim extracted the extreme convex curves from triangular meshes. In this paper,
our target is to define a feature weight that can define both the convexity and
the concavity of the meshes.

Patch Before modification After modification

Convex k1 > 0 and k2 > 0 k1 > 0 and k2 > 0
|k1| > t1|k2|

Hyperbolic k1k2 < 0 t2|k2| ≤ |k1| ≤ t1|k2|
|k1| < t2|k2|

Concave k1 < 0 and k2 < 0 k1 < 0 and k2 < 0

Parabolic k1 > 0 and k2 = 0 k1 > 0 and k2 < 0 and |k1| = t2|k2|
k1 = 0 and k2 < 0 k1 > 0 and k2 < 0 and |k1| = t1|k2|

Flat k1 = 0 and k2 = 0 |k1| + |k2| < δ

Fig. 6. The summary of the modification

We present he following strategies for defining the feature weights.

The type of the feature weight: Triangular meshes are classified into three
patches: convex, concave, and hyperbolic, which is also known as saddle.
Therefore, the feature weight at a vertex should indicate to which patch the
vertex belongs.

The magnitude of the feature weight: The magnitude of the feature weight
indicates how much the region is curved. We define the magnitude of the
feature weight as α(|k1| + |k2|), where α is a scaling coefficient.

Consequently, a feature weight at a vertex is defined as a tuple ( tv, uv ),
where tv is one of {convex, concave, saddle}, and uv is a non-negative floating
point value. The following formula shows how ( tv, uv ) is determined.
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Fig. 7. The result of the algorithm applied to four facial models. The first column is
the target model. The second column is rendered by the maximal principal curvatures,
and the third one is rendered by the minimal principal curvature. The fourth one is
rendered with saddle values. In this figure, red denotes convex region and blue denotes
concave. The violet denotes the saddle region where |k1| > |k2|, while the green denotes
the saddle region were |k1 < k2|. The fifth ones are the targeted segmentation of this
paper. The intensity of colors denotes the magnitude of the feature weight.
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tv =

⎧⎨⎩
convex, if (k1 > 0 and k2 > 0) or (|k1| > t1|k2|)
saddle, if t2|k2| ≤ |k1| ≤ t1|k2|
concave, if (k1 < 0 and k2 < 0) or (|k1| < t2|k2|),

(3)

uv = α(|k1| + |k2|).

7 Implementation and Results

We implemented the proposed algorithm in PC with 3.06 GHz CPU and 2.0MB
main memory. We tested the algorithm for five facial models and four general 3D
models. The results are illustrated in Figure 7. On every model, the computation
of estimating feature weights was executed with in several seconds.

8 Conclusions and Future Work

In this paper, we have presented a novel framework that estimates the geometry
of triangular meshes and builds a ”segmentation scheme” that segments the
meshes into several meaningful subregions. We also improved the robustness of
the scheme by extending the normal variation scheme to multi-scale paradigm.
But this paper does not report a scheme that automatically extracts regions
from triangular meshes, but a scheme that numerically define such regions on
triangular meshes. All the examples that show regions are created simply by
displaying feature values. As a future work, we will present a feature extraction
scheme based on the feature weights estimated in this paper.
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Abstract. Service robots need object recognition strategy that can work on 
various objects and backgrounds. Since no single method can work well in 
various situations, we need to combine several methods so that the robots can 
use an appropriate one automatically. In this paper we propose a scheme to 
classify situations depending on the characteristics of object of interest, back-
ground and user demand. We classify the situations into three categories and 
employ different techniques for each one. We use SIFT and biologically moti-
vated object recognition techniques developed by Serre et al. for two categories. 
These two methods do not work well on the remaining category of situations. 
We propose a contour based technique for this remaining category. Through our 
experiments, we show that the contour based method performs better than the 
previously mentioned two methods for this category of situations. 

1   Introduction 

Helper robots or service robots have attracted much attention of researchers for the 
handicapped or aged people. We are developing a service robot that can find out a 
specific or a general class of object ordered by the user. For example, if a user asks a 
robot to find a ‘coke can’, then his/her demand is for a specific object and if he/she 
asks to find any ‘can’, then his/her demand is for a class of object. The robots need a 
vision system that can work on various objects and backgrounds. There is no single 
object recognition method that can work on various types of objects and backgrounds 
perceived by such robots. In this paper we present scenarios that have been encoun-
tered by a service robot to carry out its object recognition task and propose a solution 
for these challenges.  

It is crucial for the service robot to extract relevant features from the object of in-
terest in order to achieve successful object recognition method. Recently feature  
extraction by segmentationless methods became much attractive in the object recogni-
tion paradigm. Such methods are more robust to complexity of the object and the 
background. In a recent work [1], Mikolajczyk et al. evaluated the performance of 
some descriptors that do not require segmentation. They compared these descriptors 
for robustness against changes of rotation, scale and view point change, image blur, 
JPEG compression and light change. They concluded that SIFT [2] based descriptors 
perform best. SIFT is capable of detecting the exact object that the system has previ-
ously seen with an incomparable performance. It uses difference of Gaussian detector 
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to find blob-like structures in an object to generate keypoints used for object match-
ing. Unfortunately this method generates very few or no keypoints if the objects are 
very plain and do not have much detail. Therefore, SIFT is not well suited to recog-
nize such objects. These objects include single color coffee mugs or pieces of fruit in 
our application domain.  SIFT features use positional information in Lowe’s algo-
rithm. This algorithm cannot recognize another member of the same class with differ-
ent texture. For example, to recognize a cup, the system must have seen the same cup 
or similarly textured cup before. SIFT fails to recognize another cup whose texture is 
different or even if it does not have any texture. As a consequence, SIFT is not appli-
cable for class recognition. To use SIFT for class recognition, all the position infor-
mation may be neglected as done in Serre’s work [3]. But losing these information, 
SIFT cannot be considered as our top choice.  

Many objects are represented well not by their texture but by their shape. From 
now on we call them Simple objects. These simple objects may be further classified 
into two groups. First group contains the objects that do not have any texture on them 
while the second group includes the textured objects although this texture does not 
characterize them.  Objects of the first group will be named as Simple I objects and 
those from the second group will be named as Simple II objects.  

We name the other objects which cannot be solely described by their shapes as 
Complex objects. For Complex objects we may have many features present, such as 
texture and patterns on surface and we can use SIFT, Harris corner detector or other 
similar techniques to extract features. One may say that segmentation is enough for 
simple objects since simple objects contain no texture. But segmentation is too vul-
nerable to extract shape information in a realistic background where color of some 
part of the background is the same as that of the target object. 

In a recent work [3], Serre, Wolf and Poggio proposed the standard model that is 
suitable for class recognition. They claimed that their method is comparable or better 
than other state-of-the-art techniques and demonstrated that C2 feature is superior to 
SIFT feature without position information. Although the results are impressive for 
some object categories, there are some objects for which detection rate is not good 
enough. Investigation into S1 patches of standard model [3] reveals out that textures 
in the training or test images produce response from the Gabor filters, which are even-
tually forwarded to the classifier and the classifier is trained on these textures too. For 
simple II objects, however, these wrong features train the classifier in a wrong way. 

Since the success of an object recognition strategy for a service robot depends on 
the type of background, type of object and user demand, we have to deploy appropri-
ate technique for a particular situation. We classify situations experienced by a service 
robot into three categories. The first category consists of the recognition tasks involv-
ing specific textured objects from Simple II and Complex objects. SIFT works well 
for this category. In this paper we use SIFT as described in Lowe’s algorithm which 
includes positional information and is very robust. The second category involves class 
recognition of Complex objects. Serre’s method performs well for this category.  Still 
there is a number of remaining cases which cannot be dealt efficiently with the above 
mentioned two techniques and these cases have been included in the third category. 
To deal with the cases of the third category, in this paper, we propose a technique 
named the contour based method which is an integration of contour detection and 
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Serre’s method. The robot uses SIFT, Serre’s method and the contour based method 
for the first, second and third category respectively. Our proposed classification 
scheme enables the robot to choose the appropriate detection method. Through ex-
periments, we show that our proposed contour based method performs better than 
SIFT and Serre’s method for the third category of situations. We introduce the classi-
fication scheme in section 2 and contour based technique in section 3.  

2   Classification of Situations 

An object recognition problem can be classified into several categories depending on 
the nature of background, object and application. Considering the vision system of a 
service robot as application, we can categorize the recognition problem as in Table 1. 
We also mentioned the applicability of SIFT, Serre’s method and the contour based 
method for each case. We choose SIFT and Serre’s method since these are two of the 
state-of-the-art object recognition methods and each is dedicated to different scenario. 

We define the terms used to represent background types and object types in Table 1 
as follows: 

Background type:  
Simple: single color background; segmentation can easily remove the background. 
Complex: multicolor, textured or patterned background 
Object type: 
Simple I: single color, textureless object. Example: single color fruit, ball, etc. 
Simple II: some members may have texture while others do not. Example: mug,  
cup etc. 
Complex: textured or patterned and this texture or pattern is required for their recog-
nition. Example: keyboard, piano, etc. 
Object specificity: 
Specific: particular instance of an object 
Class: any member of an object category 

As discussed in the introduction, SIFT is capable of efficiently recognizing a spe-
cific Complex or textured Simple II object. It is not suitable for Simple I, Simple II 
(textureless) objects or class recognition.  

Examining the S1 patches (Fig. 1) of Serre’s method, we notice that many strong 
responses come from the textures on the target object and also from the background. 
These responses are ultimately used for training, and the classifier considers them as a 
part of a positive example. As a result Serre’s method cannot be used effectively to 
recognize Simple I or Simple II (textureless) objects in complex background and 
Simple II (textured) objects in any background. 

In this paper we propose a way to deal with cases 1, 2(b), 3, 6, 7 (b) and 8. Since 
the shape is the fundamental characteristic of Simple I and Simple II objects, we em-
bed contour detection in Serre’s method to eliminate unwanted textures. Although the 
contour detector is not able to remove all the texture completely, the recognition rate 
improves considerably. To detect the contour we use nonclassical receptive field 
inhibition [4]. 
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Table 1. Categorization of an object recognition scenario depending on the type of background, 
object and user demand 

Applicability Backgro-
und type 

Object 
type 

Specific/ 
class 

Case 
SIFT Serre’s 

method 
Contour based  

method 
specific 

Simple I 
class 

1   • 

specific 
(textured) 

2 (a) •   

specific 
(textureless) 

2 (b)   • 
Simple 

II 

class 3   • 
specific 4 •   

Simple 

Complex 
class 5  •  

specific 
Simple I 

class 
6   • 

specific 
(textured) 

7 (a) •   

specific 
(textureless) 

7 (b)   • 
Simple 

II 

class 8   • 
specific 9 •   

Complex 

Complex 
class 10  •  

 

  
(a) (b) 

Fig. 1. (a) Input image (b) 0 degree S1 patch [3] showing the response generated by textures on 
background and cup surface 

To categorize scenarios into one of the 12 cases, we need three kinds of informa-
tion: background type, object type and object specificity. We apply the algorithm 
shown in Fig. 2(a) to classify an object into Simple I, Simple II or Complex catego-
ries. In this algorithm, we use diverse samples where the targets exist in a simple 
background to ensure that no keypoint is generated from the background. 
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When the user asks the robot to find an object, the robot remembers which cate-
gory that object falls into. If the demand is specific and the object can be classified as 
Simple II, robot remembers whether the object had texture or not. The robot is trained 
on all the objects (on which the robot works) using the algorithm shown in Fig. 2 (a) 
prior to recognition. Since any suitable method for complex background can also 
work in simple background, we can use the same algorithm for both types of back-
grounds if the object type and object specificity remain the same and we need not to 
classify the background. Finally, object specificity will be known from the robot user. 
Now we deploy appropriate strategies for three categories of cases as follows: 

SIFT: cases 2 (a), 4, 7 (a), and 9 (Category 1) 
Serre’s method: cases 5 and 10 (Category 2) 
Contour based method: cases 1, 2(b), 3, 6, 7 (b) and 8 (Category 3) 
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keypoints from

all images

Do all
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(c) 

Fig. 2. (a) Object classification algorithm (b) One example of a cup have 67 keypoints (c) 
another example have 17 keypoints 

We show the classification of ‘cup’ as an example (Figs. 2(b) and (c)).  In this ex-
ample, one sample from ‘cup’ category has 67 keypoints and another has 17. As a 
result, not all cups have greater than or equal to 30 keypoints. Consequently it is clas-
sified as a Simple II object. The threshold of 30 keypoints has been found by exten-
sive experiments on various types of object categories. 

3   Contour Based Method 

Our contour based method consists of two major steps: (1) Contour detection and (2) 
Feature extraction, training and classification.  
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3.1   Contour Detection 

At the first step we extract shape information by eliminating textures from the object 
and background. For this purpose, we use biologically inspired contour detection 
technique proposed in [4], which is called nonclassical receptive field (non-CRF) 
inhibition. This method offers improved contour detection in our robot vision. There 
is evidence that 80% of the orientation-selective neurons in the primary visual cortex 
of monkeys exhibited non-CRF inhibition. We are motivated to use non-CRF inhibi-
tion as it seems to be a general property of biological edge detectors involved in hu-
man and other biological perception of edges and lines. This mechanism extracts the 
edges that belong to the contours of objects while suppressing edges which belong to 
texture regions. Two types of inhibitory mechanism have been proposed in [4]: iso-
tropic and anisotropic inhibition. We use isotropic inhibition to get responses only 
from isolated lines and edges. This inhibition operator does not respond to lines or 
edges that are surrounded by textures.  

3.2   Feature Extraction, Training and Classification  

We employ the feature extraction, training and classification technique proposed in 
[3], which follows the standard model of object recognition in primate cortex [6]. The 
standard model in its simplest version is described in [5]. This model can be split into 
four steps involving computation of four types of responses namely S1, C1, S2 and 
C2 as given below: 

S1: We apply a battery of Gabor filters to the contour extracted images. Filters with 4 
orientations and 16 scales have been used. We obtain 16X4 = 64 S1 maps that are 
arranged in 8 bands. Number of filter orientations can be increased to capture the 
oriented features more accurately but this will increase the computation time. 
C1: Then we take the maximum over scales and positions for each band. These steps 
ensure scale and position invariance. To obtain the C1 responses, S1 maps are sub-
sampled using a particular grid size for each band. We get one measurement from 
each grid cell by taking the maximum of all 64 elements. C1 contains four orientation 
maps. During training only, we extract K patches of various sizes and four orienta-
tions from the C1 maps derived from training images.  

S2: Then we compute )||||exp( 2
iPXY −−= γ for image patches X and training patches Pi. 

By doing this we get S2 maps.  
C2: Finally we compute the C2 responses by taking a global maximum over all scales 
and positions for each S2 type at each position on the S2 map.  

We train a Support Vector classifier using these C2 features and the trained classi-
fier is used for recognition. The outcome of this whole sequence of steps is a trained 
recognizer for contoured objects. 

4   Experimental Results 

We evaluated our object detection technique by using four object categories: chair, 
cup, ewer and ibis. These datasets are from Caltech database which are available at 
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www.vision.caltech.edu. These four categories are included in the ten worst case 
categories in [3]. We carried out the experiments as follows: each of the four datasets 
was split randomly into two sets: training set and test set. Each set contained 30 im-
ages. First set was used for training and the second one was for testing. The negative 
training and test sets were randomly generated from the background images as in [3]. 
These background images were collected from junk images from the internet which 
were totally unrelated to the keyword category. Each experiment was carried out 
under identical conditions. For some datasets, less than 30 images were left after 
training images were drawn. In this case, we took mirror images of some images to 
make the number of images 30. For each category, we repeated the experiments sev-
eral times for each value of feature (using randomly chosen 30 training images each 
time) to obtain an unbiased estimate of performance. We used contour detection soft-
ware available at http://matlabserver.cs.rug.nl and the code for biologically motivated 
object recognition system available at http://cbcl.mit.edu. For contour detection, we 
used the following values for different parameters: 

Wavelength: 4; Initial orientation: 0o; Phase offset:  0o, 90o; Aspect ratio: 0.5; Band-
width: 1; Number of orientations: 16; Inhibition type: isotropic surround inhibition; 
Superposition for isotropic inhibition: L-infinity norm; Alpha: 2; DoG parameters: K1 
= 1, K2 = 4; Thinning: enabled. 

To classify the studied objects into Simple I, Simple II or Complex categories we 
used single color background images so that we could use our classification algo-
rithm. We used our own images if there were no such images in the dataset. Chair, 
cup and ewer were classified as Simple II objects. For ibis, we got greater than 30 
keypoints from all of the images. But sometimes the number of keypoints was close to 
30. So we tried the contour based method to recognize it although it had been classi-
fied as a Complex object. In the class recognition results given in Table 2 we demon-
strate the superiority of contour based  method over Serre’s method for the three  
object categories where the situations falls into case 8 as mentioned earlier. Since 
SIFT is not suitable for class recognition, we omit its performance in this table. 

In Fig. 3 we compared the performance of the contour based and Serre’s method 
for ‘cup’ category. We used identical parameters to make the comparison fair. The 
numbers of training and testing samples were kept the same throughout. We found 
that the modified system outperforms the original system for the studied cases. 
 

Table 2. Performance comparison of Serre’s and the contour based  method 

Serre’s method 
(no. of features=250) 

Contour based  method 
(no. of features=250) 

Object cate-
gory 

Detection   
rate, % 

False positive 
rate, % 

Detection   
rate, % 

False positive 
rate, % 

Chair 62 24 76 14 
Cup 67.3 24 74 15.3 
Ewer 74.7 24 80.7 14.7 
Ibis 66 29.3 63.3 16.7 
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Fig. 3. Performance comparison: (a) Detection rate (b) False positive rate 

  

Fig. 4. Examples of test images used in experiments 

Performance results for other objects where both systems performed equally are not 
shown. These results verify that use of contour detection for Simple I and Simple II 
objects can significantly improve the detection rate and lower the false positive rate. 
Time required for contour detection is negligible compared to the time required in 
later stages. As a result it does not add any significant burden to the system. 

5   Conclusion 

To make a service robot’s vision system work well in various situations, we have 
integrated several methods so that robot can use the appropriate one. We have pro-
posed a scheme to classify the situations depending on the characteristics of object of 
interest, background and user demand. It has been shown that it is possible to classify 
the situations into three categories and employ separate techniques for each group. 
This classification scheme enables a service robot to automatically decide the appro-
priate detection method to use. SIFT and Serre’s method have been employed for two 
categories. A contour based technique for the third category has also been proposed. 
We verified that the contour based method performs better than the previously men-
tioned two methods for this category of situation.  

In some object category, all members may be textured although these textures vary 
much within samples and they are mainly described by their shapes. In this case cate-
gorization into Simple II or Complex object is difficult using SIFT keypoint count. 
We are investigating the use of PCA to detect the similarity of textures and to solve 
this problem. 
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Abstract. In this paper, we present a novel and efficient algorithm for
rendering light-emitting fluids such as fire. For this purpose, we extend
the well-known photon mapping algorithm for volumetric environments.
The photons emitted from the fluids are stored in a voxelized space,
instead of k-d tree in the original photon mapping scheme. We further
propose an efficient photon collecting algorithm based on Bresenham’s
algorithm, which can collect photons in reduced computational loads.
We prove the effectiveness and efficiency of the proposed algorithm by
visualizing light-emitting fluids such as fire in various styles.

1 Introduction

Light-emitting fluids such as fire, hot smoke, and explosions are one of the most
interesting topics in computer graphics. The animation techniques for such flu-
ids require a rendering scheme as well as a simulation scheme. Building fluid
animations based on fluid equations such as Navier-Stokes equations [6], semi-
Lagrangian scheme [13] and Euler equations [4] have been proposed. Furthermore
several researchers have been proposed the physically-based simulation schemes
for the light-emitting fluids such as fire [2, 12, 11, 10] and explosion [5].

The most widely-used algorithm for visualizing fluids is the photon mapping
scheme. The photon mapping scheme casts photons from light source to the
environment and stores the photons on the surfaces in a data structure such
as k-d tree [7]. In the rendering step, Jensen presented a spherical scheme for
sampling photons [7]. Several points on the ray from the view point are sampled
and photons that lie inside a sampling distance from the point are collected to
make contributions in computing the color of the pixel which corresponds to
the ray. This method, however, has the problem that the photons can be sam-
pled irregularly and the inefficiency that the sampling process requires distance
computations between the point on the ray and the photons. Since millions of
photons are cast in many cases, this distance computation becomes one of the
major computational load in the photon mapping rendering scheme.

We extend the photon mapping scheme in the following two points. First, we
store and manage photons in a voxelized environment instead of k-d
� Corresponding author.
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Fig. 1. Basic ideas of this paper: (a) Photons are stored in a voxelized environments,
(b) Photons near a ray are sampled in a cylindrical sampling scheme, where r denotes
the sampling distance, (c) The voxels within r from a ray are determined by exploiting
Bresenham’s algorithm, (d) A voxel is decomposed into several sub-voxels and the
photon is stored as the index of the sub-voxel

tree (See Figure 1 (a)). Since most of the fluid simulations are implemented in a
voxelized environment, it is natural to store photons that will visualize the fluids
in the same environment. Furthermore, instead of storing the exact position of
the photon, we present an efficient scheme that decomposes the voxels into sev-
eral sub-voxels and stores the index of the sub-voxel where the photon is located
(See Figure 1 (d)). This scheme reduces memory storage for storing photons and
improves the computation for sampling photons. Second, we sample photons
near the ray from the viewpoint in a cylindrical sampling scheme in-
stead of the spherical sampling scheme (See Figure 1 (b)). Adabala and
Manohar also presented similar sampling scheme [1].

The most important benefit of the cylindrical scheme is that it guarantees
uniform sampling of the photons than the spherical scheme. Additionally, we
achieve another benefit by combining the scheme with Bresenham’s algorithm,
which is the well-known line rasterization algorithm in 2D. By modifying and
applying the Bresenham’s algorithm to the voxelized space and the ray, we can
determine the voxels that the ray pass through efficiently. Furthermore, an ex-
tension of this scheme allows those voxels that lie within the sampling distance
to be computed without computing their distances from the ray (See Figure 1
(c)). Finally, we introduce a scheme that approximates the distance between a
photon and the ray by the distance between the sub-voxel and the ray (See Fig-
ure 1 (d)). This scheme reduces the computational loads in a great scale without
decreasing the rendering quality. Another benefit of this scheme is that we can
achieve a constant rendering time even though we increase the number of pho-
tons. We apply the proposed rendering algorithm to the fire animation created
in [11] and create various rendering effects.

This paper is organized as follows. In Section 2, the schemes for rendering
light-emitting fluids and simulating light-emitting fluids are surveyed briefly. In
Section 3, we briefly overview the photon mapping algorithm, and we present
the rendering algorithm for light-emitting fluids in Section 4. In Section 5, we
suggest the implementation details and results. Finally, we conclude this paper
and suggest the future works in Section 6.
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2 Related Work

2.1 Rendering Light-Emitting Fluids

The original photon mapping algorithm was developed for global illuminations
[7], and it was extended to visualize fluids and participating media [8]. The
scheme was also further extended to render smoke [4] and fire [9, 12].

2.2 Simulating Light-Emitting Fluids

Most of the animation schemes for fluids are developed based on fluid equations
such as Navier-Stokes equations and Euler equation. Among them, the light-
emitting fluid such as fire or explosion requires additional schemes such as level-
sets [12], combined particle system [5] or simulation of combustion process [11].
In [12], the core of flame is simulated as level-set surface, which is animated
according to the projection of the fuel from the source, and the flying plums
of fire are represented as the fluids projected from the surface of the level-set
surface. In [5], the fuels are modeled as particle systems, and they cooperate with
the classical fluid equations for the simulation of explosion and combustion. In
[11], the combustion process is simulated in the voxelized environments where
fluid equations are solved numerically. Initially the the fluids are assumed to be
fuel whose amount is identical to the density. During the simulation, the fuels
are combusted and generate heat, which increases the temperature of the fluids.
After all the fuels are combusted, the fluids become soot.

3 Overview on Photon Mapping

In this section, we briefly describe the basic mechanism of photon mapping
algorithm [8] and explain how the algorithm is modified to render light-emitting
fluids in this paper. The photon mapping algorithm renders fluids in the following
procedures:

1. Generating photons. The light sources generate and cast photons to the
environment to render. In the original algorithm [8], only light sources gen-
erate and cast photons. In light-emitting fluids, the fluids also play the role
of light source. Therefore, the voxels inside the light-emitting fluids generate
and cast photons.

2. Casting photons. Photons from the light sources are cast uniformly. How-
ever, the photons from the light-emitting fluids are cast to the outward
directions. The casting direction is determined as follows: First, a random
direction is selected. Second, we sample a point in the selected direction
whose distance is the length of a voxel. Third, if the temperature of the
sampled point is greater than the voxel where the photon is generated, then
the direction is discarded and re-select another direction and repeat the
above process again until the direction passes the test.
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3. Travelling photons. During the travels of photons, it has three selections:
transit, reflection and absorption. We exploit the Russian Roulette algorithm
in [8] for the selection. At each point of selection, the power of the photon
is reduced according to the travelled distance and the density of the point.
In case that the selection is transit or reflection, the photon is stored at the
voxel where the selection is made.

4. Storing photons. In this paper, we classify photons according to the place
where the photon is stored. The photon stored at the voxel where it is gen-
erated is denoted as a fluid photon, and the photon stored in the voxel which
is not occupied by the fluid is denoted as an air photon. Finally, the photon
stored on the surface of an object is denoted as a surface photon. In [8], the
positions of the photons are managed by k-d tree. However, we manage the
positions in the voxelized spaces, since the space is already voxelized for the
purpose of the numerical solution of the fluid equations.

5. Efficiency-improving scheme. Most of the computational loads in ren-
dering step come from the process of sampling photons, which includes the
computation of the distances between photons and the ray. In this paper, we
present an approximation scheme for estimating the distance. For this pur-
pose, we decompose each voxel into eight sub-voxels (See Figure 1 (d)). For
a better precision, the voxel can be decomposed into sixty four sub-voxels,
which is one step further decomposition from the eight sub-voxels. Instead
of storing the position of the photons, we store the index of the sub-voxel
that contain the photon. The index has the value of (a, b, c), where the value
is {0, 1} for eight sub-voxels and {0, 1, 2, 3} for sixty four sub-voxels. There-
fore, the distance between the photon and the ray is approximated by the
distance between the sub-voxel and the ray (In Figure 1 (d), blue line replaces
red line).

4 Rendering

The rendering scheme that visualizes light-emitting fluids is developed based on
the ray marching scheme for volume rendering [8, 12]. As a preliminary step, we
build a set of temperature-color graphs that determine the colors of the light-
emitting fluid based on the temperature of the fluids.

4.1 Determination of Color

In related researches [9, 12], the color of light-emitting fluids such as fire is de-
termined based on the black body radiation. Even though their scheme provides
a physically correct way to determine the colors of the fluids, they do not give
the control of determining colors to the fluids. In many application fields such
as movies, animations and games, animators may want to create the color of the
fluids in their own style. Therefore, we present a temperature-color graph which
is a controllable approach in determining the color of light-emitting fluids. In
designing the temperature-color graph, we exploit the field function defined for
building soft objects [3]:
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f(d) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 − (3d2)2

p+ (4.5 − 4p)d2
, 0 < d ≤ 1

2

(1 − d2)2
0.75 − p+ (1.5 + 4p)d2

,
1
2
< d ≤ 1

0, 1 < d

One benefit of the field function is that we can control the slope of the curve
through the parameter p.

In mapping temperature to color, we set three threshold temperatures: τ0,
τ1, and τ2, for each color. Each of the threshold temperatures are matched for
d = 0, d = 0.5, and d = 1 of the field function.

C(T ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, if T < τ0

f(d1), if τ0 ≤ T < τ1

f(d2), if τ1 ≤ T < τ2

1, otherwise,

In the above formula, d1 and d2 are defined as:

d1 = 1 − 1
2
T − τ0
τ1 − τ0

d2 =
1
2

(
T − τ1
τ2 − τ1

+ 1
)
.

An example of the temperature-color graph is illustrated in Figure 2. Three
temperature-color graphs (CR(T ), CG(T ), CB(T )) for three colors (Red, Green,
Black) are illustrated. At the bottom, the resulting color band from the graphs
is illustrated. Users can edit the curve by modifying τ0, τ1, and τ2 values for
each color or p value for each function. By editing the graph, users can control
various rendering effects of fire.

4.2 Integration

Determining voxels. The first step of integration is to determine the voxels
that contain the photons near the ray. The procedures of the determination is
executed in the following steps:

1. As a preparation, we assign the sampling distance, which is denoted as r in
Figure 1 (b), and the viewing information such as view point and viewing
direction. We assume that the view point lies outside the voxels that enclose
the fluids to visualize. From this assumption, the first plane, which is defined
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Fig. 2. Temperature-Color graph

as the plane of the voxels that intersect with ray for the first time, is one of
the six planes {x = 0, x = Nx − 1, y = 0, y = Ny − 1, z = 0, z = Nz − 1},
where Nx, Ny, Nz are the size of the voxels.

2. At the first plane, we compute the first voxel that intersects the ray. Among
the voxels on the first plane, we select the voxels that lie inside the modified
sampling distance r′ from the first voxel. Note that r′ is computed as r′ =
r cos θ and θ is the angle between the viewing direction and the first plane
(See Figure 1 (b)). Those voxels on the first plane that lie within r′ are
exploited in determining the voxels within the modified sampling distance
in the next planes.

3. At the next plane, we apply Bresenham’s algorithm to determine the voxel
that lie on the ray. Then, we compute the displacement of the voxels on the
ray between the previous plane and this plane, and apply it to the voxels
within the modified sampling distance of the previous plane and determine
the voxels within the sampling distance on next plane. We repeat this process
to the last plane and determine all the voxels that lie within the sampling
distance.

This process is visualized in Figure 3.

Sampling photons. After we have determined the voxels inside the sampling
distance, we collect the photons that lie inside the sampling distance and esti-
mate their distances from the ray. Before computing the distance between the
photons and the ray, we project the centroid of the sub-voxel onto the ray and
compute d̃(pi), the distance between the centroid of the ray, which substitutes
d(pi) in the Equation (1), where pi is a photon, and l̃, the distance between the
projected centroid and the view point, which substitutes li in the Equation (1)
(See Figure 1 (d)). For each photon, we search the voxel and its sub-voxel that
contains the photon, and exploit the pre-computed values for the distance from
the ray and the distance from the view point.
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Fig. 3. Determining voxels inside the sampling distance: (a) the first voxel (blue rectan-
gle) and its surrounding voxels (green rectangles) that lie inside the modified sampling
radius r′ (red circle) are computed; (b) the sampling voxels in the next plane are
computed using the Bresenham’s algorithm; (c) this process is repeated until the ray
intersects the last plane

Integration. The color of a pixel is determined by integrating the colors of the
photons lying inside the cylinder whose axis is the viewing direction and radius
is the sampling distance r. The integration equation is illustrated as follows:

I =
1
n

n∑
i=1

e−k1l2i d(pi)−k2C(pi), (1)

where I denotes the color vector at a pixel, and n denotes the number of sampled
photons. d(pi) denotes the distance of the i-th photon from the viewing direction
and li denotes the distance from the view point. C(pi) denotes the color of
the i-th photon, which comes from the temperature-color graph. k1 and k2 are
parameters that control the effects of the distance from the view point and the
distance from the viewing direction on the color, respectively.

4.3 Lighting Effects

The lighting effect of fire is implemented by applying the color of photons stored
on the surface of objects during integration process. Therefore, the integration
equation presented in Equation (1) is modified as follows:

I =
1
n

n∑
i=1

e−k1l2i d(pi)−k2C(pi) + e−k3l(q)2C(q), (2)

where q is the intersection point between the viewing direction and the object,
and C(q) is the color at q and l(q) is the distance between the view point and
q. Note that the decreasing factor k3 depends on the status of the intersection
voxels from the view point to q. k3 depends on the densities of the intersecting
voxels. C(q), the color of q, is estimated in the following formula:

C(q) = Cq ∗ (P(q) + A), (3)
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where Cq is the material color of the object at q and P(q) is the color of the
surface photons that lie within the sampling distance. A is the color of the ambi-
ent light. The multiplication V ∗W denotes the component-wise multiplication,
which means (v1∗w1, ..., vn∗wn), where V = (v1, ..., vn) and W = (w1, ..., wn).

5 Implementation and Results

The proposed algorithm in this paper is implemented at a Pentium-based PC
with 3.06 GHz CPU and 2.0 GByte Main memory. The light-emitting fluids
visualized in this paper is a fluid that represents fire, which was developed in
[11]. We compare the three different rendering schemes: (i) the original pho-
ton mapping algorithm that exploits k-d tree for photon storing and spherical
sampling scheme, (ii) a photon mapping algorithm that exploits the voxelized
structure for photon storing and cylindrical sampling scheme but not the sub-
voxel approach, and (iii) a photon mapping algorithm that exploits the voxelized
structure, cylindrical sampling scheme and the sub-voxel approach. We test the
presented algorithm to create two different rendering results: (i) visualizing fire
and (ii) visualizing fire with environment.

Figure 4 illustrates the rendering results of the proposed algorithm. Figure 4
(a) is the rendering result of fire from rotating torus. The images in the first row
is rendered by the conventional volume visualization scheme [11]. The images in
the second row are rendered by considering the background image. The images
in the third row is rendered by simulating the lighting effect on the boundaries
suggested in Section 4.3. Figure 4 (b) is the rendering result of fire from a fixed
source. The images in the first row is rendered by the conventional volume visu-
alization scheme [11]. The images in the second row are rendered by considering
the lighting effect to the air, where the photons cast from fire are stored in the
air. The images in the third row is rendered by simulating the lighting effect on
the boundaries suggested in Section 4.3.

The rendering styles are implemented in the following strategies:

Rendering with background: The color of a pixel is determined by blending
the integrated color of the photons and the color of the background according
to the well-known alpha blending scheme.

Lighting effect to the air: The photons cast from fire are also stored in the
voxels that does not contain any fluids. In this case, the range of lighting
effect is controlled by the decreasing of the photons in the air. At the inte-
gration step, those photons stored in the air play the role of lighting effects
to the air.

Lighting effect to the environment: The photons cast from fire are stored
on the surfaces of the background. At the integration step, those photons
are integrated according to the Equation (3). For the lighting effect of some
ambient light, we precast the photons corresponds to the ambient light before
casting photons from light-emitting fluids.
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(a) Rendering fire from rotating torus in various styles 

(b) Rendering fire from fixed source in various styles 

Fig. 4. Three styles of rendering results for two types of fires

6 Conclusions and Future Work

In this paper, we have presented an efficient photon mapping algorithm for
rendering light-emitting fluids and have proved the efficiency and excellence of
the algorithm by rendering fire developed in [11].
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In the future work, we are going to extend this rendering scheme to visualize
several heterogeneous fluids simultaneously and to develop a rendering scheme
for a complex scheme that includes shiny objects and transparent objects.
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Abstract. Machine recognition of faces is very challenging because it
is an interclass recognition problem and the variation in faces is very
low compared to other biometrics. Global features have been extensively
used for face recognition however they are sensitive to variations caused
by expressions, illumination, pose, occlusions and makeup. We present a
novel 3D local feature for automatic face recognition which is robust to
these variations. The 3D features are extracted by uniformly sampling
local regions of the face in locally defined coordinate bases which makes
them invariant to pose. The high descriptiveness of this feature makes it
ideal for the challenging task of interclass recognition. In the 2D domain,
we use the SIFT descriptor and fuse the results with the 3D approach at
the score level. Experiments were performed using the FRGC v2.0 data
and the achieved verification rates at 0.001 FAR were 98.5% and 86.0%
for faces with neutral and non-neutral expressions respectively.

1 Introduction

The human face has emerged as one of the most promising biometrics due to its
social acceptability and non-intrusiveness. It requires minimal or no cooperation
from the subject making it ideal for surveillance and applications where customer
satisfaction is important. However, face recognition is very challenging because
it is an interclass recognition problem and the distinctiveness of face is quite low
compared to other biometrics (e.g. fingerprints) [7]. Moreover, changes caused by
expressions, illumination, pose, occlusions and facial makeup (e.g. beard) impose
further challenges on accurate face recognition.

A comprehensive survey of face recognition algorithms is given by Zhao et al.
[17]. They also categorize face recognition algorithms into holistic, feature-based
and hybrid matching algorithms. Holistic matching algorithms basically extract
global features from the entire face. Eigenfaces [15] and Fisherfaces [1] are well
known examples of holistic face recognition algorithms. Feature-based matching
algorithms extract local features or regions such as the eyes and nose and then
match these features or their local statistics for recognition. One example of
this category is the region-based 3D matching algorithm [13] which matches the
3D pointclouds of the eyes-forehead and the nose regions separately and fuse
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the results at the score level. Another example is the face recognition using
local boosted features [8] which match rectangular regions from facial images
at different locations, scales and orientations. Hybrid matching methods use a
combination of global and local-features for face recognition e.g. [6].

One limitation of holistic matching is that it requires accurate normalization
of the faces according to pose, illumination and scale. Variations in these factors
can affect the global features extracted from the faces leading to inaccuracies
in the final recognition. Normalization is usually performed by manually iden-
tifying landmarks on the faces which makes the whole process semi-automatic.
Replacing this manual process by an automatic feature identification algorithm
usually deteriorates the final recognition results. Moreover, global features are
also sensitive to facial expressions and occlusions. Feature-based matching al-
gorithms have an advantage over holistic matching algorithms because they are
robust to variations in pose, illumination, scale, expressions and occlusions.

Multimodal 2D and 3D face recognition provides more accurate results than
either of the individual modalities alone [3]. An up to date survey of 3D and
multimodal face recognition is given by Bowyer et al. [3] who argue that 3D face
recognition has the potential to overcome the limitations of its 2D counterpart
however there is a need for better algorithms which are more tolerant to the
variations mentioned above. Many 3D face recognition approaches are based
on the ICP algorithm [2] or its modified versions. Advantages of ICP based
approaches are that perfect normalization of the faces is not required and partial
regions of faces can be matched with complete faces. The latter advantage has
been exploited to avoid facial expressions [13] and to handle pose variations by
matching 2.5D scans to complete face models [10]. The major disadvantage of
ICP is that it is an iterative algorithm and is therefore computationally very
expensive. Moreover, ICP does not extract any feature from the face and thus
rules out any possibility of indexing. Unless another algorithm and or modality
is used to perform indexing, ICP based algorithms must perform a brute force
matching thereby making the recognition time linear to the gallery size. Selecting
expression insensitive regions of the face for matching is a potentially useful
approach to overcome the sensitivity of ICP to expressions. However, deciding
upon such regions is a problem worth exploring as such regions may not only
vary between different persons but between different expressions as well.

In this paper, we present a face recognition algorithm using 2D and 3D mul-
timodal local features. A novel 3D local feature is presented which is a modified
version of the tensor representation [11] and extracts features in locally defined
3D coordinates. This makes the feature invariant to pose. Robustness to ex-
pressions is achieved by considering only the best predefined m matches. In the
2D domain, the SIFT descriptor [9] is used. SIFTs have mainly been used for
pose and scale invariant 2D object recognition which is an intraclass recognition
problem. To the best of our knowledge, their use for face recognition has not
been thoroughly explored especially using the FRGC v2.0 data (Section 2). In
this work, we use the SIFT descriptors for face recognition under illumination
and expression variations. The results of the 2D and 3D local features are fused
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Fig. 1. (Left) A 3D pointcloud of a face shows spikes. (Center) The same face rendered
as a shaded view to show noise. (Right) Shaded view after preprocessing.

at the rank level using a confidence weighted sum rule. Preliminary experiments
were performed on a randomly selected subset of the FRGC v2.0 data [14].

2 Preprocessing the FRGC v2.0 Data

The FRGC v2.0 [14] defines a set of experiments and provides the largest avail-
able database for performing each experiment. Of these, only Experiment 3 is
relevant to this paper i.e. matching 3D faces (shape and texture) to 3D faces
(shape and texture). The FRGC v2.0 data for Experiment 3 consists of multiple
3D faces and their corresponding 2D faces of 466 individuals in the validation
set. The database consists of frontal views with minor pose variations and major
expression and illumination variations. The individuals are acquired from the
shoulder level up (Fig. 2) and therefore a prior step of face detection is needed.
Moreover, the 3D data is quite noisy and contains spikes and holes (Fig. 1).

Since preprocessing the data is not at the heart of this paper, we will describe
it only briefly. For details, the reader is referred to [12]. A 3D face is automatically
detected by locating the nose tip [12]. Next, the region of 3D face inside a sphere
of radius r (where r = 80 mm) and centered at the nose tip is cropped. The
corresponding pixels of the 2D face are also cropped at this stage. The spikes in
the 3D face are then removed using a neighbourhood distance constraint and the
holes are filled using cubic interpolation. The 3D faces are then median filtered to
remove noise. Finally, the pose of the 3D face and its corresponding 2D coloured
face is automatically corrected in an iterative algorithm based on the Hotelling
transform [12]. The faces are also sampled on a uniform square grid at 1mm
resolution during this process. The resultant faces have 161×161 pixels which is
reasonable for 2D faces however in the case of 3D faces we delete alternate rows
and columns to reduce their size to 80 × 80 pixels and 2mm resolution.

3 3D Local Features

Our novel local 3D feature is a variant of the tensor representation [11] which
quantizes local surface patches of a 3D object into three-dimensional grids de-
fined in locally derived coordinate bases. In [11], we derived the local coordinate



Face Recognition Using 2D and 3D Multimodal Local Features 863

Fig. 2. Illustration of face detection and pose correction of a 3D face and its corre-
sponding coloured texture map

basis from two points and their corresponding normals. In this paper, we define
the coordinate basis using a single point in order to avoid the Cn

2 (where n is
the number of face data points) combinatorial problem [11]. We use a single
point and its normal with some additional invariant information to define a lo-
cal 3D coordinate basis (it is impossible to define a 3D coordinate basis using a
single point and its normal alone). Two different types of invariant information
were tested for this purpose. The first one was based on the orientation of the
SIFT descriptor derived from the 2D face at the corresponding point (details
in Section 3.1). The second invariant information used was the location of the
nose tip which was detected during the preprocessing (Section 2). Details of this
approach are given in Section 3.2.

3.1 Deriving 3D Coordinates from SIFT Orientation and Normal

SIFTs (Scale Invariant Feature Transform) [9] are local descriptors computed
at keypoints on a 2D image. These keypoints are extrema in the scale-space
and are detected using the difference-of-Gaussian function. Each keypoint is
assigned one or more orientations based on the local image gradient. The 2D
coloured faces were converted to grayscale images and histogram equalization
was used to reduce the effects of illumination before calculating SIFTs [9]. We
use the orientations of each SIFT along with the normal of the keypoint calcu-
lated from the 3D data in order to define 3D local coordinate bases. The normal
of the point, which is calculated by fitting a plane to the neighbouring points
within a specified locality, makes the z-axis. The projection of the SIFT orien-
tation on this plane defines the x-axis and the cross product of the z-axis with
the x-axis defines the y-axis. Once the 3D basis is defined, the local 3D feature
is computed as described in Section 3.3. Multiple orientations at a single point
result in multiple 3D bases and hence multiple 3D local features. The downside
of this approach is that since SIFTs are stable at only the keypoints, this re-
stricts the number and location of the 3D features. This approach did not give
satisfactory results (Fig. 7) indicating that the SIFT keypoint locations were not
the best to calculate our 3D features. Another possible reason is that the SIFT
orientations were not sufficiently stable to derive unique local 3D coordinate
bases.
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3.2 Deriving 3D Coordinates from Nose Tip and Normal

In this approach the 3D local coordinate basis at a point is derived using the
normal of the point and the location of the nose tip. Since there is a single nose
tip, this avoids the Cn

2 problem [11] discussed above. Recall that the nose tip is
automatically detected during the preprocessing stage (Section 2). The normal
is again taken as the z-axis and the cross product of the z-axis with the vector
from that point (where the 3D feature is to be calculated) to the nose tip defines
the y-axis. The cross product of the y-axis with the z-axis defines the x-axis.
Once the 3D basis is defined, the 3D feature is computed as described in Section
3.3. At this stage, we randomly select 300 locations on the face to extract the
3D local features. However, in future we plan to replace this random selection by
a more reliable 3D keypoint identification algorithm. This approach gave better
results (see Section 4) compared to the first approach probably because the the
number and location of the 3D features are not tied up to the SIFTs and some
of the 3D local features ended up being selected from regions which are more
suitable for 3D features compared to the SIFT keypoint locations. Moreover, the
coordinate bases defined using this approach were comparatively more stable.

3.3 3D Local Feature Extraction

Let P be a 3 × n matrix of the x, y and z coordinates of the pointcloud of a 3D
face given by Eqn. 1 (where n is the number of points).

P =

⎡⎣x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

⎤⎦ (1)

The 3D local feature at a point pi = [xi yi zi]� is extracted as follows. First, all
points Pl within a specified neighbourhood l of pi are cropped and transformed
to the local coordinate basis using Eqn. 2. Where B is the 3 × 3 matrix of the
locally defined basis.

P′
l = B(Pl − pi) (2)

Eqn. 2 translates Pl so that pi becomes the origin and rotates it so that it is
aligned with the local coordinate basis. After rotation, the points in P′

l may no
longer remain uniformly sampled. Therefore, P′

l is sampled again on a uniform
grid in the xy-plane which is essentially the tangent plane used to calculate the
normal of pi. This uniform sampling measures the distance of every sample point
in P′

l to the tangent plane or a local invariant range image at that point. This
range image is the 3D local feature at point pi and is invariant to pose since it is
defined in a local coordinate basis. The value of l decides the degree of locality of
the feature and the resolution of the sampling decides the degree of granularity
of the feature. Choosing a very high value for l makes the feature sensitive to
facial expressions whereas choosing a very low value will make it less descriptive.
Similarly, the sampling rate offers a trade off between accuracy and efficiency.
We chose l = 30mm and the sampling was done using a 30 × 30 on the basis of
experiments performed on training data.
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3.4 Matching 2D and 3D Local Features

It is possible to make the matching process much more efficient by using in-
dexing or hashing. However, we performed a brute force matching in our initial
experiments since our aim was to first demonstrate the effectiveness of these fea-
tures for face recognition. To calculate the similarity between a gallery and probe
face, their local features were matched using Euclidean distance. Features with
minimum distance were considered as matches. Only one-to-one matches were
established i.e. a feature from the gallery face was allowed to be a match to only
one probe feature. The similarity score between the two faces was taken as the
mean distance between the best predefined m matching pairs of features. This
means that some matches were not considered allowing for variations caused in
the data e.g. due to illumination and expressions.

Our novel local 3D features are highly descriptive and can find correct matches
even in the challenging case of face recognition. Fig. 3 shows the five best matches
between a probe with neutral expression and its correct identity in the gallery
whereas Fig. 4 shows the five best matches of the same probe with an incorrect
identity. The first row corresponds to the 3D local features of the probe whereas
the second row corresponds to those of the gallery. Each column represents a
matching pair of features with error written between them. Notice that the
errors are much lower in the case of the correct identity (Fig. 3). Under non-
neutral expressions, the quality of the matches deteriorates however the correct
identity still gives much lower error compared to the incorrect identity (Fig. 5
and 6).

3.5 Fusion

The 2D and 3D local feature matching engines each results in a similarity matrix
of size N ×M (M is the gallery size and N is the number of probes tested) with
negative polarity i.e. a lower value means higher similarity. The matrices are
normalized using the min-max rule and then fused using a confidence weighted
sum rule. Since each row of a similarity matrix corresponds to an independent
recognition trial of a particular probe, the matrices are normalized row wise on
the scale of 0 to 1. For each row (or recognition trial), the confidence value is
calculated as the ratio of the difference between the best and mean similarity
scores to the difference between the second best and mean similarity scores.

4 Results

A single 3D face (neutral expression) per individual, along with its texture, was
selected to build a gallery of 466 i.e. the maximum possible using the FRGC v2
data. This was to ensure a thorough and unbiased validation of our algorithm.
For each experiment, 200 probes with neutral expression and another 200 with
non-neutral expression were randomly selected to ensure that these samples are
true representatives of their populations. The negligible difference between the
2D feature performance in Fig. 7 and 8 using different sets of randomly selected
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Fig. 3. Best five matches between the 3D local features of a probe (first row) with
neutral expression and its correct identity in the gallery (second row). The 3D local
features are rendered as 3D surfaces (the nose can easily be noticed as peaks in some of
them). Each column shows a matching pair of 3D features with error written between
them. Mean error was 39.4 for the best 100 matches in this case.

Fig. 4. Best five matches between different identities, under neutral expression, show
higher errors compared to Fig. 3. Mean error was 92.8 for the best 100 matches.

faces (neutral expression) supports our claim. All faces were preprocessed (Sec-
tion 2) and their 2D (SIFT) and 3D local features were calculated and matched.

Fig. 7 shows our results when the local coordinate bases were derived from the
SIFT orientations and the point normals. The 3D local features did not perform
well in this case due to two possible reasons. One, the location of the SIFT
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Fig. 5. Best five matches between the 3D local features of a probe (first row) with
non-neutral expression and its correct identity in the gallery (second row). Notice that
the errors are higher compared to the neutral expression case (Fig. 3) but are still much
lower than in the case of an incorrect identity (Fig. 6). Mean error was 93.1 for the
best 100 matches in this case.

Fig. 6. Best five matches between different identities, under non-neutral expression,
show higher errors compared to Fig. 5. Mean error was 156.1 for the best 100 matches.

keypoints are not suitable (in terms of descriptiveness) to the 3D local features.
Two, the SIFT orientation does not provide stable local coordinates.

In the next experiment, we derived the local coordinate basis from the point
normals and the location of the nose tip. Fig. 8 and 9 show our results for
probes with neutral and non-neutral expressions respectively. The results were
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(a) (b)

Fig. 7. (a) Identification and (b) verification performance when the 3D coordinate
bases are derived from the point normals and SIFT orientations

(a) (b)

Fig. 8. (a) Identification and (b) verification performance (under neutral expression)
when the 3D coordinates are derived from the point normals and the nose tip location

(a) (b)

Fig. 9. (a) Identification and (b) verification performance (under non-neutral expres-
sion) when the 3D coordinates are derived from the normals and the nose tip location

very promising in this case as the 3D local features performed much better with
individual identification rates of 89.5% and 73.0% for probes with neutral and
non-neutral expressions respectively. The verification rates at 0.001 FAR for the
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same were 94.0% and 76.0% respectively. The 2D local features (SIFT) gave
slightly lower but comparable performance to the 3D features. Note that it was
not the aim of this paper to provide a true and unbiased comparison of these
two features but to demonstrate their use for face recognition in the presence
of illumination and expression variations. Fusion of the two features provides a
significant improvement in performance with identification rates of 95.5% and
81.0% respectively for probes with neutral and non-neutral expressions. The
verification rates at 0.001 FAR for the same were 98.5% and 86.0%.

5 Conclusion

We presented an automatic face recognition algorithm using 2D and 3D local
features. We also presented a novel and highly descriptive 3D local feature and
demonstrated its performance on a challenging interclass recognition problem
i.e. face recognition. We effectively used the SIFT features for face recognition.
By combining the 2D and 3D local features, we achieved a significant improve-
ment in performance. Although, our preliminary results show some deterioration
under non-neutral expressions, we believe that our 3D feature and recognition
algorithm are promising and can be improved or used in conjunction with global
features to give more accurate results. Moreover, the combined performance de-
terioration is significantly lower than that of the individual features. Our analysis
show that the failures mainly occur because the 3D features are extracted at in-
appropriate locations. Therefore, in our future work, we would like to focus on
identifying key locations for extracting the 3D local features.
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Abstract. In this paper, we present a novel method for generating background 
that adopts frame difference and a median filter to sensitive areas where illumi-
nation changes occur. The proposed method also uses fewer frames than the ex-
isting methods. Background generation is widely used as a preprocessing for 
video-based tracking, surveillance, and object detection. The proposed back-
ground generation method utilizes differences and motion changes between two 
consecutive frames to cope with the changes of illumination in an image se-
quence. It also utilizes a median filter to adaptively generate a robust back-
ground. The proposed method enables more efficient background reconstruction 
with fewer frames than existing methods use. 

1   Introduction 

In order to analyze shape and motion of an object in a video, a background image 
without objects is a fundamental clue to segment the object. Background generation is 
widely used in video-based tracking and surveillance systems as a preprocessing 
method.  

An important requirement of robust tracking is the illumination-independent ex-
traction of an object from the video. The information of the extracted object can be 
reliable when the real motion of the object is found by compensating errors due to the 
illumination change in the image sequence. 

Because of the importance of reliable background generation, current video track-
ing and surveillance systems adopt various techniques for a reliable object extraction. 
Object extraction from a video can be performed by using either frame differences or 
background differences. The frame difference method can be easily adopted in motion 
analysis. However, it requires an additional post-processing such as tracking. On the 
other hand, the background difference method that is used in many real-time video 
systems utilizes differences between the current frame and the background image. 
Since the background difference-based method is sensitive to shadow and illumina-
tion change [1], we propose a robust background extraction method that applies the 
frame difference method and a median filter to the sensitive areas.  
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This paper is organized as follows. Section 2 presents background algorithms. In 
section 3 we describe the proposed background generation method. The  
experimental results are presented in section 4. Finally, we conclude the paper in 
section 5. 

2   Related Works 

A background generation method is one of the preprocessing steps in video tracking 
systems. The generated background can help to extract an object from video, then the 
clear object segmentation leads to exact object tracking. The segmentation method for 
a moving object can be divided into frame difference, background difference, and the 
average of fixed number of frames [2]. 

The frame difference method using the differences of frames and generates mov-
ing parts. In the frame difference method the background can be removed easily. 
However, it also removes parts of the moving object [3]. The background difference 
image and finds moving objects clearly by taking the difference of the input image 
and the generated background image. On the other hand, it is difficult to get a cor-
rect background image [4]. Average filter method [5], which is widely used in the 
tracking systems for its easy implementation, averages input images pixel by pixel 
and generates the background from the average values. In the averaging method the 
quality of the background drops remarkably when the illumination abruptly 
changes. 

Selected object detection and background generation algorithms of significant in-
terests are summarized in Table 1. 

Table 1. Classification of background generation algorithm according to environment and 
approach 

Algorithm 
By 

Specific 
Task 

Method 
Used 

Camera 
View 

Sensor Area 

Haritaogu[7] 
Surveillance 

of people 
Median 
Filter 

Single Grayscale Outdoor 

Cucchiara[9] 
Object, Ghosts, 

Shadow detection Pixel level Single Color Outdoor 

Li[10] 
Object  

detection 
Pixel level Single 

Color, 
Grayscale 

Indoor, 
Outdoor 

Fang[11] 
Object 

 detection 
Edge Stereo Grayscale Outdoor 

B. Lee[5] 
Change  

detection 
Averaging Single Grayscale 

Indoor, 
Outdoor 

Ren[12] 
background 
subtraction 

Mapping of 
Pixel 

Multi Grayscale 
Indoor, 
Outdoor 

Proposed 
background 

generation and  
object detection 

Median 
Filter and 
Pixel level 

Single Grayscale Indoor, 
Outdoor 



 Adaptive Background Generation for Video Object Segmentation 873 

2.1   Background Generation and System  

An object can be easily extracted by subtracting the input image from a generated 
background.  This subtraction approach can easily detect change in video and is effec-
tive in analyzing feature information of an object [4]. More specifically, averaging 
multiple frames from a video can efficiently remove minor motion and changes, and 
easily generate a background model [6]. This approach, however, requires too many 
frames to accumulate, and the extracted background becomes worse as the amount of 
illumination change increases. 

The frame difference method is another simple object extraction method by sub-
tracting two adjacent frames [4]. This can efficiently detect regions that change frame 
by frame, and be used in many simple background elimination applications. 

A sudden change in illumination affects the generated background, and is conse-
quently the major factor that deteriorates the quality of background. Difference be-
tween two adjacent frames can be described as 

),1,,(),,(),,( −−= tyxItyxItyxFrame                                (1) 

Where ),,( tyxI and )1,,( −tyxI represent the current and previous frames respec-
tively. The desirable property of background is to have constant distribution. Based 
on this context, change in video should not affect the distribution.  The W4 [7] algo-
rithm separates objects and background using temporal median filter, and as a result it 
can provide a constant distribution against illumination changes [8]. This algorithm 
can also handle fast motion or abrupt change in the image because of the use of me-
dian filter. Figure 1 shows a background generation procedure using a median filter. 

Fig. 1. The background generation using Median Filter 

Common drawbacks of existing background generation methods are ghost artifacts 
that result from frame averaging and noisy the objects. Even the median filter-based 
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(a) Test of image sequence by in house indoor 

   
(b) Frame difference             (c) Median filter                 (d) Average 

Fig. 2. Created background generation model using number of 50 frames 

method cannot avoid noisy boundary effect. Various methods are classified and com-
pared in Table 1, and their performance is evaluated in Figure 2. 

3   Proposed Method 

When the target object and the background image have similar intensity, the object 
segmentation of existing background generation algorithms becomes sensitive to the 
threshold value. Thus, the generated background is often incorrect. In the proposed 
background generation method, the brightness changes of the image sequence are also 
taken into consideration. In order to prevent sudden changes of the intensity of the 
generated background, a median filter is used for the final result. Fig 1 shows back-
ground generation of the median filter. The procedure of the proposed background 
generation method can be described as 

            ,|)1,,(),,(|_ TtyxItyxIbufferbackIF ≤−−=  

            ,)_(_),,(_ TbufferbackFMediantyxframebackifthen ≤=           (2) 

            ),1,,(_ −tyxFMedianelse  

where ),,( tyxI  and )1,,( −tyxI  respectively represent the current and previous 
frames. Variable back_buffer is Memory Stack (value of frame different), and T is the 
average of the previous frame and Median_F is the median filter method. If the inten-
sity of the region that is greater than the threshold value, the region is excluded from 
the background generation. Fig 3 shows the algorithm flow of the proposed method. 

When the brightness difference due to the increase of the number of frames is not 
considered, a resulting background image has a lot of difference from the input image. 
If the frame difference is used to segment an object, the value of a pixel can be 
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Fig. 3. Structure of the proposed background generation 

changed with noise. With a large difference of brightness among the frames, a median 
filter is used to average the background image. By using a simple subtraction from the 
current frame, the background generation can be performed as 

>−
= ,

,0

),(),(,1
),(

otherwise

TyxGyxI
yxO                            (3) 

where ),( yxI  and ),( yxG  represent the current and background generation frames 
respectively. ),( yxO  represents the result of object by the difference Method, and T 
is the average of the current frame. 

4   Experimental Results 

In this paper we used standard test image sets provided by PETS-2001 and PETS-
2002, in addition to in-house test images. We tested existing methods such as mean, 
frame difference, and background difference to evaluate and compare the  
performance of the proposed method. The size of the input image is 320×240. Fig. 
4(a) has a big illumination change due to moving clouds, Fig 4. (b) has the reflec-
tion problem, and Fig 4.(c) is a nearly ideal image that does not have an illumina-
tion change. 
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                        (a)                                        (b)                                        (c) 

Fig. 4. Test Images of (a) In-house and outdoor image, (b) Indoor image provided by PETS-
2002, (c) Outdoor image by PETS-2001 

  
(a)    (b) 

  
(c)    (d) 

Results of background generation using 40 frames by (a) median filter, (b) edge dif-
ference method, (c) frame difference method, and (d) the proposed method. 

Fig. 5. Results of four different background generation methods with test image (a) 

Figures 5, 6, and 7 respectively show the resulting background of four different 
methods using 40 frames of in-house and outdoor image. Three existing methods 
generated noisy backgrounds, while the proposed method generated a clear back-
ground. 

Figure 8 shows the results of object extraction using the proposed background gen-
eration. The proposed method can efficiently generate a good quality of noise com-
pared to the existing methods. 
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(a)    (b) 

  
(c)     (d) 

Results of background generation using 40 frames by (a) median filter, (b) edge dif-
ference method, (c) frame difference method, and (d) the proposed method. 

Fig. 6. Results of four different background generation methods with test image (b) 

  
(a)    (b) 

  
(c)    (d) 

Results of background generation using 40 frames by (a) median filter, (b) edge dif-
ference method, (c) frame difference method, and (d) the proposed method. 

Fig. 7. Results of four different background generation methods with test image (c) 
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(a)   (b) 

Results of object extraction using 35 frames by (a) In-house and outdoor image, (b) 
Outdoor image by PETS-2002. 

Fig. 8. Results of object extraction by the proposed method 

Table 2 shows the resulting background of four different methods using 40 frames 
of all test sequences. We tested three different methods and evaluated peak-to-peak 
signal-to-noise ratio (PSNR) as 

,
)(

1
255

log10

,

2
,,

2

10

′−
=

yx
yxyx II

XY

PSNR
                                      (4) 

where I represents the original image, I´ the modified image, and X and Y respectively 
the horizontal and vertical sizes of the image. 

Table 2. PSNR of the proposed and existing methods 

Method 
Test image (a) 

by In-house 
outdoor 

Test image(b) by 
PETS2002 

Test image(c) by 
PETS2001 

Median filter 12.37 20.76 22.39 
Average 12.41 19.67 24.15 

Edge difference 12.27 17.12 22.80 
Frame difference 12.50 19.87 22.92 

proposed 22.57 32.34 28.83 

5   Conclusions 

The change of illumination in the video sequence is one of the important factors that 
may cause errors in the background generation. Even with many frames in the calcu-
lation, the existing methods still some have noise in the generated background due to 
the accumulated pixel errors. The accumulated errors also affect the separation of the 
object and background. 

In this paper, we propose a background generation algorithm that can resolve ghost 
effects and illumination change problems by using frame difference and median filter. 
The experimental results show that the proposed algorithm can efficiently generate a 
good quality of background with small number of frames compared to the existing 
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algorithm. The computational load of the proposed algorithm, thus, is also small. We 
present the PSNRs of the existing methods and the proposed method to compare the 
correctness of the generated background. Possible future research an object extraction 
technique and moving object tracking based on the proposed background generation 
model. 
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Abstract. This paper presents a novel approach to both omnidirectional camera 
calibration and 3D reconstruction of the surrounding scene by contour matching 
in architectural scenes. By using a quantitative measure to consider the inlier 
distribution, we can estimate more precise camera model parameters and struc-
ture from motion. Since most of line segments of man-made objects are pro-
jected to the contours in omnidirectional images, contour matching problem is 
important in camera recovery process. We propose a novel 3D reconstruction 
method by contour matching in three omnidirectional views. First, two points 
on the contour and their viewing vectors are used to determine an interpretation 
plane equation, and we obtain a contour intersecting both the plane and the es-
timated patch of the camera model. Then, 3D line segment is calculated from 
two patches, which is projected to the contour on the third views, and these 
matching results are used in refinement of camera recovery.  

1   Introduction 

Camera recovery and 3D reconstruction from un-calibrated images have long been 
one of the central topics in computer vision. Since the multi-view image analysis is 
based on establishing correspondence of images, matching features points, lines, 
contours is an important process. When the motion between two images is large, 
however, the matching problem becomes very difficult.  

Omnidirectional camera system is given increasing interest by researchers working 
in computer vision, because it can capture large part of a surrounding scene. There-
fore, wide angle of view often makes it possible to establish many spacious point 
correspondences which lead to more complete 3D reconstruction from few images. In 
addition, it is widely used to capture the scene and illumination from all directions 
from far less number of images.  

This paper aims at both the calibration of omnidirectional camera and 3D recon-
struction by contour matching in architectural scenes. Contours are more general 
primitives than points or line segments, and they contain more information about the 
image. However, most of previous calibration researches of omnidirectional images 
are based on not the contour correspondence but the feature points such as corners. In 
addition, although the contour matching using epipolar geometry was proposed, there 
were few methods to solve this problem in omnidirectional images [1-3].  
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Straight line features are prominent in most man-made environments, and they 
provide a great deal of information about the structure of the scene. Additionally, 
since edge features have more image support than point features, they can be local-
ized more accurately. Since the line segments of man-made objects are projected to 
contours in omnidirectional images, this paper focused contour matching for 3D re-
construction of the scene structure. The initial estimation of an essential matrix from 
the point correspondence is used for contour matching. Then, the matched contour is 
used in refinement of camera recovery. The experimental results showed that the 
proposed method can estimate omnidirectional camera parameters and achieve more 
precise contour matching. 

The remainder of this paper is structured as follows: Sec. 2 reviews previous stud-
ies on calibration of omnidirectional camera and line/contour matching, and the quan-
titative measure of inlier distributions for omnidirectional camera calibration is dis-
cussed in Sec. 3. Sec. 4 presents contour matching using the initial estimation and 3D 
reconstruction of the line segments in three views. Finally, the conclusion is described 
in Sec. 5. 

2   Previous Studies 

Many researches for self-calibration and 3D reconstruction from omnidirectional 
images have been proposed up to now. Xiong et al register four fisheye lens images to 
create the spherical panorama, while self-calibrating its distortion and field of view 
[5]. However, camera setting is required, and the calibration results may be incorrect 
according to lens because it is based on equi-distance camera model. Sato et al 
simplify user’s direct specification of a geometric model of the scene by using an 
omnidirectional stereo algorithm, and measure the radiance distribution. However, 
because of using the omnidirectional stereo, it is required in advance a strong camera 
calibration for capturing positions and internal parameters, which is complex and 
difficult process [6].   

Although previous studies on calibration of omnidirectional images have been 
widely presented, there were few methods about estimation of one parametric model 
and extrinsic parameters of the camera [7~9]. Pajdla et al just metntioned that one 
parametric non-linear projection model has smaller possibility to fit outliers, and 
explanied that simultaneous estimation of a camera model and epipolar geometry may 
be much affected by sampling corresponding points between a pair of the 
omindirectional images [10]. However, it requires further consideration of selecting 
more proper inlier set to overcome false point matching problem. In addition, using 
contour, which are more general primitives than points or line segments, makes it 
possible to achieve 3D reconstruction robust to large motion and occlusions. This 
paper presents a calibration algorithm for the omnidirectional camera by considering 
the inlier distribution, and 3D reconstruction by contour matching in three views.   

Previous studies on contour/line matching are classified into two classes according 
to whether the geometric constraints were used. Some researches using the multi-view 
geometry enables to cope with occlusion of the contour points by large camera motion 
on several views, in spite of high computational complexity [1, 2]. Although the 
contour matching using epipolar geometry was proposed, there were few methods to 
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solve the contour matching problem in omnidirectional images based on the estimated 
camera information. A line-photogrammetric mathmatical model for 3D 
reconstruction was built with image line observations and object parameters in the 
form of the coordinates of object points and the parameters of object planes [4]. 
Because in this model the orientation of the images is assumed to be approximately 
known and coplanarity properties of the observed image lines are used, it has many 
constraints in real applications. On the contrary, another approach assumes generally 
the continuity of contours in bright and shape over successive frames [3], but the 
smoothness constraints may be often violated due to various lighting effects.   

3   Omnidirectional Camera Model Estimation 

3.1   One-Parametric Projection Model 

The camera projection model describes how 3D scene is transformed into 2D image. 
The light rays are emanated from the camera center that is the camera position, and 
determined by a rotationally symmetric mapping function f . 

θtan/)(),( rfvuf == u                                               (1) 

where, 22 vur +=  is the radius of a point (u, v) with respect to the camera center 
and θ  is the angle between a ray and the optical axis.  
 

         

Fig. 1. Image formation and calibration of one-parametric omnidirectional camera model 

 

The mapping function f has various forms by lens construction [11]. We derive an 

one-parametric non-linear model for Nikon FC-E8 fisheye converter as follows: 

( )11 maxmax
2 −+

=
θ

θ
arr

ar ,                                             (2) 

where a is a parameter of the model. On the assumption that the maximal view angle 

maxθ (=1.597 rad) is known, the maximal radius maxr (normalized as 1) corresponding 

to 
maxθ  can be obtained from the view field image.  



884 Y. Hwang, J. Lee, and H. Hong 

In order to estimate one parametric non-linear projection model, we use two 
omnidirectional images with camera direction and translation. Corresponding points 
between two views are established by MatchMover pro3.0 [12] and then, the essential 
matrix is estimated by quadratic eigenvalue problem and epipolar geometry [8]. 

3.2   Camera Pose Estimation Using Inlier Distribution 

One of the main problems is that the essential matrix is sensitive to the point location 
errors. In order to cope with the unavoidable outliers inherent in the correspondence 
matches, our method is based on 9-points RANSAC that calculates the point distribu-
tion for each essential matrix [13]. Since the essential matrix contains relative orienta-
tion and position of the camera, the inliers represent the depths of the scene points and 
change of the image by camera motion. By considering the point distribution, we can 
select effectively the inlier set that reflects the scene structure and the camera motion, 
so achieve more precise estimation of the essential matrix. 

The standard deviation of the point density in the sub-region and that in an entire 
image can be used to evaluate whether the points are evenly distributed. First, 3D 
patches are segmented by the same solid angle in the hemi-spherical model and then 
they are projected onto the image plane as shown in Fig. 2. 

 

            
(a)                                                              (b) 

Fig. 2. Segmented sub-regions (a) Segmented 3D patch by uniform solid angle in hemi-
spherical model (b) 2D projected sub-regions and inlier set 

                    ( ) ( )NintNint πφπθ 2,5.0 =Δ=Δ                           (3) 

where N is the number of the inliers, and int(·) means conversion to integer. The pro-
posed method computes the standard deviation of two densities that represents a de-
gree of the point distribution in each sub-region relative to the entire. The obtained 
information is used as a quantitative measure to select the evenly distributed point 
sets. The standard deviation of the point density is defined as: 

=

−=
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1σ                                        (4) 

where NS is the number of sub-regions, N and PSi are the number of inliers and that in 
the i-th sub-region, respectively. 
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(a)                                                          (b)  

Fig. 3. Segmented regions for selecting inlier sets (a) Previous method (b) Proposed method  
(NS = 9) 

 

Fig. 4. Experimental results on the omnidirectional image pair 

The proposed method chooses each inlier set by using the standard deviation of 
distribution of each inlier set by Eq. (4), and we find the inlier set with the least stan-
dard deviation. In the final step, we estimate the essential matrix from the selected 
inlier set by minimizing the cost function that is the sum of the distance error of the 
inliers.  

Our method is compared with the previous method using 9-poins RANSAC. The 
regions for selecting inlier sets are showed in Fig. 3. Since points near the camera 
center have no special contribution to the final fitting, the center region is omitted 
[10]. Fig. 4 shows the computed epipole distance error. The results show our method 
gives relatively better results over the previous method as the iteration number  
increases. 

4   3D Reconstruction by Contour Matching 

In the section 3 we estimated the omnidirectional camera with one parametric model 
and the essential matrix simultaneously. That means we can obtain just the unit vector 
for the camera translation. Therefore, because the real amount of translation is not 
known, it is difficult to make a precise registration of camera recovery from multi-
view omnidirectional images. This section presents 3D reconstruction method by 
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Fig. 5. 3D line segment projected as the contour on the image plane 

contour matching in three omnidirectional views (the base, reference and camera 
view). In this process, the estimated camera motions and 3D scene structure can be 
integrated. 

Fig. 5 shows how 3D straight line segment with a begin point and an end is pro-
jected as the contour on the image plane. The line segment and the camera center O 
(0, 0, 0) define an interpretation plane Π  whose the normal vector m = (mx, my, mz) 
obtained from the direction vectors (p1, p2) of the begin and the end through their 
cross production (p1×p2). The image contour c is the projection of the intersection 
between the plane Π  and the surface S, which represents the omnidirectional camera 
model. The plane Π  is defined using an arbitrary point p (x, y, z) and the center of the 
camera p0 as follows: 

,0)( =−⋅
0

ppm                                                      (5) 

where p0 is the camera center because we choose the usual canonical camera for the 
first view.   

By executing the dot product in Eq. (5), the plane equation of Π  is simplified with 
respect to z as follows: 

.,, zyzx mmvmmuvyuxz −=−=+=                        (6) 

Before introducing the curve intersecting both the plane and the estimated surface 
of the camera model, we first obtain the curve intersecting both the plane and the unit 
sphere for computational simplicity, and rearrange it with respect to y as follows:  

01)1(2)1(
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2222

22

=−++++

−−=+

xuuvxyyv

yxvyux                      (7) 

To evaluate the curve intersecting both the plane and the estimated surface of the 
camera, we need to determine  and r, because the derived camera model is defined 
with respect to these variables as Eq. (2). We can compute  from the unit sphere, and 
r is obtained using Eq. (2) as follows:  
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When r is computed, we can draw the contour on the omnidirectional image  

by using Eq. (9). The curve intersecting both the plane and the camera model  
surface is projected as the contour onto the image plane. 2D image contour is  
effectively used to determine the interested region for contour matching of 3D line 
segment.  

                             22 xry −±=                                                  (9) 

In order to register camera motions, we multiply the unit translation vector ob-
tained from the essential matrix by a scaling factor, and determine the camera position 
of the reference view. As shown in Fig. 6, the reference scale sref is fixed as a con-
stant, and then the equation of 3D infinite line can be determined by finding the inter-
section between the plane bΠ  and refΠ  as follows:  
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where mb, mref and m are normal vectors of plane bΠ  and refΠ , and their cross prod-

uct, respectively. 
The begin point and the end of 3D line segment are used to calculate its line 

equation. Because the lines (L1 and L'1, L2 and L'2) are intersected in 3D space, we 
can compute two points of 3D line by using the center of each camera model and 

the direction vectors (
11
'and dd , 

22
'and dd ) meeting at two points (P1 and P2). 

The equation of line of endpoints P1 from the center of the surface is evaluated as 
following: 
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By using first two terms of Eq. (11), we compute t1 and s1 as following 
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When substituting the computed t1 to L1 or s1 to L'1, we can obtain the point (P1) on 

3D line segment. Similarly, P2 can be computed by using the L2 and L'2. By using the 
 



888 Y. Hwang, J. Lee, and H. Hong 

 

Fig. 6. Projection of 3D line segment onto two omnidirectional images 

 

Fig. 7. Projection of 3D line segment onto multi-view omnidirectional images 

computed information of 3D line segment, we calculate the relative position of the 
curve projected onto the third image. From three points P1, P2 and ScamTcam we 
evaluate the interpretation plane equation. In addition, we compute the curve inter-
secting both the plane with the surface, which is applicable to the guided contour 
matching based on the geometrical information as well as refinement of the multi-
view estimation. 

Fig. 8 shows a typical situation in the image plane, and we define the contour dis-
tance error D as follows:  
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where i and n are the subscribe of the contour and the number of contours, and t(s) are 
monotonic non-decreasing function with t(0)=0 and t(1)=1.  

 

Fig. 8. Predicted and detected contours in the image 

16896 and 18768 contours in two views were extracted by Canny’s [15], respec-
tively. Among them, the contours are discarded when the distance errors are higher 
than the constant value. The contour selection process is continued until the average 
distance is less then a predefined threshold value. Over 76 contour pairs over three 
views were remained finally, and then the initial camera pose was refined by the 
translation vector’s scale which has minimum D. 

5   Conclusions 

This paper presents a novel approach to both omnidirectional camera calibration and 
3D reconstruction by contour matching in architectural scenes. Using a quantitative 
measure to consider the inlier distribution makes it possible to estimate more precise 
camera parameters. In addition, we present a novel mathematical method for contour 
matching over three views by using the estimated camera information. The matched 
contour is applicable to the guided contour matching based on the geometrical infor-
mation as well as refinement of the multi-view estimation. Further study will include 
reconstruction of 3D scene structure and evaluation of 3D positions of the light source 
to generate photorealistic images.   
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Real-Time GPU-Based Simulation of Dynamic Terrain 

Anthony S. Aquilio, Jeremy C. Brooks, Ying Zhu∗, and G. Scott Owen 

Department of Computer Science 
Georgia State University 
Atlanta, Georgia, USA 
yzhu@cs.gsu.edu 

Abstract. Although a great deal of research effort has been devoted to the 
realistic and efficient rendering of terrain data, the existing research mainly 
focuses on displaying static terrain. The realistic simulation of dynamic terrain, 
including vehicle-terrain interactions, is absent in most 3D graphical 
applications. In this paper, we present a new GPU-based algorithm for dynamic 
terrain simulation. A key component of this algorithm is a Dynamically-
Displaced Height Map (DDHM) which is generated and manipulated on the 
GPU. In addition, our method achieves real-time performance by using new 
features of the latest graphics hardware and shader technology. We demonstrate 
our algorithm by simulating a ground vehicle traveling on soft terrain. Our 
algorithm is particularly useful for ground based visual simulation applications 
as well as 3D games. 

1   Introduction  

Terrain visualization has been an essential element in applications such as scientific 
visualization, ground based training, civil engineering simulation, and 3D games. 
Many of these applications involve simulating ground vehicles traveling on soft 
terrain. Although a great deal of research effort has been devoted to the realistic and 
efficient rendering of terrain data, the existing research mainly focuses on static 
terrain. As a result, the realistic simulation of vehicle-terrain interaction is absent in 
most 3D graphical applications. One example of such vehicle-terrain interaction is the 
tracks left by an off-road vehicle on soft terrain, such as snow or sand. Such visual 
cues are not only important for improving the realism of the simulation, but also are 
useful for training purposes. 

In this paper, we present a real-time Graphics Processing Unit (GPU)-based 
algorithm for dynamic terrain simulation. We define dynamic terrain simulation as the 
simulation of terrain deformation during its interaction with other entities. The main 
focus of this paper is on simulating terrain-vehicle interaction. Here a vehicle is 
regarded as any mobile entity regardless of the mechanical, electrical, or biological 
framework facilitating the movement. Thus our definition of vehicle includes both 
mechanical vehicles and living creatures. 

A major design goal of our algorithm is to offload terrain manipulation to the GPU 
as much as possible. As a result, our algorithm runs almost entirely on the GPU. The 
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key components of this algorithm are a Dynamically-Displaced Height Map (DDHM) 
and its corresponding offset map, which are both generated and manipulated on the 
GPU. In addition, our algorithm uses new features of the latest graphics hardware and 
shader technology, such as vertex texture based displacement mapping and 
framebuffer objects, to achieve real-time performance. 

Our algorithm is particularly useful for ground based visual simulation applications 
as well as 3D games. We demonstrate our algorithm by implementing a real-time 
driving simulation in which a physics based automobile leaves tracks on soft terrain.  

The rest of the paper is organized as follows. In section 2 we discuss related work 
in dynamic terrain simulation. In section 3, we discuss our algorithm in detail. 
Implementation and experiments are discussed in section 4. We analyze our method 
in section 5. Our conclusion and future work are described in section 6. 

2   Related Work 

Dynamic terrain systems produce surface deformations that are used to visually 
convince the observer of terrestrial interaction. In general, there are two approaches to 
simulate dynamic terrain: physics-based and appearance-based approaches. 

Physics-based solutions simulate terrain surfaces using the physical characteristics 
of their natural embodiment. The simulation model is derived using Soil Mechanics 
and Geotechnical Engineering to handle the management and execution of surface 
modifications. The tradeoff for the high quality realism is the increased computational 
cost and operational complexity due to the underlying physics simulation. 

Li and Moshell presented a physics-based solution for dynamic terrain [6]. Their 
physics-based method accurately simulates the local erosion process, which allows for 
the visual presentation of piling, cutting, and moving of granular soil. The simulation 
model decomposes the soil into particle masses that, collectively, have a shear 
strength and shear stress for use in the erosion process. The model lacks a 
representational soil composition, thereby causing it to be insufficient for simulating 
soil compression. 

Chanclou et al. propose a different method for simulating soil dynamics in a visual 
system [7]. The method is a two phase approach that treats the terrain surface as an 
elastic sheet. The first phase is a large-scale deformation that imitates soil compaction 
and displacement. The second phase performs small-scale refinement that performs 
local erosion to eliminate unrealistic pilings. Unfortunately, the method is very slow 
and not intended for use in interactive, real-time systems. 

Appearance-based methods attempt to create convincing visuals without the 
imposition of using a physically accurate model. In an effort to improve performance 
and ease of use, appearance-based techniques will fabricate parameterizations and 
invent functional constructs to achieve visually-convincing terrain surface 
modifications. The simplifications tend to constrain the simulation to a limited range 
of soil types and composition. For instance, many video game systems use decals to 
achieve a sub-par simulation of tire-soil interaction.  

Sumner et al. present an appearance-based method for animating sand, mud, and 
snow [8]. It is a four-step process controlled with five parameters. Although the 
method can achieve a reasonable visual display, it can only produce a smooth 
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deformation; rendering it unable to produce well-formed surface changes.  Also, the 
authors note that rendering parameters had to be hand-tailored in order to achieve 
optimal visuals. 

Onoue and Nishita [9] improved upon the work of Sumner et al. by incorporating a 
Height Span Map, which allows granular materials to be piled onto the top of objects. 
In addition, the direction of impacting forces is taken into consideration during the 
displacement step, thereby improving the visual realism in animations. However, the 
model still produces smoothed deformations and does not maintain a record of soil 
composition. 

A major limitation of the existing dynamic terrain algorithms is their performance. 
Most of them are not suitable for real-time interactive applications. None of them 
takes advantage of the powerful GPU. The work presented here, an appearance based 
method, tries to address this problem by using features of the latest graphics hardware 
and shader technology. Our method achieves expeditious throughput and performance 
suitable for interactive real-time systems.  

Unlike many of the existing methods our solution does not operate under the 
assumption of a granular material model, therefore our method is suitable for 
simulating clay-like ground materials. In general, our method eliminates the limitation 
that prescribes smoothed deformations, to provide a new class of simulation 
possibilities, where vehicles, munitions, or biological entities can influence their 
surroundings in a natural and realistic manner. 

3   Terrain Deformation Algorithm 

3.1   Dynamically-Displaced Height Map (DDHM) 

A common data structure for storing terrain elevation data is a height map, which has 
been shown to outperform other terrain mesh types [10]. A height map is composed of 
a rectilinear grid of evenly-distributed elevation points. The data layout allows for 
storing the elevation samples in 2D image space, an exploitable property. The 
elevation value can be decoded from the height map into a 3D positional vertex value 

( )zyx ,,  as follows: 
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where S is the input set of elevation data and k is a positive, non-zero scalar value.  
Dynamic terrains are unique in their ability to be modified at runtime. In our 

algorithm, the dynamic terrain surface is stored as a Dynamically-Displaced Height 
Map (DDHM). The DDHM is generated from the input set of elevation data and, 
subsequently updated each frame to reflect topographical changes. In this manner, the 
terrain is incrementally modified to produce a history of activity, resulting in a record 
that can be displayed or queried in successive frames. 
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3.2   Algorithm Overview 

The following steps are performed to accomplish the goal of deforming the terrain. 
 

1. Initialization: Transform the input height map to a DDHM. 
2. Calculate the terrain elevation offset values in a first render pass. 
3. Deform the terrain in a second render pass, using the DDHM from step 1 and 

the offset map generated in step 2. 
4. Repeat step 2 and 3 for each frame until the end of simulation. 
 

Note that steps 1 through 4 are performed entirely on the GPU. The following 
sections cover each step in greater detail. 

3.3   Initialization 

The terrain elevation data is stored in a height map, a rectilinear grid of data samples. 
This allows the input data sample to exist in 2D image space S . A Dynamically-
Displaced Height Map (DDHM) is also a rectilinear grid of data values that exists in 
2D image spaceV . A DDHM is generated through a special rendering pass. First, the 
terrain elevation data is loaded. Then the view parameters are configured such that the 
view volume encapsulates the area of the terrain that is to be deformed. The area to be 
deformed can be extracted by examining the bounding volume of the vehicles (or 
other objects) intersecting the terrain surface. The camera is then positioned and 
oriented such that the viewing direction is perpendicular to the ground plane and 
directly beneath the center of the subarea to be deformed (Figure 1). After that, the 
terrain is rendered into the render target using the bottom-up view of the camera. The 
DDHM is defined as the contents of the target buffer and is held in the graphics 
memory for the rest of program execution.  

 

Fig. 1. The camera configuration for generating the DDHM 
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Let SU  represent the height map’s elevation data and let VU  represent the 

corresponding data in the DDHM. The above rendering pass can be treated as a 

transformation function, VS UU → , such that every data sample maps in a one-to-

one relationship. This transformation function can achieve up sampling and down 
sampling by using a one-to-many or many-to-one function, respectively. Resampling 
elevation data offers the opportunity to alter the granularity of the deformation, which 
can be used to throttle the simulation and visuals as deemed necessary by the 
application. 

In practice, it may be necessary to use the elevation data of the DDHM for 
collision detection and feedback purposes. Therefore an inverse transformation, from 

SV UU → , can be executed to ensure values are scaled properly. The inverse 

transformation is achieved by generating the values according to equation (1). The 
inverse transformation can be used to regenerate the original elevation dataset from 
the DDHM and, as such, the DDHM can be used as the data source to describe the 
terrain surface in its original configuration for the rest of program execution.  

))min()(max()min( SSxzS UUVU −+                                   (1) 

3.4   Offset Generation 

The primary task of this step is to calculate the complete set of displacement offsets 
for vertices that are subject to the compression forces of an object on the terrain. 
Deformation offset values are quickly and efficiently computed by rendering the 
depth buffer to a texture and then executing a fragment program to determine the 
appropriate offset values. 

For the offset generation process, the viewing parameters of the camera are the 
same as during the initialization process. The inverse transformation is applied to the 
DDHM, and the resulting height map is rendered. During fragment assembly, the 
rendered elevation data is used to generate a copy of the DDHM by rendering to 
texture (Figure 2). Next, the object(s) that intersect the terrain surface are rendered 
(Figure 3). In the fragment shader, depth values are compared between the object and 
the contents of the copy of the DDHM. The object’s depth information is only 
retained when the object is closer than the terrain, otherwise it is discarded. In this 
manner, the per-fragment comparison is used to determine the compression offset that 
the object imposes on the terrain. Upon completion of this first pass, an offset map is 
generated in video memory to store one elevation offset for each height in the 
DDHM. 

3.5   Terrain Deformation 

In the second render pass, the DDHM and the offset map are used to render the 
terrain, in its deformed state, to the screen. The algorithm uses the vertex shader to 
dynamically apply the deformation to the terrain. 
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Fig. 2. The DDHM information is rendered into the render target 

 

Fig. 3. The object depth information is rendered to the target when it is closer than the DDHM 
depth 

 

Fig. 4. The target buffer is used to repopulate the DDHM with the new elevation data 
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During this step, both the DDHM and the offset map are available in video 
memory and accessible as textures from the preceding render pass. Shader Model 3.0 
offers vertex texture lookups, which can be used to achieve hardware-based 
displacement mapping. Using the vertex texture lookup functionality, each vertex of a 
rectilinear, planar grid can access the DDHM elevation value and the offset value 
through a common texture coordinate. The inverse transformation is applied to the 
DDHM value to determine the base height of the vertex. The offset is additively 
conjoined to the base height to produce the deformed height (Figure 4). Non-zero 
offset values indicate that a compression of the base height has occurred due to object 
imposition. The final height is prescribed to the vertex, which can be further 
processed; applying texturing and shading according to the systems requirements. In 
this manner, the terrain is deformed to realistically reflect soil compression. 

4   Implementation and Experiments 

One application for our method is visualizing the impact of a vehicle traversing soft 
terrain.  To test this application, we have implemented a simple simulation using a ray-
cast vehicle with physics-based subsystems.  As the vehicle traverses the terrain, it 
leaves a trail of displaced vertices.  The offset information is also used to modulate the 
base color of the terrain. The technique is visually effective as seen in figures 5, 6 and 7. 

Collision detection and rigid body dynamics are performed using the Tokamak 
physics engine (http://www.tokamakphysics.com/). The simulation is written in C++ 
using OpenGL for rendering.  The shaders are written in GLSL, a high level shader 
language for OpenGL.  We use the frame buffer object (FBO) OpenGL extension to 
perform render to texture operations.  Three floating point format textures each with a 
resolution of 1024x1024 are created.  One texture is used to store the height map of 
the terrain, another is used to store the current depth profile of the vehicle, and the 
third is used to store the DDHM.  For each pass of the algorithm, a different texture is 
bound to the color attachment of the FBO.  After the third pass, the height map and 
vehicle depth profile will contain data that is used to compute the DDHM. 

 

Fig. 5. The path the vehicle has traversed is clearly visible even across different elevations 
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Fig. 6.  Occlusion of the tires is possible because the terrain geometry is displaced 

The DDHM is used by the vertex texture fetch operation in a vertex shader to 
displace the vertices of the terrain.  Directly beneath the visual representation of the 
terrain is a lower density approximation of the terrain that is used by the physics 
engine to perform collision detection with the vehicle wheels.  This also serves to 
limit the amount of displacement that the vehicle may exert on the terrain.  During the 
final rendering pass of the terrain, a pixel shader uses the DDHM to modulate the 
color texture applied to the terrain, thus giving the impression of a muddy track left 
by the vehicle’s tires. 

 

Fig. 7. Rutting caused by the vehicle’s tires 

The simulation runs at approximately 60 frames per second on a laptop computer 
with a Pentium M 1.6 GHz processor and GeForce 6800Go GPU, and at 
approximately 100 frames per second on a Pentium Xeon 2.0 GHz processor and 
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GeForce 7800 GTS GPU.  Because frame buffer objects can both read from and write 
to textures, all operations are performed on the GPU thus eliminating costly transfers 
to and from the CPU.  In order to ensure we are measuring the speed of computing the 
DDHM and displacing the vertices, physics and user input are disabled during our 
benchmarking trials.  The full simulation with physics runs at approximately 40 and 
70 frames per second on our two benchmarking machines respectively. 

5   Analysis 

Dynamic terrain visualization offers more contextual meaning to the scene and 
provides greater realism to the simulation thereby, improving the relevance of the 
simulation and the usefulness of the application. The method presented here offers 
fast, dynamic terrain deformation. Unlike previous methods, our algorithm takes 
advantage of several new features of the latest graphics hardware, such as vertex 
textures and frame buffer objects. As a result, our method achieves a high frame rate 
and is suitable for interactive 3D applications. Ground-vehicle simulation is an 
exemplary situation to use dynamic terrain, but the technique is flexible and allows 
for any rigid-body object to impose topographical changes.  

Our method has some limitations. At the moment, our method does not simulate 
soil erosion. This means that it is best-suited for representing clay-like ground 
materials. In addition, like most previous methods, our current strategy assumes a 
limited terrain area, and thus is not appropriate for use in very large-scale terrains.  

6   Conclusion and Future Work 

We have presented a new algorithm for simulating dynamic, deformable terrain. Our 
algorithm achieves real-time performance by offloading most of the terrain 
manipulations to the GPU. To do this, we introduce the Dynamically-Displaced 
Height Map and the corresponding offset map, both of which are generated and 
maintained on the GPU. This algorithm takes advantage of some new features in the 
latest graphics hardware and shader technology, such as vertex textures and frame 
buffer objects.  

Our algorithm is particularly useful for ground based visual simulation applications 
as well as 3D games. We have demonstrated the effectiveness of our algorithm by 
implementing a real-time driving simulation in which an off-road ground vehicle 
travels on soft terrain. Our current method is most suitable for simulating clay-like 
ground materials. In the future, we plan to extend our method to include granular 
materials by integrating an erosion mode. We also plan to extend our method to work 
with large-scale terrain. 
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Abstract. In this paper, we explored the problem of creating a high-
resolution video from a series of still photographs. Instead of enhancing
the resolution from the video stream, we consider the problem of gener-
ating a high-resolution video as an image synthesis problem. Using the
continuous shot in the digital camera, we can get a series of still pho-
tographs at 2 to 3 frames pre second. The main challenge in our approach
is to synthesize the in between frames from two consecutive still images.
The image synthesis approach varies based on the scene motion and im-
age characteristics. We have applied optical flow, image segmentation,
image filtering and skeleton based image warping techniques to generate
high-resolution video.

Keywords: Video Synthesis, Optical Flow, Image Segmentation.

1 Introduction

In spite of continuous development in digital video technology, making a movie-
quality video is still beyond the limit of consumer-level digital camcorder. Com-
pared with digital camcorder, the consumer-grade digital camera can capture
images at much higher quality and resolution. Currently, more and more digital
cameras are capable of taking continuous shot images. Continuous shot images
can be considered as an intermediate stage between a single image and a video
clip. These continuous images have a high-resolution feature of still image, while
preserving the continuous motion cues in the video clip. Fast professional digital
and sports camera can take continuous shot images at extremely high frame
rates and these images can be directly converted to a video. However, for the
consumer level digital camera, the frame rate of the continuous shot images is
still limited to 2 to 3 frames per second. In this paper, we will concentrate on
the problem of using low frame rate continuous shot images to synthesize high
resolution video.

Fully automated video synthesis from any type of continuous images would
be the ultimate goal. However, to prove the feasibility of making videos from
continuous shot images, we have simplified the problem by limiting the types
of scenes and allowing user interaction during the image segmentation stage. In
this paper, we have limited our scenes to four different types of motions: static
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environment with moving camera, static camera with moving rigid object, static
camera with character walking and static camera with moving trees. A general
scene may consist of all these motions simultaneously, but we have tackled these
problems separately.

In order to make a high resolution video from continuous shot images, we need
to synthesize in between frames from two consecutive images. For the static en-
vironment with a moving camera, we used optical flow based image warping to
generate in between images. For the rigid moving object, we used image seg-
mentation and image morphing to synthesize in between frames. For the human
walking scenes, we combined optical flow based and skeleton based image warp-
ing to produce human walking images. Finally, for the moving trees, we applied
simple alpha blending followed by contrast enhancement filtering to generate the
images of moving trees.

Most of algorithms described in this paper are fairly simple modifications of
already known techniques. So, the main contribution of this paper is formulating
the problem of high resolution video synthesis from still photographs, and prov-
ing the feasibility of our approach by performing experiments on four different
types of moving scenes.

The rest of this paper is organized as follows: In section 2, we will look into
some related works. The section 3 will provide detailed description of synthesiz-
ing in between images from different types of continuous shot images. We will
show our experiment and result in section 4 and conclusion and future works in
section 5.

2 Related Works

Dense optical flow method generates one to one pixel matching between two
images. [1] calculated the optical flow using steepest descendent energy mini-
mization method. Another well known optical flow algorithm is local motion
optimization using the KLT method [2][3]. Further, the computation speed is
increased by hierarchical searching [4] at different image scales. Recently, [5]
describes a video matching method to align different video sources. They used
robust estimation of flow field to interpolate and extrapolate at missing areas.
We choose the KLT method for our optical flow calculation, for its efficiency
and excellent result in quickly moving rigid objects. For our purpose, since the
viewpoint or the motion is restricted by the two consecutive images, we do not
need to recover the camera position and 3D information. In this context, our
work is more related with feature based image morphing [6], skeleton based im-
age warping [7] and view morphing works [8]. Commercial product like Apple
Shake is using optical flow for re-timing, however, if the motion between two
consecutive frames is large, the synthesized result presents motion-blur effect.

Image-based rendering focuses on generating new images and videos from
given images. Some works used single image to generate a new image or an
animated video. Tour into the picture [9] used a vanishing point to separate
the image into spidery mesh regions and warped the image regions based on
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the camera movement. QuickTime VR [10] used panoramic image to generate
camera panning and zooming in static environment. Stochastic motion texture
is used to animate the movement of passive elements driven by the wind [11].
These works have produced convincing results. However, since there is only one
image, the changes in view point or the animated motion is still limited to some
small scale. We consider our work as a natural extension of video synthesis from
a single image. Stop motion animation with image based motion blur is proposed
to synthesize in between frames, where the image segmentation and optical flow
techniques are used to synthesize motion blur effect [12]. Our proposed method
differs from [12]’s work, where we are focused on synthesizing clear trajectory
of the motion path. Motion magnification [13] is proposed to magnify the small
motions in image sequence, however, for our case the motion in two consecutive
images are relatively large and as a result, it is difficult to apply their method
for our case.

In the image segmentation, graph cut based methods have produced good
results both in still images and videos [14][15][16]. To extract clear alpha matte,
Bayesian matting [17] and Poisson matting [18] approaches have been introduced
to segment hairy objects. Another simple and efficient segmentation method is
based on cellular automata [19]. For the video synthesis, the segmented image
usually needs user refinement to remove the flickering artifact. So, for our case,
we used the cellular automata based method to perform the initial segmentation
and refine the result with user interaction.

3 Image Synthesis Using Continuous Shot Images

In order to synthesize a new image from two given images, we matched two con-
secutive images by calculating the optical flow and used the flow field to warp the
source image to the destination image. For the static environment with moving
camera, the optical flow with pseudo inverse image warping produces convincing
results. However, for the scene with moving objects, only using optical flow could
not generate good results. Some artifacts will occur at the boundaries of moving
objects. So, we used the cellular automata based method to segment out the
foreground layers and further refined it by user interaction. By using the optical
flow at the foreground object layer, we morphed the image of a moving object to
the in between frames. For the articulated figure such as walking human, image
matching could not establish correct pixel mapping between walking legs. We
have separated the human body into upper body and lower legs. For the upper
body, we consider it as a rigid object. For the legs, we calculated the skeleton
structure at each image, and used the skeleton based image warping to warp the
legs. For the moving trees, we have applied simple alpha blending followed by
contrast enhancement filtering to generate the in between frames.

3.1 Optical Flow Based Image Warping

Synthesis of in between frames for the camera moving at a static environment
is image matching and warping problem. If the camera is panning at a fixed
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viewpoint, the problem becomes a panoramic image stitching and projective
warping problem. For our case, we experimented with the camera moving along a
certain path. Since we are only using one camera and not calculating the camera
internal parameters and positions, the image matching between two adjacent
frames is purely image based. We are dealing with the images that taken at a
short time interval (about 0.5 second), the optical flow between two consecutive
images will not be too large. Suppose I(x, y) and J(x, y) are two adjacent images.
The optical flow vector d = [dx, dy] maps the image point u = [ux, uy] in image
I to the image point v = [vx, vy] in image J .

J(vx, vy) = I(ux + dx, uy + dy) (1)

The optical flow vector d is calculated by minimizing the residual error at
u(ux, uy) with a certain window size.

ε(d) = ε(dx, dy) =
x=ux+wx∑
x=ux−wx

y=uy+wy∑
y=uy−wy

(I(x, y) − J(x+ dx, y + dy))2 (2)

The Pyramid Lucas Kanade optical flow algorithm calculates the flow vector
at small image scale and propagates it into the next level as an initial guess. The
error minimization is done by a gradient descendent method. In this paper, we
did not propose a new optical flow algorithm. Instead, we used the pyramid LK
optical flow library in OpenCV [20] to calculate the optical flow between two
images.

Once we get the optical flow between two images, we can use the flow vector to
warp one image to the other. Mathematically, it is a forward warping from image
I to J using optical flow. However, the forward mapping has some problems with
aliasing and holes. It can be done with two-pass method, but since the motion
flow field is very smooth, we used pseudo inverse warping similar with [11]’s
work. We used a linear factor f to smoothly change the flow vector from [0, 0]
to [dx, dy]. Since the frame rate of continuous shot images is about 2-3 frames
per second, we need to generate about 10 images between two continuous shot
images. So the linear factor increases from 0 to 1 with the interval of 0.1. The
pseudo inverse warping function is described in equation (3).

I∗(x, y) = I(x− f ∗ dx, y − f ∗ dy) (3)

The pseudo inverse warping works well on the scenes with a smooth vector
field. However, when there is a moving object or the scene topology changes a
lot, we could not simply warp the image using optical flow.

3.2 Movement of a Rigid Object

For the static camera with a moving object, we need to segment out the moving
object first. To do this, we initially calculated the background image by averaging
the full sequence of images. The background image was further refined by using
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a large threshold value (Summed RGB Color Difference) to disregard the fore-
ground pixels and only use the remaining pixels to get an averaged background.
To get more accurate background, this process is repeated by decreasing the
threshold value. For our case, two steps of iteration with large and small thresh-
old value have generated good results.

   

Fig. 1. Left: Background estimation with averaging, Right: Refined with large and
small threshold

In the next step, we used simple RGB color threshold to segment out the
foreground object. The result is further refined by eroding and dilating operation
to remove background pixels and fill the holes inside foreground object. After
this, we set the pixels at segmentation boundary as uncertain pixels.

         

Fig. 2. Left: Segmentation with uncertain pixels marked in dark gray, Right: Segmen-
tation result with Cellular Automata

Finally, we used the cellular automata based method to segment out the
foreground object [19]. Each pixel is assigned with label, power, and its RGB
color value. The label has three types: foreground, background and uncertain.
The power of foreground and background pixels is set to 1 and the uncertain
pixels are set to 0. At each iteration step, the neighbouring pixel with higher
power and color similarity will try to change current pixel’s label and power.

Li:Label of Pixel i; Pi:Power of Pixel i(0 to 1)
RGBi: RGB value of pixel i; g(RGBi −RGBj) = 1 − ‖RGBi−RGBj‖

Max‖RGB Diff‖
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for ∀ pixel j ∈ Neighbor of pixel i
if (g(RGBj −RGBi) ∗ P t

j > p
t
i

Lt+1
i = Lt

j ; (t : iteration step)
P t+1

i = g(RGBj −RGBi) ∗ P t
j ;

endif
end for

The automatic segmentation result with cellular automata is quite good. In
order to remove the flicking effect, we improved the segmentation result by mov-
ing the boundary lines as described in [14].After segmentation, we calculated the
optical flow of the moving object using the method described in section 1. The
segmented images usually do not perfectly match and there will be small vari-
ations in camera focus and lighting conditions. Because of this, simply warping
the source image to the destination image will cause flickering effect. Thus, we
used image morphing to generate the in between frames. First, we warped the
destination image to the source image using optical flow and got a warped source
image J∗. All the pixel value in image J∗ comes from the destination image. A
new image is generated by linearly blending source image I and warped source
image J∗. The morphing equation is described in equation 4.

I∗(x, y) = (1 − f) ∗ I(x− f ∗ dx, y − f ∗ dy) + f ∗ J∗(x− f ∗ dx, y − f ∗ dy) (4)

For the reflections and shadows, if we use image warping at the reflection
part, it will make some changes to the texture of the background scene. So, we
used the difference image and warp the difference image using optical flow. The
difference image does not contain good features, and this will cause some abrupt
changes in the synthesized reflection image. So we used the low pass filtering to
smooth the warped reflection images.

            

Fig. 3. Left: Reflection Image. Right: Difference Image.

3.3 Human Walking

For the walking scenes, we have separated the human body into upper body
and lower legs. For the upper body, we consider it as a rigid moving object and
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the in between images are generated using the method described in section 2.
For the legs, we calculated the skeleton structure at each image, and used the
skeleton based image warping to warp the legs from one image to the other. At

Fig. 4. Upper image: Lower legs in image sequence; Lower image: In between skeleton
calculation with forward kinematics

each inner pixel inside the segmented matte, we calculated the shortest pixel
distance to the matte boundary. The skeleton structure is easily calculated by
searching for the local maxima and the hough transform. The in between skeleton
structure is calculated using a simple forward kinematics method. We used the
feature based image morphing described in [6] to warp the leg images. At the
boundaries of upper body and lower legs, there will be some discontinuity because
of different image warping methods. So at these boundaries, we calculated the
pixel displacement by linearly blending the displacement from optical flow based
warping and skeleton based warping. The left leg is warped in a similar way. One

Fig. 5. The result of combining the upper body and lower leg

problem with left leg is: some of the left legs are heavily occluded by the right
legs. For those heavily occluded left legs, we manually painted those left legs
using nearby left leg images.
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3.4 Trees

The tree movement has stochastic motion feature, so, it is very difficult to use
image matching based method to generate the in between frames. We have ap-
plied a simple alpha blending followed by debluring operation to generate the in
between frames. If we play the alpha blended image sequence, it will look like
highly motion blured video. So we used the contrast enhancing filter to decrease
the bluring effect. However, the contrast enhancing operation on original im-
ages will make the original continuous shot images much sharper than the alpha
blended images. So we used simple method to blur the original images. I0 is the
original continuous shot image, I−1 and I1 are the continuous shot images before
and after I0. The new alpha blended image is generated using equation (5).

I∗0 (x, y) = 0.1 ∗ I−1(x, y) + 0.8 ∗ I0(x, y) + 0.1 ∗ I1(x, y) (5)

With this simple approach, we can generate a slightly motion blured video of
tree movement.

Fig. 6. The result of tree motion synthesis

4 Experiment and Result

We used Canon 20D digital camera, with remote switch to capture continuous
shot images. We can capture about 300 continuous images without interruption.
Since the frame rate is 2-3 frames per second, it can be thought as a 3-minute
video clip. The camera shutter speed needs to be fast. For indoor scenes, the
shutter speed is set to 1/60–1/40, and the ISO is set to 1600. For outdoor scenes,
the shutter speed is set to 1/200–1/125, and the ISO is set to 100-200. We used
the smallest image size (1728 X 1152) for capturing continuous images. For our
experiment, we down sampled the image to 1440 X 960. We used workstation
with Intel 3.2Ghz Xeon Processor and 2GB memory for our experiment. For the
programming, we used Visual C++ with OpenCV library and Matlab6.5.

In our video synthesis, the main speed bottleneck is the optical flow calcu-
lation. Since we are using the pseudo inverse image warping, the window size
in optical flow calculation is set to 15–30. For the camera moving at a static
environment, the window size is set to 15. For the moving objects and human
walking, since the motion is large, we set the window size to 30. The optical flow
computation time is about 180 seconds at image size 1440 X 960 with window
size 15. For the window size 30, the computation time is about 720 seconds.
Since the optical flow computation takes too much time, we have experimented
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using the optical flow at a smaller image size, and linearly interpolated to get the
enlarged optical flow at a bigger image size. The optical flow computation at 720
X 480 with window size 15 is about 50 seconds. The image synthesis time using
inverse warping is less than one second per image. For the camera moving at a
static environment, the warped image has some holes at the image boundary.
We simply cropped the whole sequence of synthesized images to generate a high
resolution video. The cropped image is 1080 X 720, and it is still much bigger
than the images from digital camcorder. For our human walking video, since
we only used simple forward kinematics based approach, the resultant human
walking presents some moon walking effect.

Fig. 7. The result of proposed method

5 Conclusions and Future Works

In this paper, we introduced a new way to synthesize a high resolution video.
Instead of enhancing the resolution from video stream, we used continuous shot
still images to synthesize the video. In image synthesis using adjacent frames,
we have found that the approaches need to be varied based on the motion in
the scene. We have simplified the problem by limiting the types of scenes. For
the static environment, we used optical flow with pseudo inverse image warping.
For the rigid moving object, we used segmentation and optical flow to animate
the rigid moving objects. For the reflected image, we used the difference image
for image warping and applied low pass filtering to smooth the result. For the
human walking, we combined optical flow based image warping and skeleton
based image warping to generate the human walking video. Finally, we used
simple alpha blending and contrast enhancement filtering to generate the video
of tree movement. With our approach, it is possible to make a movie quality
video using consumer level digital cameras. Even in the future, as long as the
resolution of digital cameras is higher than the digital camcoders, our approach
is an alternative way to overcome the resolution limit of digital video devices. For
the future work, we want to implement optical flow algorithm on GPU. Many
video based rendering approaches are depending on optical flow calculation, but
the optical flow computation is too slow for the interactive applications. We
will experiment on different types of scenes, for example, driving scenes, moving
camera with moving objects, waving water and so on. We also think about using
a carefully calibrated video and camera pair. The continuous shot image from
the camera is going to be warped based on the optical flow from the video image
sequence.
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Krüger, V. I-538
Kuester, Falko I-191
Kundu, M. I-353
Kuno, Yoshinori I-841
Kwan, Chiman I-112

Lachaud, Jacques-Olivier II-306,
II-688

Lahiri, S. I-353
Lam, Tony II-770
Langton, John T. II-617
Lavest, Jean Marc II-891
Lee, Byoungmoo II-39
Lee, Byung-Uk II-70
Lee, Hee-Won II-70
Lee, Hyung-Soo I-323
Lee, Inho II-326
Lee, Jaeman I-881
Lee, Jiann-Der II-31
Lee, Joonwhoan I-133
Lee, Jun II-383
Lee, Ki-Youn I-313
Lee, Namkyung II-49
Lee, Sang-Joon I-761
Lee, Yun Hee II-294
Lefort-Piat, Nadine I-411
Lemuz-López, Rafael II-502, II-564
Lesage, David II-393
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